
P a g e |73 Vol.10 Issue 14 (Ver.1.0) November 2010 Global Journal of Computer Science and Technology

GJCST Classification

Class Break Point Determination Using CK Metrics
Thresholds

Dr. E. Chandra 1, P. Edith Linda 2

Abstract-The design and development of any project has got a

well-defined project development cycle. But once the project

or the product has been developed, it is subject to change due a

lot a policy changes on the part of the organization or the

government. These changes are implemented on the code but

most of the time these changes are not reflected on the design

document. This leads to inconsistencies in terms of design and

code thereby causing depreciation in terms of quality. In this

work we propose to use the object oriented metrics which uses

the parameters mentioned in the CK metrics suite to assess the

quality of the software at the class level. The proposed tool

namely ―Class Break Point‖ which could be used to determine

the class design validity. This tool can be used to check if the

class is adhering to the OO design specifications. The tool is

useful in predicting the decomposition point of the class.

Keywords- OO metrics, Weighted Method Per Class, Depth
of Inheritance Tree, LCOM, Response for a class, Number
of Children, design refinement.

I. INTRODUCTION

he quality of software can be evaluated using
metrics.Software quality has been a major challenge in

various software projects. Quality has been a major issue in
software development but it lacks in standards measuring
quality. Metrics are the continuous application of
measurement-based techniques to the software development
process and its products to supply meaningful and timely
management information together with the use of techniques
to improve the process and its products [2]. The use of
Metrics can help us understand more about our software
products, processes and services. Metrics can be used to
evaluate our software products, processes and services
against established standards and goals. Metrics can provide
the information we need to control resources and processes
used to produce our software. Metrics can be used to predict

attributes of software entities in the future [4].A metrics
program that is based on the goals of the organizations will
help communicate those goals. People will work to
accomplish what they believe to be important. Well-
designed metrics with documented objectives can help our
organization obtain the information it needs to continue to
improve its software products, processes and services while
maintaining a focus on what is important to that
organization.

About1-Director, Department of MCA, D J. Academy of Managerial

Excellence, Coimbatore -32, India. Telephone:+919894255832. Email:

crcspeech@gmail.com

About2-Assistant Professor, School of IT and Science, Dr. G. R Damodaran

College of Science, Coimbatore-14, India. Telephone:+919894876043.

Email:p.lindavinod@gmail.com

II. INTRODUCTION TO THE TOOL

When Object Oriented design was introduced, it guaranteed
robust, maintainable and reusable systems. But these claims
given by the object oriented designs are not fulfilled in
large. Simply by using object oriented language or design
does not assure a robust and reusable system. It mainly
depends on the pattern or interdependencies between the
subsystems and the communication between them. So the
design of the object oriented system has to be validated to
develop high quality applications which could be easily
maintained and can be reused. The Design quality metrics is
used to check the conformance of the object oriented design
in the particular application. These design quality metrics
provide information to the designers regarding the ability to
survive to the changes [7].
The Code metrics is a set of software measures that provide
developers better insight into the code they are developing.
By taking advantage of code metrics, developers can
understand which types and/or methods should be reworked
or more thoroughly tested. Development teams can identify
potential risks, understand the current state of a project, and
track progress during software development [6].
Here in this paper we propose a tool called C lass Break
Point‖ to evaluate the code quality of the software. Most of
the works mentioned in the literature are covering the
metrics that can be computed at the design level. But here in
this paper we demonstrate the same set of metrics to
evaluate the code quality. This tool could be used in the
maintenance phase or even the developers could use this
tool to find the adherence of code to the object oriented
designing principles. Hence here the input to the tool would
be the source code of existing software. Another type of
input to the tool can be the code developed by the
programmer to check the design quality of the code. Here in
the second case the tool can be used as a self-evaluation tool
to the programmer. In the first case the tool can be used to
evaluate the breakthrough point of the class. In continuation
with our previous work as mentioned in [1], this tool in the
initial phase extracts only the parameters of the CK metrics
tool.The main objective of the class break point tool is to
check the quality of the source code and the adherence of
the source code to the design documents. This tool finds its
usage in the maintenance phase of the software. Here in this

T

D.2.8

Global Journal of Computer Science and Technology Vol. 10 Issue 14 (Ver. 1.0) November 2010 P a g e | 74

Fig1: Architecture of the Class Break Point Tool

phase after a period of year or two the software would have
undergone lots of changes in code due to changing
requirements. The changing requirements may be due to the
change in the government policies or due the change in the
company‘s policies. Hence the code is changed to meet the
new set of requirements. When the code is changed, the
developers usually change the code making the software
ready to meet the new set of requirements. But most of the
time this change is not reflected in the design document.
Due to this factor it makes the next developer in jeopardy as
the developer is not aware if the design document is up to
date with the latest changes made.

1) Explanation of the parameters to be extracted by the

code analyzer tool:

 Parameters Identified to check the design validity of the
class are same as the CK metrics suite[9, 10].

S.No

PARAMETERS

OF CK

METRIC

THRESHOL

D

1 WMC 0-15

2 DIT 0-6

3 NOC 0-6

4 CBO 0-8

5 RFC 0-35

6 LCOM 0-1

Table 1: The threshold values for the CK metric suite
parameters.

Metric 1: Weighted Methods per class (WMC):

The Weighted Method Per Class (WMC) – It is a count of
sum of complexities of all methods in a class. To calculate
the complexity of a class, the specific complexity metric that
is chosen (e.g., cyclomatic complexity) should be

normalized so that nominal complexity for a method takes
on value 1.0. Consider a class K1, with methods M1,……..

Mn that are defined in
the class.Let C1,……….Cn be the complexity of the
methods[4].

cnciWMC ...
For the sake of simplicity we assume that the complexity of
all the class is the same. Hence WMC is the sum of all the
methods in the class. To compute WMC use the method
getDeclaredMethods() to compute the number of methods in
the class If the number of methods in the class is high then
the class is considered to be very complex. If the number of
methods in the class is low the complexity of the class is
less. If the number of methods in a class is less than or equal
to 15, then the class can be considered to have normal
complexity. The threshold limit is set to 15 per class.
public class MetricsWMC {
public int getMethods(String className) {
 try {
 Class classObj = Class.forName(className);
 return classObj.getDeclaredMethods().length;
 }
catch (Exception e) {
 e.printStackTrace();
 }
 return 0;}}

Metric2:

Depth of Inheritance Tree (DIT)
Assess how deep, a class is in hierarchy structure. This
metric assesses the potential reuse of a class and its probable
ease of maintenance. A class with a small DIT has much
potential for reuse it tends to be a general abstract class. On
the other side, as a class gets deeper into a class hierarchy, it
becomes more difficult to maintain due to the increased
mental burden needed to capture it functionally. There are
certain viewpoints regarding DIT T he deeper a class is in
the hierarchy, the greater the number of methods it is likely
to inherit, making it more complex‖ hence higher the value
of DIT it is bad. Another viewpoint is It is useful to have
a measure of how deep a particular class is in the hierarchy
so that the class can be designed with reuse of inherited
methods‖ ‖ hence higher the value of DIT it is good.
DIT = maximum inheritance path from the class to the

root class.

In cases involving multiple inheritance, the DIT will be the
maximum length from the node to the root of the tree. The
theoretical Basis of the DIT metric is a measure of how
many ancestor classes can potentially affect this class. The
deeper a class is in the hierarchy, the more methods and
variables it is likely to inherit, making it more complex.
Deeper the tree the greater is the design complexity.
Inheritance has to manage the complexity and to increase
the reusability of the class and not to create issues with the
design. A high DIT has been found to increase faults. Since
the fault-prone classes may be at the middle of the tree, it

P a g e |75 Vol.10 Issue 14 (Ver.1.0) November 2010 Global Journal of Computer Science and Technology

may contribute to the fault to the rest of the inheriting
classes. This work suggests that lower DIT has great
potential of reuse; hence a threshold value of 6 levels is set
for DIT. To compute the value of DIT getSuperclass() is
used to find the super class of an existing class. getName()
is used to return the name of the super class. These two
methods can be used in combination to get the list level of
the inheritance of the particular class.
public int getDITValue(String className)
 {
int ditValue = 1;
try {
Class classObj = Class.forName(className);
String superClass = classObj.getSuperclass().getName();
while(! "java.lang.Object".equals(superClass))
 {
 classObj = Class.forName(superClass);
superClass = classObj.getSuperclass().getName();
 System.out.println(superClass);
 ditValue++;
 }
 } catch (Exception e)
 { e.printStackTrace(); }
 return ditValue;
 }
Metric 3: Number of Children (NOC):
It is a simple measure of the number of classes associated
with a given class using an inheritance relationship. It could
be used to assess the potential influence that a class has on
the overall design. NOC measures how many classes inherit
directly methods or fields from a super-class. The greater
the number of children in the inheritance hierarchy the
greater the reuse. Then again a large number of children of a
class might indicate improper abstraction for a parent class.
High DIT value and low NOC means better reusability but
the issue of maintainability is at stake It also has a negative
impact on understandability and is more difficult to modify.
Since there are no empirical or theoretical boundary values,
then we should find the proper threshold value for the
system under development. Here in the system we have set
the value of NOC to be 6 as same as DIT.
NOC = number of immediate sub-classes of a class
To determine the value of NOC the reflection classes, such
as Method, are found in java.lang.reflect. There are three
steps that must be followed to use these classes. The first
step is to obtain a java.lang.Class object for the class that
you want to manipulate. java.lang.Class is used to represent
classes and interfaces in a running Java program. To obtain
the class object use Class c
=Class.forName("java.lang.String"): Then call a method
such as getDeclaredMethods, to get a list of all the methods
declared by the class. Using both the information on hand
tackle the specific application using reflection
public int getDITValue(String className)
{
int ditValue = 0;
try{

String packageName[] =
{"com.test.MWCTest2","com.test.MWCTest3","com.test.M
WCTest4"};
Class classObj = Class.forName(className);
for (String string : packageName)
{
 Object obj = Class.forName(string).newInstance();
 if(obj instanceof MWCTest)
{
 ditValue++;
 }}
 } catch (Exception e)
 {
 e.printStackTrace();
 }
 return ditValue;
}

Metric 4: Lack of Cohesion in Methods (LCOM)
It is the difference between the number of methods whose
similarity is zero and not zero. The similarity of two
methods is the numbers of attributes used were common.
LCOM can judge the cohesiveness among the class
methods. Low LCOM indicates high cohesiveness and vice
versa. High LCOM indicates that a class shall be considered
for splitting into two or more classes. However, a LCOM
measure of zero is not strong evidence that a class enjoys
cohesiveness.The single responsibility principle states that a
class should not have more than one reason to change. Such
a class is said to be cohesive. A high LCOM value generally
pinpoints a poorly cohesive class. There are several LCOM
metrics. The LCOM takes its values in the range 0 to 1. The
computation of LCOM is as follows:

()∑−= FMMFLCOM */1
Where:

• M is the number of methods in class (both static
and instance methods are counted, it includes also
constructors, properties getters/setters, events
add/remove methods).

• F is the number of instance fields in the class.
• MF is the number of methods of the class accessing

a particular instance field.
• Sum(MF) is the sum of MF over all instance fields

of the class.
To find the value for LCOM find the number of methods in
a class(M) using the method getDeclaredMethods(). Find
the number of classes in the package level using the
getclass(). Then find the number of instance fields in the
class(F) using the InstanceFieldAccess class and its
associated objects. The InstanceFieldAccess class defines an
instance field s. The main method creates an object, sets the
instance field, and then calls the native method
InstanceFieldAccess.accessField. This native method prints
out the existing value of the instance field and then sets the
field to a new value. To know more about the class objects
emphasis has to be put to the instanceof operator.
Class.isInstance method can be used to simulate the

Global Journal of Computer Science and Technology Vol. 10 Issue 14 (Ver. 1.0) November 2010 P a g e | 76

instanceof operator. field.get(objectInstance) where can be
used to find the number of methods of the class accessing a
particular instance field. After determining the value of the
above mentioned parameter the formula mentioned above
could be used for the computation of LCOM.At this
juncture there are certain issues to be addressed with the
LCOM metric. The reusability parameter is to be negatively
influenced by LCOM. Higher the values for LCOM lower
the scope for reusability. Also the maintainability for a class
containing higher LCOM values is higher as it directly
affects other classes also. Higher cohesion also decreases
the changeability, stability and the portability of the classes
as it triggers changes in the other classes with are closely
coupled. Hence a good solution to this issue could be to
keep the value of LCOM to a minimum value.
The Lack of Cohesion in Methods metric can be computed
using the following three formats:
LCOM1: Take each pair of methods in the class and
determine the set of fields they each access. If they have
disjointed sets of field accesses, the count P increases by
one. If they share at least one field access, Q increases by
one. After considering each pair of methods:
 RESULT = (P > Q) ? (P - Q) : 0
A low value indicates high coupling between methods. This
also indicates potentially high reusability and good class
design. Chidamber and Kemerer provided the definition of
this metric in 1993.
LCOM2: This is an improved version of LCOM1. Say you
define the following items in a class:
m: number of methods in a class
a: number of attributes in a class.
mA: number of methods that access the attribute a.
sum(mA): sum of all mA over all the attributes in the class.
LCOM2 = 1- sum(mA)/(m*a)
If the number of methods or variables in a class is zero (0),
LCOM2 is undefined as displayed as zero (0).
LCOM3: This is another improvement on LCOM1 and
LCOM2 and is proposed by Henderson-Sellers. It is defined
as follows:
LCOM3 = (m - sum(mA)/a) / (m-1)
where m, a, mA, sum(mA) are as defined in LCOM2.
The LCOM3 value varies between 0 and 2. LCOM3>1
indicates lack of cohesion and is considered a kind of alarm.
If there is only one method in a class, LCOM 3 is undefined
and also if there are no attributes in a class LCOM3 is also
undefined and displayed as zero (0). Each of these different
measures of LCOM has a unique way to calculate the value
of LCOM. An extreme lack of cohesion such as LCOM3>1
indicates that the particular class should be split into two or
more classes. If all the member attributes of a class are only
accessed outside of the class and never accessed within the
class, LCOM3 will show a high-value. A slightly high value
of LCOM means that you can improve the design by either
splitting the classes or re-arranging certain methods within a
set of classes [3].
Metric 5: Coupling between objects (CBO).
When one object interacts with another object that is a
coupling. Strong coupling means that one object is strongly

coupled with the implementation details of another object.
Strong coupling is discouraged because it results in less
flexible, less scalable application. However, coupling can be
used so that it enables objects to talk to each other while
also preserving the scalability and flexibility. OO metrics
can help you to measure the right level of coupling. CBO is
defined as the number of non-inherited classes associated
with the target class. It is counted as the number of types
that are used in attributes, parameters, return types, throws
clauses, etc. Primitive types and system types (e.g.
java.lang.*) are not counted. Method Invocation Coupling
(MIC)is defined as the relative number of classes that
receive messages from a particular class.
MIC = nMIC / (N -1)
Where N = total number of classes defined within the
project.
nMIC = total number of classes that receive a message from
the target class
to find the value of N(total number of classes in the system)
use the following the methods. The fully qualified class
name (including package name) is obtained using the
getName() method . The class name without the pacakge
name can be obtained using the getSimpleName() method.
You can access the modifiers of a class via the Class object.
The class modifiers are the keywords "public", "private",
"static" etc The modifiers are packed into an int where each
modifier is a flag bit that is either set or cleared. You can
check the modifiers using these methods in the class
java.lang.reflect.Modifiers. The method used to get the
modifier is getModifiers().The Method.invoke(Object target,
Object ... parameters) method takes an optional amount of
parameters, but you must supply exactly one parameter per
argument in the method you are invoking. Using the above
methods to extract the values and apply in the formulae the
value of CBO can be obtained.
Metric 6: Response for Class(RFC)

It is defined as a count of the set of methods that can be
potentially executed in response to a message received by an
instance of the class. Response set of an class ={ set of all
methods that can be invoked in response to a message to the
object }
RFC = |RS| where RS is the response set for the class
The RFC is defined as the total number of methods that can
be executed in response to a message to a class. This count
includes all the methods available in the whole class
hierarchy. If a class is capable of producing a vast number
of outcomes in response to a message, it makes testing more
difficult for all the possible outcomes. Response For a Class
(RFC) is the sum of the number of its methods and the total
of all other methods that they directly invoke. If the number
of methods invoked in response to a message received by an
object is large, the maintenance and testing are more
demanding. Large number of method invocation means
more testing and debugging. Larger the method invocation
greater is the complexity. The response set of a class is a set
of methods that can potentially be executed in response to a
message received by an object of that class. RFC is simply
the number of methods in the set.

P a g e |77 Vol.10 Issue 14 (Ver.1.0) November 2010 Global Journal of Computer Science and Technology

RFC = M + R (First-step measure)
RFC‘ = M + R‘ (Full measure) M = number of methods in
the class
R = number of remote methods directly called by methods
of the class
R‘ = number of remote methods called, recursively through
the entire call tree
A given method is counted only once in R (and R‘) even if it
is executed by several methods M. Since RFC specifically
includes methods called from outside the class, it is also a
measure of the potential communication between the class
and other classes. A large RFC has been found to indicate
more faults. Classes with a high RFC are more complex and
harder to understand. Testing and debugging is complicated.
It counts only the first level of calls outside of the class.
RFC‘ measures the full response set, including methods
called by the callers, recursively, until no new remote
methods can be found. If the called method is polymorphic,
all the possible remote methods executed are included in R
and R‘. The use of RFC‘ should be preferred over RFC.
RFC was originally defined as a first-level metric because it
was not practical to consider the full call tree in manual
calculation. With an automated code analysis tool, getting
RFC‘ values is not longer problematic. As RFC‘ considers
the entire call tree and not just one first level of it, it
provides a more thorough measurement of the code
executed.
private void incRFC(String className, String methodName,
Type[] arguments) {
String argumentList = Arrays.asList(arguments).toString();
String args = argumentList.substring(1,
argumentList.length() - 1);
String signature = className + "." + methodName + "(" +
args + ")";
responseSet.add(signature);

III. RESULTS AND DISCUSSIONS

 As per the description given in the previous sections the
parameters identified are: WMC, DIT, NOC, LCOM, CBO,
RFC. Each of these parameters are extracted from the
source code. A threshold is set for each of the parameters
and the conformance of the extracted values are expected
with the set threshold values i.e the parameters values are
expected to lie within the range of the thresholds. If the
value lies within the range then the class satisfies the OO
design paradigms. If the parameters lie outside the
threshold then design refinement suggestion has to be
provided to the developer or user. The results for the first
three parameters in three projects are depicted below in the
table:

Class Name WMC DIT NOC

com.test.MWCTest2 6 1 2
com.test.MWCTest3 5 3 2

com.test.MWCTest

8 2 7

com.test.MWCTest4

5 4 2

Table2. The extracted parameter values for the first three

parameters of the CK metrics suite.

Hence in the above classes the extracted parameter values
are within the threshold so no design refinements regarding
the reusability are suggested. But in classes where the
extracted value does not fall into the threshold then decision
has to be made to split the class to meet the OO design
specifications.

IV. REFERENCES

1) Dr. E. Chandra and P. Edith Linda, Assessment of
of Software Quality through Object Oriented
Metrics, CIIT International Journal of Software
Engineering, Vol2, Iss:2 Feb 2010

2) Goodman, Paul. 1993. Practical Implementation of
Software Metrics. London: McGraw Hill.

3) Heung Seok Chae,Yong Rae Kwon, andDoo Hwan
Bae, Improving Cohesion Metrics for Classes by
Considering Dependent Instance Variables, IEEE
TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 30, NO. 11, NOVEMBER
2004

4) Humphrey, Watts S. 1989. Managing the Software

Process. Reading: Addison-Wesley.
5) http://javaboutique.internet.com/tutorials/coupcoh/i

ndex-2.html
6) http://msdn.microsoft.com/enus/library/bb385914.a

spx
7) http://www.objectmentor.com/resources/articles/oo

dmetrc.pdf
8) Ramanath Subramanyam and M.S. Krishnan,

Empirical Analysis of CK Metrics for Object-
Oriented Design Complexity: Implications for
Software Defects, IEEE Transactions on Software
Engineering, Vol. 29, No. 4, April 2003

9) Shyam R. Chidamber and Chris F. Kemerer, A
Metrics Suite for Object Oriented Design, IEEE
Transactions on Software Engineering. Vol. 20,
No. 6, June 1994

10) Yuming Zhou and Hareton Leung, Empirical
Analysis of Object-Oriented Design Metrics for
Predicting High and Low Severity Faults, IEEE
Transactions On Software Engineering, Vol. 32,
No. 10, October 2006

	Class Break Point Determination Using CK MetricsThresholds
	Authors
	Abstract
	I. INTRODUCTION
	II. INTRODUCTION TO THE TOOL
	1) Explanation of the parameters to be extracted by thecode analyzer tool:

	III. RESULTS AND DISCUSSIONS
	IV. REFERENCES

