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-The Hurst Exponent of the time series of a normal 

patient and apneal patient suggest that they are anti-persistent 
and the later has more self similarity compared to the former. It 
has been established that they are AR process and 
nonstationary. The Semblance analysis suggests strong 
correlation both positive and negative between them. Tentative 
mathematical models of the normal an apneal patient has also 
been suggested using Yule Walker method.
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leep apnea is the occurrences of interrupted 
breathing during sleep. Obstructive sleep apnea is 
a well-known disorder in which relaxation of 

muscles in the throat repeatedly close off the airway 
during sleep; the person wakes just enough to take a 
gasping breath. This process is repeated many times 
during sleep and usually is not remembered the next 
day. Those suffering from severe obstructive sleep 
apnea typically complain of sleepiness, irritability, 
forgetfulness, and difficulty in concentrating. They may 
have difficulties in their occupational or social lives and 
be prone to motor vehicle accidents. The disorder has 
been medically linked to hypertension, which in turn

 

puts people at greater risk of heart failure and stroke. 
 

An electrocardiogram (ECG or EKG, 
abbreviated from the German Elektrokardiogramm) is a 
graphic produced by an electrocardiograph, which 
records the electrical activity of the heart over time [1]. 
Its name is made of different parts: electro, because it is 
related to electronics, cardio, Greek for heart, gram, a 
Greek roots meaning "to write". Specific waveforms 
within the ECG represent the electrical activity 
associated with mechanical events such as ventricular 
contraction and relaxation (systole and diastole). 
Analysis of the various waves and normal vectors of 
depolarization and re-polarization yields important 
diagnostic information [2]. 

 

ECG signals of the normal patient and apnea 
patient being taken for a period of 15minutes [3, 4] with 
the sampling interval of 4 msec. In this paper we will try 
to find out the nature of variability of the above two ECG 
signals using Finite
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Variance Scaling Method (FVSM). But before we 
proceed for the above action we have to consider that in 
practical cases all the observed data involve some 
amount of circumstantial errors which may creep in due 
change in environment, or systematic error which is due 
to factors inherent in the manufacture of the measuring 
instrument arising out of tolerances in the components 
of the instruments. Study of such data in presence of 
error

 
may often not succeed to give true information. 

There is the need to remove these errors up to a 
satisfactory level. For these purpose we frequently use 
different methods of filtration in the time-dependent 
data. Here Simple Exponential Smoothing technique 
has been used for the filtration purpose.

 

The Hurst Exponent obtained from FVSM 
quantifies the relative affinity of a time series either to 
regress strongly to the mean or to cluster in a direction. 
Autocorrelation plots are used for checking randomness 
in a data set. This randomness is estimated by 
computing autocorrelations for data values at varying 
time lags. For random time series, such autocorrelations 
are near zero value for every time-lag, whereas for 
deterministic series, one or more of the autocorrelations 
will have notably non-zero values. 

 

Partial autocorrelation plots are used here for 
model identification in Box-Jenkins models of the time 
series.

 

Semblance Analysis using the continuous 
wavelet transform has been done to investigate the 
similarity of the phase relationship locally between the 
two signals which is a function of frequency and time of 
the signals.

 

 

a)
 
Simple Exponential Smoothing 

 

Exponential Smoothing helps to produce a 
smoothed Time Series by assigning

 
exponentially

 

decreasing weights
 
as the observation in the time series 

get older. Simple Exponential Smoothing [5] the 
prescribed model for a time series data 

niwherexi ,,.........3,2,1; after being exponentially 
smoothed is y1=x1 And 

niyixiyi ,,.........3,2,1;11  
where yi

 
is the 

smoothed data at the i-th position and α
 
(0< α< 1) is a 

parameter. This is equivalent to y1=x1

 
and
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where the sum of the corresponding weights α, α

 

(1-α), 
α

 

(1-α)

 

2,α

 

(1-α)

 

i-2

 

and (1-α)

 

i-1

 

is equal to unity. Thus in 
effect, each smoothed value is a convex linear 
combination of all the previous observations as well as 
the current observation. 

 

 

A familiar version of Finite Variance Scaling 
Method (FVSM) is the Standard Deviation Analysis 
(SDA) [6, 7, 8], which is based on the assessment of the 
standard deviation D (t) of the variable x (t). 

 

In a time series {x (ti)} observed at the instants ti

 

for i=1, 
2…, n it yields 

 

i

n

i
tiX

i

n

i
tiX

tiD 1

2
1

1
2

)(

        1

 

For n=1, 2, 3……….j

 

Eventually it is observed [6, 7 and 8]

 

t
HtD

                                                    2

 
 

The exponent H is known as the Hurst 
exponent. It is evaluated from the gradient of the best 
fitted straight line in the log-log plot of D (t) against t. 
The value of the Hurst exponent ranges between 0 and 
1. A value of 0.5 indicates a true random walk (a 
Brownian time series). In a random walk there is no 
correlation between any element and future element. A 
Hurst exponent value 0<H<0.5 will exist for a time 
series with anti-persistent behavior (negative 
autocorrelation) [9]. If the Hurst exponent is 0.5<H<1.0, 
the process will be a long memory process. A Hurst 
exponent value in this range indicates persistent 
behavior (or, a positive autocorrelation). 

 

 

Autocorrelation is a statistical method used for 
time series analysis. 

 

It

 

refers

 

to the correlation of a time 
series with its own past and future values.

 

The values of 
the autocorrelation coefficients serve two purposes. It 
can detect non-randomness in a data set. If the values 
in the data set are not random, then autocorrelation can 
help the analyst chose an appropriate time series 
model.

 

The set of autocorrelation coefficients arranged 
as a function of separation in time is the sample

 

autocorrelation function (acf). If xi be signal of length N 

and x be its overall mean i.e. 

N

t
txx

1

 

The autocorrelation coefficient at lag k

 

is given by:

 

N

i
i

kN

i
ii

k

xx

xxxx
r

1

2

1
1

                              3

 

The plot of the autocorrelation coefficients as a function 
of lag is called the correlogram. 

 

Positive autocorrelation signifies the persistent 
trend in the series

 

where the system likes to remain in 
the same state from one observation to the next.  
Whereas negative autocorrelation is distinguished by an 
inclination for positive departures from the overall mean 

x  to follow a negative departure, and vice versa.

 

In order to find the connection between ix
 

and 

kix

 

partial

 

autocorrelation is used where linear 

influence of the random variables lying between 

11 ,, kii xx is filtered out of the ix and kix

 

then the 

correlation of the transformed random variables is 
calculated.

 

If we define a function )(kP as

  

1

1
1

)(

21

21

11

kk

k

k

kP

        
4

 

Then partial autocorrelation can be expressed as, [10]

 

))((
))(( *

kP
kP

kk                                                   5

 

Where *)(kP is same as )(kP except the kth  

column in equation 4 is replaced by k . k

 

Is the 

autocorrelation function at lag k.

 

Partial autocorrelation is a commonly used tool 
for model identification. If the sample autocorrelation 
plot indicates that an AR model may be appropriate, 
then the sample partial autocorrelation plot is examined 
in order to identify the order. We look for the lag on the 
partial autocorrelation plot beyond which its values 
essentially become zero, more specifically where the 
values of the coefficients are considerably less than a 
95% confidence level i.e.

 

N
2 .
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The continuous wavelet transform (CWT) [11] of 
a signal )(tx

 
is given by 

  

dt
s
ut

txsuCWT
s

*

5.0

1,

 
                      

6 

Where is the mother wavelet, and *

 

is 
complex conjugate of , s

 

allows the wavelet to be 
stretched to various scales and u

 

allows the wavelet to 
be translated to by various displacements. The CWT 
basically is the convolution of the signal with scaled 
version of the mother wavelet. Here, the complex Morlet

 

wavelet has been used, which is defined

 

as [11, 12]

 

 ee f
x

f
x

b

c xfj

b

2

21
 7 

Where bf
 
tunes the wavelet bandwidth and cf

 
is the 

wavelet centre frequency.  For 0.1cf , scale becomes 

equivalent to wavelength. The behaviour of the signal on 

different scales can be revealed by varying the scale s
 

(in Eq. (6)). When the mother wavelet chosen here is 

complex and hence its real and imaginary parts 

generate
 

a Hilbert transform pair, to order to have 

orthogonality. Since the mother wavelet is complex, the 

CWT will also be complex which has a phase at every 

time and scale. The cross-wavelet transform [13, 14] 

defined as: 
 

CWTCWTCWT 212,1                                8

 

1CWT & 2CWT are the continuous wavelet transforms of 

two signals )(tx and )(ty . 2,1CWT is a complex quantity 

having an amplitude given by 

 

CWTA
2,1                                                                

 

9

 

and local phase

 

given by:

 

 

CWTCWT 2,12,1

1 /tan

       

                10

 

varies between -π and +π.

 

 

The Semblance S is defined as:[15]

 

cosnS                            11

 

For every odd values of. 0n
 

S may take a value between -1 and +1. The value of S 

gives the degree of correlation between the two signals 

as below:
 

ncorrelatiopositivehasyandx

ncorrelatioNOhasyandx

ncorrelationegativehasyandx

S

1
0
1

 

So if the value of S is close to -1, it implies that x and y 

has high negative correlation whereas its value close to 

+1 implies a high positive correlation between the 

signals. The value close to 0 indicates a poor correlation 

between the two signals.

 

   

The ECG signal for the normal patient and the 
apnea patient are shown in fig.1 

 
 

Fig.1:

 

ECG signals
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The tvstD .)( curve for the two signals are shown in 

fig.2 

Fig.2: Deviation versus Time curve of ECG signal 
 

We have applied the FVSM to obtain the Hurst 
exponent H for the time series ECG signals of the 
normal patient and apnea patient being taken for a 
period of 15minutes [3,4] with the sampling interval of 4 
msec. The values of H obtained are given in table 1. 

Table: 1 

Signals Hurst Exponent H 
Normal Patient 00.2779 
Apnea Patient 00.1300 

The autocorrelation coefficients of the two 
signals for various lags up to 20 are given in fig.3 

 
      Fig.3: Autocorrelation of two ECG lead signal 
 

The partial autocorrelation coefficients are given 
in fig.4 
 

 
 

Fig.4: Partial Autocorrelation of two ECG lead signal 
The Semblance analysis results shown in fig.5 

Fig.5: Semblance analysis of two signals 
Bright red corresponds to a semblance of +1, 

50% green to a semblance of zero, and dark blue to a 
semblance of -1. 

 

The Hurst exponent that we have obtained for 
both the normal and apneal patient are less than 0.5 
which suggest that the signals are having anti-persistent 
behavior i.e. there are trends of a decrement in values 
followed by an increment and vice versa and it is more 
pronounced in case of the apneal patient. 

 The Fractal Dimension (D) is related to the 
Hurst exponent by the equation of D=2-H. Hence the D 
for the normal patient is 1.7221 and for the apneal 
patient it is 1.87. These values of D suggest that the 

  
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
  

  
V
ol
um

e 
 X

I 
 I
ss
ue

 V
III

  
V
er

sio
n 

I 
  

  
  

  
  

  
  

  
  

18

G
l o
ba

l 
 

  
 

(  
F
)

20
11

N
ov

em
be

r

© 2011 Global Journals Inc.  (US)



apneal patient signal has more self similarity than that of 
a normal patient. 

From the auto-correlogram as shown in fig.3 we 
find that the autocorrelation coefficients die down to 
zero more rapidly than that of the apneal patient. The 
autocorrelation coefficients for apneal patient seem not 
to die down to zero except for large values of the lag. It 
signifies that the apneal patient’s time series has a 
stronger trend compared to that of a normal patient. The 
auto-correlogram also suggests that both the systems 
from which the signals originated are Autoregressive 
(Markov) process (AR). The tendency of the 
autocorrelation coefficients of the apneal patient not to 
die quickly as compared to those of the normal patient 
can be taken as an indication of stronger nonstationarity 
of the former signal with respect to the later. 

From the partial auto-correlogram as in fig.4 we 
can claim that normal signal is auto-regressive process 
of order 9 i.e. AR (9) but the patient signal is auto-
regressive process of order 4 i.e. AR (4). Using the Yule 
Walker Equation [10], the model of the two data series 
can be estimated as 

9

1i
titit exx

for normal patient 
And  

4

1i
titit exx

for apneal patient 

Where           
i

i1  

 

For normal patient 0792.0  and for apneal 

patient 006.0 . 

The values of the coefficients i as calculated 
by Yule walker Equation are given in the table 2. 

Table: 2 

i i for normal 
patient 

i for apneal 
patient 

1 2.841 2.0254 
2 -3.1143 -1.381 
3 1.2009 0.3446 
4 0.5002 0.0023 
5 -0.5196  
6 -0.1257  
7 0.2836  
8 -0.0776  
9 -0.0163  

 

Solving the equation of the polynomial 
p

i

i
i zz

1
01)(

we have obtained the complex 
roots which are found to be less than unit circle, which 

establish the nonstationarity of the signals. 9p for the 

normal patient and 4p for apneal patient. 
Semblance analysis gives the phase 

relationship between the two signals. It is found that the 
two signals are highly negatively correlated at lower 
scales at regular intervals of time where as at higher 
scales these are highly positively correlated at regular 
intervals of time. At even higher scales (more than 200) 
the signals are mostly negatively correlated except at 
the time between 3-4 minutes. 
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