
P a g e |12 Vol.10 Issue 14 (Ver.1.0) November 2010 Global Journal of Computer Science and Technology

GJCST Classification
D.4.3,D.2.3,D.2.4, ,

Automatic Ontology Creation by Extracting
Metadata from the Source code

Gopinath Ganapathy1,S. Sagayaraj2

Abstract-Semantic Web can be created by developing

Ontologies. For every new project Software companies are

going for designing new code and components, by new

developers. If the company archives the completed code and

components, which can be used with no need for testing it

unlike open source code and components. File metadata and

file content metadata can be extracted from the Application

files and folders using API’s. The extracted components can be

stored in the Hadoop Distributed File System along with the

application environment. Extracted metadata will be in XML

format. XML deals with syntactic level and the Web Ontology

Language (OWL) supports semantic level for the

representation of domain knowledge using classes, properties

and instances. This paper converts the data model elements of

XML to OWL Ontology that implements the mapping the

standard XML technology XSLT.

Keywords-Metadata, Parsing, Extensible Markup Language,
Hadoop Distributed File System, Hbase, Web Ontology
Language and Ontology.

I. INTRODUCTION

ost of the today‘s Web content is suitable for human
consumption. An alternative approach is to represent

Web content in a form that is more easily machine-
processable by using intelligent techniques. The machine
processable Web is called the Semantic Web. Semantic Web
will not be a new global information highway parallel to the
existing World Wide Web; instead it will gradually evolve
out of the existing Web [1]. Ontologies are built in order to
represent generic knowledge about a target world [2].
Ontology is more than a rule base of terminological
problems and is worth to consider a promising methodology
in the Semantic Web. In the semantic web, ontologies can
be used to encode meaning into a web page, so that
intelligent agents can understand what the web page is
about. Ontologies increase the efficiency and consistency of
describing resources, by enabling more sophisticated
functionalities in development of knowledge management
and information retrieval applications. Knowledge
management concerns itself with acquiring, accessing, and
maintaining knowledge within an organization. It has
emerged as a key activity of large businesses because they
view internal knowledge as an intellectual asset from which
they can draw greater

About1- F.A. Author is Professor & Head with the Department of

Computer Science, Bharathidasan University, Trichy, Tamil Nadu, India

(e-mail: gganapathy@gmail.com)

About2- S.B Author is Associate Professor with the Department of

Computer Science, Sacred Heart College, Tirupattur, Vellore, Tamil Nadu,

India(Mobile:+91 9443035624; fax:+91 4179 220553; e-mail:

sagi_sara@yahoo.com)

productivity, create new value and increase their
competitiveness. From the knowledge management
perspective, the current technology suffers in searching,
extracting, maintaining and viewing information. The aim of
the Semantic Web is to allow much more advanced
knowledge management system.Software firms work on
various projects for many years with little amount of
archiving. If the projects are achieved properly the
reusability of the available components will make the
software development much easier and faster. This paper
proposing an automatic generation of knowledge
management by extracting metadata from the source code of
the project files by using the Source code Documenter. The
output will be converted into XML. Today XML has
reached a wide acceptance as data exchange format. The
aim of this paper is to bridge the gap from metadata, XML
and OWL. A strategy for how OWL ontologies may be
generated automatically out of existing XML data is
proposed. This has to be done by establishing suitable
mappings between the different data model elements of
XML and OWL. All the project files, XML and OWL files
are stored in Hbase repository. By storing code components
the new project development can search for component in
the OWL ontology and retrieve from the repository and
using that will reduce the cost, manpower, time, testing,
etc., in the software development. The paper begins with the
discussion on the related technologies for this paper in
Section 2. Then, detailed features and framework for the
automatic metadata extraction is found in Section 3. The
conversion from XML to OWL Ontology implements the
mapping in the standard XML technology XSLT is
presented in section 4. The implementation scenario is
presented in Section 5. Section 6 deals with the findings of
the paper.

II. RELATED WORK

1) Metadata

Metadata is defined as data about data‖ or descriptions of
stored data. Metadata definition is about defining, creating,
updating, transforming, and migrating all types of metadata
that are relevant and important to a user‘s objectives. Some
metadata can be seen easily by users, such as file dates and
file sizes, while other metadata can be hidden. Metadata
standards include not only those for modeling and
exchanging metadata, but also the vocabulary and
knowledge for ontology [3]. A lot of efforts have been made
to standardize the metadata but all these efforts belong to
some specific group or class. The Dublin Core Metadata
Initiative (DCMI) [4] is perhaps the largest candidate in

M

Global Journal of Computer Science and Technology Vol. 10 Issue 14 (Ver. 1.0) November 2010 P a g e | 13

defining the Metadata. It is simple yet effective element set
for describing a wide range of networked resources and
comprises 15 elements. Dublin Core is more suitable for
document-like objects. IEEE LOM [5], is a metadata
standard for Learning Objects. It has approximately 100
fields to define any learning object. Medical Core Metadata
(MCM) [6] is a Standard Metadata Scheme for Health
Resources. MPEG-7 [7] multimedia description schemes
provide metadata structures for describing and annotating
multimedia content. Standard knowledge ontology is also
needed to organize such types of metadata as content
metadata and data usage metadata. These standards may be
adopted in full or in part. Further, appropriate procedures
need to be defined and followed within the enterprise in
documenting the capture, update, transformation, migration,
replication of metadata and relevant transformation rules.

2) HDFS & HBASE

The Hadoop project promotes the development of open
source software and it supplies a framework for the
development of highly scalable distributed computing
applications [8]. Hadoop is designed in such a way to
efficiently process large volumes of information. It connects
many commodity computers together so that they could
work in parallel. It is a simplified programming model
which allows the user to write and test distributed systems
quickly. In a Hadoop cluster even while, the data is being
loaded in, it is distributed to all the nodes of the cluster. The
Hadoop Distributed File System (HDFS) will break large
data files into smaller parts which are managed by different
nodes in the cluster. Each part is replicated across several
machines, so that a single machine failure does not lead to
non-availability of any data. Even though the file parts are
replicated and distributed across several machines, they
form a single namespace, so their contents are universally
accessible. MapReduce [9] is a functional abstraction which
provides an easy-to-understand model for designing
scalable, distributed algorithms.HDFS. Hbase is the Hadoop
application to use when real-time random accesses to very
large datasets are required. It supports both batch-style
computations using MapReduce and point queries. It is built
from the ground-up to scale linearly just by adding nodes.
Hbase is not relational and does not support SQL, but given
the proper problem space it is able to do what an RDBMS
cannot. The reason for using HDFS and Hbase in this paper
is that the software size in a project is growing exponentially
and also takes care of volumes data for processing. To
handle data and code is stored in Hbase and it is distributed
using HDFS. Also the size of a project and the number of
project for a three decade company needs terabytes of
volume to be stored which needs Hbase.

3) Ontology

The key component of the Semantic Web is the collections
of information called ontologies. Ontology is a term
borrowed from philosophy that refers to the science of
describing the kinds of entities in the world and how they
are related. Gruber defined ontology as a specification of a

conceptualization [10].Ontology defines the basic terms and
their relationships comprising the vocabulary of an
application domain and the axioms for constraining the
relationships among terms [11]. This definition explains
what an ontology looks like [12].The most typical kind of
ontology for the Web has taxonomy and a set of inference
rules. The taxonomy defines classes of objects and relations
among them. Classes, subclasses and relations among
entities are a very powerful tool for Web use.A large
number of relations among entities can be expressed by
assigning properties to classes and allowing subclasses to
inherit such properties. Inference rules in ontologies supply
further power. Ontology may express rules on the classes
and relations in such a way that a machine can deduce some
conclusions. The computer does not truly ―understand" any
of this information, but it can now manipulate the terms
much more effectively in ways that are useful and
meaningful to the human user. More advanced applications
will use ontologies to relate the information on a page to the
associated knowledge structures and inference rules.

III. EXTRACTION FRAMEWORK

After the completion of a project all the project files are sent
to the metadata extraction frame work. The files of a project
can be asked to give in form of zip file which contains
various types of files. The framework will extract files and
give it to corresponding Document Generator tools and it
will convert the file metadata into XML file. This paper
deals with java files only. To extract file content metadata
the source code is processed by Javadoc. The retrieved
components will be stored in the HBase, which is the
subproject of Hadoop. The project may contain files in
various languages and tools. Similarly there are many parser
tools available to parse the source code from various
languages and tools to either HTML or XML output. So the
frame work will indentify the type of project file and supply
the file to the corresponding parser. Two types of metadata
will be extracted. First is the file metadata and it contains
file attributes, file size, parent, path, etc. The second type of
metadata contains the contents of the source file. The file
content metadata will be different for different types of
languages and tools. Here the frame work presents the
general form for all type of project files. The frame work
output shown is for the extracted metadata into XML file.
The available Document Generator converting programs
from one language or tool to HTML or XML file is
presented in Table 1. But the frame work takes care of the
languages and tools that support XML format. The
framework needs only few tools which will be available in
the HDFS to support to handle various types of files. After
the converting the source files in to XML, files they are
stored in HBase along with the Project files. The purpose of
storing the XML files, source file and file attributes and file
components in Hbase is to retrieve the code components and
to reduce the software development cost. The components
will be stored in Hbase by creating database design with the
fields project name, project leader, period of project and
code components. Several Sample Document Generator

P a g e |14 Vol.10 Issue 14 (Ver.1.0) November 2010 Global Journal of Computer Science and Technology

strategies for extracting metadata from source file have been
proposed. Document generator which takes care of XML

alone is discussed and used in this framework.

Fig.1. Metadata extraction Framework

1) Doxygen

Doxygen is a documentation for C++, C, Java, Objective-C,
Fortran, VHDL, PHP and C# [13]. Doxygen supports the
documentation tags used in the Qt toolkit and can generate
output in HTML as well as in CHM, RTF, PDF, LaTeX,
PostScript or man pages.

2) Ddoc

Ddoc is the embedded for the D programming language
designed by Walter Bright. Its emphasis is on being able to
write documentation in code comments in a natural style,
minimizing the need for embedded markup and
thus,improving the legibility of the code comments[14].
Code comments are associated with symbols in the code,
and Ddoc uses the semantic and syntactic information
available from the D compiler to fill in routine information
such as parameters and return types automatically. Ddoc can
generate output in XML and XHTML.

3) FPDoc

FPDoc is a tool that combines a Pascal unit file and a
description file in XML format and produces reference
documentation for the unit. The reference documentation
contains documentation for all of the identifiers found in the
unit‘s interface section[15]. FPDoc does not require the
presence of formatted comments in the source code. It takes
a source file and a documentation file (in XML format) and
merges these two together to a full documentation of the
source. This means that the code doesn‘t get obfuscated with
large pieces of comment, making it hard to read and
understand.

4) JSDoc

JSDoc is syntax for adding inline API documentation to
JavaScript source code. The JSDoc syntax is similar to the

Javadoc syntax, used for documenting Java code, but is
specialized to work with JavaScript's more dynamic syntax

and therefore unique, as it is not completely compatible with
Javadoc[16]. However, like Javadoc, JSDoc allows the
programmer to create doclets and tags which can then be
translated into published output, like HTML or RTF.

5) PHPDocumentor

PHPDocumentor is an open source documentation written in
PHP. It automatically parses PHP source code and produces
readable API and source code documentation in a variety of
formats. PHPDocumentor generates documentation based
on PHPDoc-formatted comments and the structure of the
source code itself. PHP Documentor can create
documentation in HTML, PDF, CHM or Docbook formats.
PHPDocumentor is able to parse all PHP syntax and
supports PHP4 and PHP5.

IV. CONVERTING XML TO OWL

The conversion process elevates the XML Schema
Definition (XSD) to the level of OWL ontology. XML
documents contain relational structure and represent those
using OWL classes, properties and instances. The XML data
model describes a node labeled tree [17], on the other hand
OWL‘s data model is based on the subject-predicate-object
triples from RDF[18]. RDF-Schema defines a vocabulary
for creating class hierarchies, attaching properties to classes
and adding instance data [19]. The framework creates a
corresponding class hierarchy by exploiting the tree
structure of XML. Restrictions like cardinality constraints
and properties can be expressed easily when OWL is on the
top of RDF and RDFS. This enables the representation of
Source code data in OWL. The mapping is implemented in
XML Stylesheet Language Transformations (XSLT) and it
is interoperable with different programming languages [20].
As for as XML data is concerned no XML schema is
attached. The conversion process generates a suitable
intermediate XML schema definition for the XML. The
overall architecture of the framework is shown in Fig. 2.

Global Journal of Computer Science and Technology Vol. 10 Issue 14 (Ver. 1.0) November 2010 P a g e | 15

Figure.2. Conversion process from XML to OWL.

The conversion process requires at the most three steps for
XML instance data and at least one step for XML Schema
only. To process XML Schema only, the model of the
ontology is creates along with classes and properties.
Intermediate step is created for XML instance data only.
The first step extracts an XML Schema out of the XML
instance data. [21] states that in every XML instance
document an XML Schema is exist implicitly. Since XML
instance document do not contain as much information
about constrains as in manually created XML Scheme,
automatically generated XML Schema could be incomplete.
There are also several XML Schema components and they
cannot be discovered via stylesheet driven extraction. XML
instance documents can contain optional elements or
attributes, which are not in the sample document. Thus they
are not in the generated XML Schema and OWL ontology.
In XML Schema extraction a preferably representative XML
instance document is needed, so that the XML Schema can
serve as a good basis. This XML Schema extraction is based
upon an XSLT stylesheet [22], which is extended and
adapted to this framework. The majority of existing XML to
OWL mapping tools use XSLT to accomplish the mapping
[23].A stylesheet is created simultaneously while converting
XML to OWL and this stylesheet will converts XML
instance data into the instances part of the ontology. This
stylesheet will be configured automatically to adjust the
transformation process of the instances to the OWL model.
It determines whether elements become classes or
properties. That is necessary, because the XML instance
data can have optional elements or attributes and the created
stylesheet will be their common denominator. To support
the separation of model and data, the OWL model will be
stored separately from the OWL instances.The OWL
instances will be connected to their model using the owl:

import property. Therefore every OWL instance, which
refers to the OWL model, will obtain an adjustable

namespace prefix. A further stylesheet is generated
automatically for the conversation of XML instance data to
OWL instances. The framework is designed to be easily
extensible, so that the support for the missing XSD
components can be included and a better support for
document oriented XML, can be integrated.The conversion
from XML to OWL uses Classes (owl:Class) which will
emerge from xsd:complexTypes and xsd:elements according
to the following rules: For the case, that an element in the
source XML tree is always a leaf, containing only a literal
and no attributes. This element will be mapped to an
owl:DatatypeProperty having as domain the class which
represents the surrounding element. XML attributes will be
handled equally which means it is mapped to
owl:DatatypeProperties, too. XML Schema also can contain
arity constraints like xsd:minOccurs or xsd:maxOccurs,
which is mapped to the equivalent cardinality constraints in
OWL, owl:minCardinality and owl:maxCardinality. Table 2
summarizes the mapping based on the correspondence
between XML schema elements and OWL classes and
properties. OWL ontology created by this process is a full
proof ontology without any discrepancy for the given source
code without leaving a single piece of information. The
code will also be stored in the database for future code
extraction. The entire conversion process uses the concepts
of XSD and OWL to convert XML to XSD using a trang
tool and XSD to OWL Ontology manually. Conversion of
XSD to OWL Ontology is also possible to using a tool.

V. CASE STUDY

To evaluate the present frame work a simple java code is
used, to extract the file and file contents metadata into a
XML file.

P a g e |16 Vol.10 Issue 14 (Ver.1.0) November 2010 Global Journal of Computer Science and Technology

Source code in java
public class Calculator

{

 public int add(int i1, int i2)

 {

 return i1 + i2;

 }

 public int subtract(int i1, int i2)

 {

 return i1 - i2;

 }

}

The java sample code is given to Doxygen Document
generator tool that extracts the metadata extracted from file
and file content. The contents of the file metadata are Title,
Author, Owner, Year, Month, Pages, Number of Bytes, File
permission attributes, Date, time, etc.,. are stored in an
XML file. In the same way Javadoc is used to extract the
metadata from the source code contains Function,
Definition, Type, Arguments, Brief Description, Member
Definition, Declaration Name, Parameters, etc.,. are stored
in HBase

<compounddef id="classCalculator"

kind="class" prot="public">

<compoundname>Calculator</compoundname

>

 <sectiondef kind="public-func">

 <memberdef kind="function"

<type>int</type>

 <definition>int

Calculator::add</definition>

 <argsstring>(int i1, int

i2)</argsstring>

 <name>add</name>

 <param>

 <type>int</type>

 <declname>i1</declname>

 </param>

 <param>

 <type>int</type>

 <declname>i2</declname>

 </param>

 <location

 </memberdef>

 <memberdef kind="function"

<type>int</type>

 <definition>int

Calculator::subtract</definition>

 <argsstring>(int i1, int

i2)</argsstring>

 <name>subtract</name>

 <param>

 <type>int</type>

 <declname>i1</declname>

 </param>

 <param>

 <type>int</type>

 <declname>i2</declname>

 </param>

 <location </memberdef>

 </sectiondef>

 <location <listofallmembers>

<scope>Calculator</scope><name>add</na

me></member>

 <member

<scope>Calculator</scope><name>subtrac

t</name></member>

 </listofallmembers>

 </compounddef>

</doxygen>

The goal is to transform this syntactic XML file into an
OWL file by creating instances of the classes with the XSLT
Stylesheet. The conversion from XML to XSD is carried out
using Trang, which is open source software. The XSD for
the given XML file is shown below
<xs:complexType>

 <xs:sequence>

 <xs:element ref="compounddef"/>

 </xs:sequence>

 <xs:attribute name="version"

use="required" type="xs:NMTOKEN"/>

 <xs:attribuy te

ref="xsi:noNamespaceSchemaLocation"

use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="compounddef">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="compoundname"/>

 <xs:element ref="sectiondef"/>

 <xs:element ref="briefdescription"/>

 <xs:element

ref="detaileddescription"/>

 <xs:element ref="location"/>

 <xs:element ref="listofallmembers"/>

 </xs:sequence>

 <xs:attribute name="id" use="required"

type="xs:NCName"/>

 <xs:attribute name="kind"

use="required" type="xs:NCName"/>

 <xs:attribute name="prot"

use="required" type="xs:NCName"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="compoundname"

type="xs:NCName"/>

 <xs:element name="sectiondef">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded"

ref="memberdef"/>

 </xs:sequence>

 <xs:attribute name="kind"

use="required" type="xs:NCName"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="memberdef">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="type"/>

 <xs:element ref="definition"/>

 <xs:element ref="argsstring"/>

 <xs:element ref="name"/>

Global Journal of Computer Science and Technology Vol. 10 Issue 14 (Ver. 1.0) November 2010 P a g e | 17

 <xs:element maxOccurs="unbounded"

ref="param"/>

 <xs:element ref="briefdescription"/>

 <xs:element

ref="detaileddescription"/>

 <xs:element ref="inbodydescription"/>

 <xs:element ref="location"/>

 </xs:sequence>

 <xs:attribute name="const"

use="required" type="xs:NCName"/>

 <xs:attribute name="explicit"

use="required" type="xs:NCName"/>

 <xs:attribute name="id"

use="required"/>

 <xs:attribute name="inline"

use="required" type="xs:NCName"/>

 <xs:attribute name="kind"

use="required" type="xs:NCName"/>

 <xs:attribute name="prot"

use="required" type="xs:NCName"/>

 <xs:attribute name="static"

use="required" type="xs:NCName"/>

 <xs:attribute name="virt"

use="required" type="xs:NCName"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="definition"

type="xs:string"/>

 <xs:element name="argsstring"

type="xs:string"/>

 <xs:element name="param">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="type"/>

 <xs:element ref="declname"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="declname"

type="xs:NCName"/>

 <xs:element name="inbodydescription">

 <xs:complexType/>

 </xs:element>

 <xs:element name="listofallmembers">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded"

ref="member"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="member">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="scope"/>

 <xs:element ref="name"/>

 </xs:sequence>

 <xs:attribute name="prot"

use="required" type="xs:NCName"/>

 <xs:attribute name="refid"

use="required"/>

 <xs:attribute name="virt"

use="required" type="xs:NCName"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="scope" type="xs:NCName"/>

 <xs:element name="type" type="xs:NCName"/>

 <xs:element name="name" type="xs:NCName"/>

 <xs:element name="briefdescription">

 <xs:complexType/>

 </xs:element>

 <xs:element name="detaileddescription">

 <xs:complexType/>

 </xs:element>

 <xs:element name="location">

 <xs:complexType>

 <xs:attribute name="bodyend"

use="required" type="xs:integer"/>

 <xs:attribute name="bodyfile"

use="required"/>

 <xs:attribute name="bodystart"

use="required" type="xs:integer"/>

 <xs:attribute name="file"

use="required"/>

 <xs:attribute name="line"

use="required" type="xs:integer"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

The implementation transforms XML to OWL using XSLT
[24]. Applying the previous XSD Stylesheet to the XML
file, the OWL Ontology presented below is created
manually

 <Project rdf:ID="CalPrj">

<hasPackages>

 <Package rdf:ID="default">

<hasClasses>

 <Class rdf:ID="Calculator">

 <hasMethods>

<Method rdf:ID="add">

<hasParameters>

 <Parameter rdf:ID="i1">

 <Name >i1</Name>

<DataType >int</DataType>

</Parameter>

</hasParameters>

<hasParameters>

<Parameter rdf:ID="i2">

<DataType >int</DataType>

<Name >i2</Name>

</Parameter>

</hasParameters>

<Identifier >public</Identifier>

<Name >add</Name>

</Method>

</hasMethods>

<hasMethods

<Method rdf:ID="subtract">

<Name >subtract</Name>

<hasParameters rdf:resource="#i1"/>

<hasParameters rdf:resource="#i2"/>

<Returns >int</Returns>

<Identifier >public</Identifier>

</Method>

</hasMethods>

<Name

>Calculator</Name>

<Identifier

>public</Identifier>

P a g e |18 Vol.10 Issue 14 (Ver.1.0) November 2010 Global Journal of Computer Science and Technology

</Class>

</hasClasses>

<Name >default</Name>

</Package>

</hasPackages>

</Project>

</rdf:RDF>

The code components stored in the HBase will be linked to
the method signature in the OWL ontology for retrieval
purpose. The components will be reused for the new project
appropriately. The obtained OWL Ontology successfully
loads on both Protégé Editor and Altova Semantics Works.

VI. CONCLUSION

The paper presents an approach for generating ontologies
automatically out of existing XML data from source code.
This approach helps to integrate conventional XML and
source code into the Semantic Web. OWL is semantically
much more expressive than needed for the results of our
mapping. With these sample tests the paper argues that it is
indeed possible to transform XML structures into OWL
ones using XSLT. As the source XML structure and
Ontology complexity increases, the XSLT stylesheet will
get more and more complex. The purpose of the paper is to
achieve the code reusability for the software development.
By creating OWL ontology for the source code the future
will be to search and extract the code and components and
reuse to shorten the software development life cycle. Open
source code can also used to create OWL Ontology so that
there will be huge number of components which can be
reused for the development.

VII. REFERENCES

1) Grigoris Antoniou and Frank van Harmelen, A
Semantic Web Primer‖, PHI Learning Private
Limited, New Delhi, 2010, pp 1-3

2) Bung. M, Treatise on Basic Philosophy. Ontology
I. The Furniture of the World. Vol. 3, Boston:
Reidel.

3) Won Kim: On Metadata Management Technology
Status and Issues‖, in Journal of Object

Technology, vol. 4, no. 2, 2005, pp. 41-47
4) Dublin Core Metadata Initiative. <

http://dublincore.org/documents/>,2002.
5) IEEE Learning Technology Standards Committee,

http://ltsc.ieee.org/wg12, IEEE Standards for Learning
Object Metadata (1484.12.1)

6) Darmoni, Thirion, Met adata Scheme for Health
Resources‖ AmericanMedical Informatics

Association, 2000 Jan–Feb; 7(1): 108–109.

7) MPEG-7 Overview: ISO/IEC JTC1/SC29/WG11
N4980, Kla-genfurt, July 2002.

8) Jason Venner, Pro Hadoop : Build Scalable,
distributed applications in the cloud, Apress, 2009.

9) Tom White, Hadoop: The Definitive Guide,
O‘Reilly Media, Inc., 2009.

10) Gruber, T. What is an Ontology? (September,
2005): http://www.ksl-stanford.edu/kst/what-is-an-
ontology.html.

11) Yang, X. Ontologies and How to Build Them.
2001. (March, 2006):
http://www.ics.uci.edu/~xwy/publications/area-exam.ps.

12) Bugaite, D., O. Vasilecas. Ontology-Based
Elicitation of
Business Rules. In A. G. Nilsson, R. Gustas, W.
Wojtkowski, W. G. Wojtkowski, S. Wrycza, J.
Zupancic Information Systems Development: Proc.
of the ISD‘2004. Springer- Verlag, Sweden, 2006,
pp. 795-806.

13) Peter Toft, Introduction to Doxygen 1994
14) Gray Davis, REVISED PRESIDING MEMBERS

PROPOSED DECISION,2000
15) Michaël Van Canneyt, Free Pascal code

documenter: Reference manual, 2000
16) Bastian Feder, The Beauty and the Beast, 2009

17) Bert Bos. The XML data model.

http://www.w3.org/XML/Datamodel.html, 1997.
18) Graham Klyne, Jeremy J. Caroll, and Brian

McBride. Resource Description Framework
(RDF): Concepts and Abstract Syntax. Technical
report, W3C, http://www.w3.org/TR/2002/WD-rdf-
concepts-20021108/, 2002.

19) Dan Brickley and R.V. Guha. RDF Vocabulary
Description Language 1.0: RDF Schema.
Technical report, W3C,http://www.w3.org/TR/2002/WD-
rdf-schema-
20021112/, 2002.

20) James Clark. XSL Transformations (XSLT).
Technical report, W3C,
http://www.w3.org/TR/xslt, 1999.

21) Stefan Mintert. Schluesselqualifikation; XML
jenseits des Mainstreams. iX, 8:48–51, 2005.

22) Charlie Halpern-Hamu. Transform a sample
instance to a schema.
http://incrementaldevelopment.com/papers/xsltrick/
,1999.

23) XSLT Quickly, Bob DuCharme, Manning
Publications, ISBN 1- 930110-11-1.

24) Mastering XML Transformations, Doug Tidwell,
O‘REILLY, ISBN 0596000537.

	Automatic Ontology Creation by ExtractingMetadata from the Source code
	Authors
	Abstract
	I. INTRODUCTION
	II. RELATED WORK
	1) Metadata
	2) HDFS & HBASE
	3) Ontology

	III. EXTRACTION FRAMEWORK
	1) Doxygen
	2) Ddoc
	3) FPDoc
	4) JSDoc
	5) PHPDocumentor

	IV. CONVERTING XML TO OWL
	V. CASE STUDY
	VI. CONCLUSION
	VII. REFERENCES

