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Abstract - In  this    paper  the  effect  of  a  parallel metal  oxide surge  arrester  on  the  ferroresonance  
oscillations  of transformers  is  studied.  It  is  proved  that  ferroresonance phenomenon  in  transforemer  
can  be  classified  in  chaotic dynamics systems. In this contribution chaos occurs in system from  a  
sequence  of  period  doubling  bifurcation  (PDB). Analysis  of  dynamics  of  ferroresonant  circuit  is  
carried  out using  bifurcation  theory.    It  is  expected  that  the  arresters generally cause ferroresonance 
drop out. Simulation has been done  on  a  three  phase  power  transformer  with  one  open phase.  
Effect  of  varying  input  voltage    is  studied.  The simulation  results  reveal  that  connecting  the  
arrester  to transformers  poles,  exhibits  a  great  mitigating  effect  on ferroresonant  over  voltages.  
Phase  plane  along  with bifurcation diagrams are also presented. Significant effect on the  onset  of  
chaos,  the  range  of  parameter  values  that may lead  to  chaos  and  magnitude  of  ferroresonant  
voltages  is obtained,  shown and tabulated.    
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AAbstract - In this  paper the effect of a parallel metal oxide 
surge arrester on the ferroresonance oscillations of 
transformers is studied. It is proved that ferroresonance 
phenomenon in transforemer can be classified in chaotic 
dynamics systems. In this contribution chaos occurs in system 
from a sequence of period doubling bifurcation (PDB). 
Analysis of dynamics of ferroresonant circuit is carried out 
using bifurcation theory.  It is expected that the arresters 
generally cause ferroresonance drop out. Simulation has been 
done on a three phase power transformer with one open 
phase. Effect of varying input voltage  is studied. The 
simulation results reveal that connecting the arrester to 
transformers poles, exhibits a great mitigating effect on 
ferroresonant over voltages. Phase plane along with 
bifurcation diagrams are also presented. Significant effect on 
the onset of chaos, the range of parameter values that may 
lead to chaos and magnitude of ferroresonant voltages is 
obtained,  shown and tabulated.  
Keywords :  component; Power Transformer, Phase 
Plane Diagram, Bifurcation Diagram, Chaotic 
Ferroresonance, Chaos Theory, Nonlinear Core loss 
Model, Metal Oxide Arrester (MOA). 

 
erroresonance is a complex nonlinear electrical 
phenomenon that can cause dielectric & thermal 
problems  to components power system. 

Electrical systems exhibiting ferroresonant behaviour are 
categorized as nonlinear dynamical systems. Therefore 
conventional linear solutions cannot be applied to study  
ferroresonance. The prediction of ferroresonance is 
achieved by detailed modeling using a digital computer   
transient analysis program [1]. Ferroresonance should 
not be confused with linear resonance that occurs when 
inductive and capacitive reactance of circuit is equal. In 
linear resonance the current and voltage are linearly 
related and are frequency dependent. In the case of 
ferroresonance it is characterized by a sudden jump of 
voltage or current from one stable operating state to 
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another one. The relationship between voltage  and 
current is depends not only on frequency but also on 
other factors such as  system voltage magnitude,  initial 
magnetic flux condition of transformer iron core,  total 
loss in the ferroresonant circuit and moment of 
switching [2].  

Ferroresonance may be initiated by 
contingency switching operation, routine switching, or 
load shedding involving a high voltage transmission line. 
It can result in Unpredictable over voltages and high 
currents. The prerequisite for ferroresonance is a circuit 
containing iron core inductance and a capacitance. 
Such a circuit is characterized by simultaneous 
existence of several steady-state solutions for a given 
set of circuit parameters. The abrupt transition or jump 
from one steady state to another is triggered by a 
disturbance, switching action or a gradual change in 
values of a parameter. Typical cases of ferroresonance 
are reported  in [1], [2], [3] and [4]. Although analyzing 
methods such as harmonics balance method can be 
use for analyzing nonlinear differential equations, but 
solving these equations lead to a set of complex 
algebraic equations [3]. Thus, scientists should use 
other methods to solve nonlinear dynamic equations. 
One of these methods is bifurcation theory which some 
articles use from this method [5, 6, 7]. Bifurcation theory 
enables us to describe and analyze qualitative 
properties of solutions (fixed points) when system 
parameters change. Studying ferroresonance by 
bifurcation theory has been carried out [8, 9, 10, 11]. But 
there are some problems in these articles. For example 
method used in [15] is valid only in limited cases while 
creating a bifurcation diagram by a continuation method 
can be more systematic and save computational effort 
[3].  The samples of ferroresonace in power system 
have been described in [12, 4, 13]. Analyzing chaotic 
ferroresonant behavior in power transformer and 
dependence of this behavior on system parameters 
such as amplitude of voltage source, capacitance and 
resistance of system, core loss, initial conditions and e 
and  effect of neutral resistance in damping 
ferroresosnant oscillations and change in system 
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behavior from chaotic to multi frequency in [3, 7, 14, 15, 
16, 17] have been studied. Evaluation of route to chaos 
in  transformer with modeling and solving equations in 
conditions that defined model for core loss is  
considered linear and effect of complexity of circuits 
breaker models in transmission and distribution lines  
with considering effect of damping in system and 
elimination of caused harmonics in [10, 18] have been  
studied. Theory of nonlinear dynamics has been found 
to provide deeper insight into the phenomenon. [19], 
[11], [20] and [21] are among the early investigations in 
applying theory of bifurcation and chaosto 
ferroresonance. The susceptibility of a ferroresonant 
circuit to a quasi-periodic and frequency locked 
oscillations are presented in [22]. The effect of initial 
conditions is also investigated. The effect of transformer 
modeling on the predicted ferroresonance oscillations 
has been studied in [23]. Using a linear model, authors 
of [24] have indicated the effect of core loss in damping 
ferroresonance oscillations. The importance of treating 
core loss as a nonlinear function of voltage is 
highlighted in [22]. An algorithm for calculating core loss 
from no-load characteristics is given in [25]. Evaluation 
of chaos in transformer, effect of resistance of key on 
the chaotic behavior transformer and subharmonics that 
produced with ferroresonance in this type transformer 
and quantification of the chaotic behavior of 
ferroresonant transformer circuits are studied in [20], 
[25] and [26]. 

 

Transformer is assumed to be connected to the 
Power System while one of the three switches are open  
and only two phases of it are energized, which produces 
induced voltage in the open phase. This voltage, back 
feeds the distribution line. Ferroresonance will occur if 
the distribution line is highly capacitive. System involves 
the nonlinear magnetizing reactance of the transformer’s 
open phase and resulted shunt and series capacitance 
of the distribution line. 
 
 
 
 
 
 
 
 
 

Base system model is adopted from [3] with the 
MOV arrester connected across the transformer winding 
which is showed in Fig. 1 Linear approximation of the 
peak current of the magnetization reactance can be 
presented by Eq. (1):

 
 

However, for very high currents, the iron core 
might be saturated where the flux-current characteristic 
becomes highly nonlinear. The  li            characteristic of 
the transformer can be demonstrated by the polynomial 
in Eq. (2) 

   
 
Arrester can be expressed by the Eq. (3): 
 (3)

 
 

 

Figure. 1 Circuit of system 

(2)

(1)

Where dt d and represents the power 

frequency  and E is the peak value of the voltage source, 

 

shown in Fig. 1.

V represents resistive voltage drop, I represents arrester 
current and K is constant and         is nonlinearity 
constant. The differential equation for the circuit in Fig. 1 
can be derived as follows:

Presenting in the form of state space equations, and 
p will be state variables as follows:

Multiple Scales Method 
By using the multiple scales method one obtains a first 

order approximation for the solution of Eq. (7) as:

The parameters μ, a and k  are  

of ε. Further, the frequencyindependent

 of system is such that

Where δ is named external detuning. By using the 
multiple scales method, we seek of first order uniform 
expansion of Eq. (7) in the form:

  
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
  

  
V
ol
um

e 
 X

I 
 I
ss
ue

 V
III

  
V
er

sio
n 

I 
  

  
  

  
  

  
  

  
  

22

G
l o
ba

l 
 

  
 

(  
F
)

20
11

N
ov

em
be

r

© 2011 Global Journals Inc.  (US)



    
Where T0 = t and T1 = εT0. In term of T1 the time derivative becomes:

Substituting Eq. (10) and Eq. (11) into Eq. (36) and equating coefficient of like power of ε, we obtain:

The solution of Eq. (12) can be expressed as:

Substituting Eq. (14) in Eq. (13):

Where cc is complex conjugate of preceding terms and the prime indicates the derivation with respect to T1.  Using 

Eq. (7) in eliminating the lead to secular terms in         from Eq. (12), we obtain:

If  A is defined in the polar form , where  α, β are functions of T with separating real and 
imaginary part in Eq. (13):

1

From Eq. (17), we obtain Eq. (18) and Eq. (19):

With multiplying – sinβ in Eq. (18) and cosβ in Eq. (19) we have:

With multiplying cosβ in Eq. (18) and sinβ in Eq. (19) we have:

Setting α′= 0 and β′= 0 in Eq. (20) and (21) we find that their fixed points are given by:

Squaring and adding Eq. (22) and (23) yield the frequency response equations:
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BBifurcation and chaos theory  
Bifurcation theory describes and studies behavior of 
system with change in one or more parameters of 
system and discusses in case of stability and instability 
of fixed points in the values of system parameters. 
Suppose system is defined as Eq. (32):

Where x is a state vector. In fact flux and voltage in 
terminal of transformer are state variables. γ is a 
parameter of system that can be value of series 
capacitance or amplitude of input voltage. for γ = γ
c at which the vector field f losses its structural stability 
is called a bifurcation point and γc the value of 
bifurcation. For analyzing and studying in bifurcation 
diagram we use of jacobian matrix, J = Df as the 
linearization of f at (x0, γ0 ) which points x0 are fixed 
points.

Saddle node bifurcation
When J is nonhyperbolic, i.e. J has a zero eigenvalue 
and no other eigen value with zero real part, saddle 
node bifurcation (SNB) occurs. SNB is caused with 
changes in the number of fixed points. Indeed, one 
stable fixed point and unstable fixed point cause SNB. 
Necessary and enough conditions for SNB are:

Necessary conditions:

Enough conditions: 

If  eigen values  of  jacobian matrix are considered as 
when   real            0   jacobian   matrix   is hyperbolic and 
other wise nonhyperbolic. 

The stability of the fixed points depends on the eigenvalues of the jacobian matrix (22), (23); that is, the eigevalue of:

Determinant of [λI − A yields eigenvalues:

Where λ is eigenvalue. Substituting the polar form of A into Eq. (11) and substituting result into Eq. (12), we find that, 
to first approximation x1is given by:

For nontrivial solutions, α ≠ 0 and it follows from Eq. (28) that:

Substituting Eq. (29) into Eq. (27), we find that to the first approximation, the free oscillations of Eq. (7) are given by:

Where α is given by Eq. (28), which has the normal form of a supercritical pitchfork bifurcation. Equation of 
eigenvalues introduce as the following equation:

We obtain first order approximation of Eq. (8) by multiple scale method and by using the chaos theory we discuss in 
case of stability.
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 Pitch fork or transcritical bifurcation points appoint 
necessary conditions, too. For more detail see [30].   
Hopf bifurcation
If J has a pair of complex conjugate on the imaginary 
axis and other eigenvalues lying off the imaginary axis, 
hopf bifurcation (HB) occurs. if periodic solutions are 
unstable, bifurcation is said to be subcritical and  
supercritical if stable.
Thus, connects fixed points to periodic solutions. SNB 
and HB are stationary point. Periodic solutions that are 
caused by a HB can increase bifurcations and 
complexity of system behavior, themselves. Limit cycles 
which are caused by a HB can involve system into 
chaotic region and global bifurcation occurs. 

Suppose  x                                 be a small perturbation to 
the periodic solution to Eq. (30) and                1.  We 
obtain:

Thus, 

periodic in T, A (t) is periodic, too. Thus:  

be equal with A (t) Because            is 

Stability of periodic solutions is determined by its 
characteristic.

Now, we define the mondoromy matrix M to be Ψ (t). 
Eigenvalues of M are multipliers, denoted by Mi , i = 1, 
n. If all eigenvalues of M lie in the unit circle, we find out,  

For a periodic solution one of multipliers is equal to +1, 
with corresponding eigenvector tangential to the  
periodic orbit at x.

Stability of a limit cycle is determined by its multipliers 
and depending on the way in which multipliers venter or 
leave the unit circle. 

CCyclic fold bifurcation 

If one of multipliers enters or leaves the unit circle along 
the positive real axis cyclic fold bifurcation (CFB) occurs. 
In Fig. 2 (a) is example of this bifurcation.

Fig. 2.  Multiplier crossings of the unit circle 

If one of the multipliers leaves unit circle along the 
negative real axis bifurcation is said to be a period  
doubling bifurcation (PDB) (b in Fig. 2). 
This bifurcation causes new solutions with period 2T. If 
this behavior continues, causes solutions with  infinitive 
period. These solutions are aperiodic which are called 
chaotic solutions. If one of the lyapunov  exponents be 
positive for systems of ODEs, is representing of chaotic 
behavior in system. 

Torus bifurcation 

Period doubling 

If a complex conjugate pair of multipliers with Re{mi } ≠ 
0 leaves the unit circle, causes quasi-periodic  solution. 
C indicates this behavior. Quasi periodic solutions have 
period that is equal to in commensurate of  main period 
T. In phase plane diagram these solutions create figures 
in form of torus. 

Routes to chaos 

Chaotic solutions are aperiodic and unstable solutions. 
These solutions depend on initial conditions. In this 
section we imply 4 routes to chaos:  PDB

Crises 
Intermittency 
Torus bifurcation 
Intermittency is a route to chaos. In this route oscillation 
in regular mode occasionally interrupted by turbulent 
burst of aperiodic oscillations at irregular intervals and 
chaos emerges in system. In case of torus bifurcation if 
stable periodic solution undergoes to a supercritical 
secondary hopf bifurcation with changes in parameter of 
system. This causes two quasi periodic solutions with 
two in commensurate frequencies.  
When parameter increases torus is destroyed and 
system becomes chaotic. Sudden changes in 
parameter of system cause crises and system becomes 
chaotic. When crises occur chaotic attractor enters 
unstable periodic solutions or saddle points. 
Crises have different types. Some of these types are:

Fundamental matrix for Eq. (75) is    (T) , such as: 

If
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Exterior crisis, blucsky catastrophe or dangerous 
bifurcation, interior crisis and attractor merging crisis. 
For  more detail, see [27].
For recognizing chaotic oscillations, we use from lyapu
exponent. If eigen values of system are    lyapunov λi

If lyapunov exponent be positive, routes will repel other 
routes and other wise will attract other route. In case of 
stability of fixed points, when all lyapunov exponents are 
negative, these points are stable and in  limit cycle 
lyapunov exponent is zero. Necessary and enough 
condition for chaotic behavior system are one or more 
positive lyapunov exponents. For more details, see [28].

exponent:

Typical values for various system parameters 
considered for simulation are as given below [5]:

Table (1) shows different values of E, considered for 
analyzing the circuit in absence of surge arrester.

Initial conditions: 

Table 1. (A) Behaviour of System Without Mov For E= 1, 2, 3

(B) Behaviour of System without Mov For E= 4, 5, 6

Table 2 includes the set of cases which are considered for analyzing the circuit including arrester:

Table 2. (A) Behaviour of System with Mov for E= 1, 2, 3
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(B) behaviour of system with mov for e= 4, 5, 6

Time domain simulations were performed using the MATLAB programs which are similar to EMTP simulation 
[3]. For cases including arrester, it can be seen that ferroresonant drop out will be occurred.Fig. 3 show the    
phase plane plot of system states without arrester for E=1 p.u.

Figure. 3 Phase plane diagram for E=1, q=11 without MOV 

When Vin increases system is entered into saturation section of magnetization curve and ferroresonance
occurs. In Figs. 4, 5, 6, 7 this phenomenon is shown. Behavior of system is single frequency but PDB has
occurred. Magnetization curve in Fig. 4 and phase plane diagram in Fig. 5 and voltage and flux 
waveforms are shown in Figs. 6 and 7. These figures are gained whenVin = 3.5, q = 7. Phase plane 
diagram shows this reality that behavior of system is a single frequency behavior. But voltage and flux 
waveforms show that behavior of system has an undesirable effect on system insulation and maybe 
damage it.  

Fig. 4: Nonlinear transformer magnetization curve for second nonlinear core loss model forVin = 3.5, q = 7 4 
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Fig. 5: phase plane diagram for Vin = 3.5, q = 7

Fig. 6: Voltage waveform for V = 3.5, q = 7

Fig. 7: Flux waveform forV  =3.5,q=7   
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Fig. 8: shows   the phase plane   plot and time domain simulation of system states without arrester for E=4  
p.u.which depicts chaotic behavior and Fig. 9 shows the corresponding time domain wave form. 

Figure 8: Phase plane diagram for E=4, q=11 without MOV 

Figure.9 : time domain chaotic wave form for E=4, q=11 without MOV 

Also figures 10-12 show the bifurcation diagram of chaotic behaviours for three of values of q. The system 
shows a greater tendency for chaos for saturation characteristics with lower knee points, which 
corresponds to higher values of exponent q.

Figure10: Bifurcation diagram for q=5 without MOV
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Figure 11 Bifurcation diagram for q=7 without MOV

Figure 12: Bifurcation diagram for q=11without MOV

Fig. 13, Fig. 14 and Fig. 15 show that chaotic region mitigates by applying MOV surge arrester. Tendency  to  
chaos exhibited by the system increases while q  increases too.

Figure 13: Bifurcation diagram for q=5 with MOV
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Figure 14 :Bifurcation diagram for q=7 with MOV

Figure 15: Bifurcation diagram for q=11 with MOV

With consideration to Fig. 13, Fig. 14 and Fig. 15 MOV makes a mitigation in ferroresonance  chaotic 
behavior  in transformer that in down value of q the chaotic region are removed and the behavior will  be 
periodic, for greater value of q for  example for q=11 independent chaotic regions which can be created 
under MOV nominal voltage have survived so chaotic behavior has been eliminated. Figs. 16, 17 show 
that chaotic region mitigates by applying MOA surge arrester. The system shows a greater tendency for 
chaos for saturation characteristics with lower knee

Fig. 16: Flux waveform with MOA at vin= 3.1p.u.
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Fig. 17: Phase plane diagram with MOA at vin= 3.1p.u.

Considering to Fig. 17 MOA makes a mitigation 
in ferroresonance chaotic behavior in the transformer 
that in down value of q the chaotic region are removed 
and the behavior will be periodic, for greater value of q  
such as q=11 independent chaotic regions which can 
be created under MOA nominal voltage have survived  
so chaotic behavior has been eliminated. Tendency to 
chaos exhibited by the system increases while q 
increases too.

Chaotic ferroresonant oscillations of unloaded 
transformer nonlinear core loss model have been 
described. The presence of the arrester results in 
clamping the Ferroresonant over voltages in the studied 
system. The arrester successfully suppresses or 
eliminates the chaotic behaviour of proposed model. 
Consequently, the system shows less sensitivity to initial 
conditions in the presence of the arrester. It is seen from
the bifurcation diagram that chaotic ferroresonant 
behavior depends on parameter q. MOV makes a 
mitigation in ferroresonance chaotic behavior in 
transformer that in down value of q the chaotic region 
are removed and the behavior will be periodic. System 
stability increased with decreasing q and chaotic 
regions are eliminiated. It is found when q=11 at vin=4 
p.u. beahavior of system is chaotic while for q=7 in the 
same value of vin system is in subharmonic mode and 
its stability is more than case that q=11. It was shown 
that chaos occurs in transformer from a sequence of 
PDB. It was found that nonlinear magnetization curve 
has a great influence on bifurcation diagrams and 
domains of ferroresonance occurrence. nonlinear core 
loss model has been used in dynamics equations. It 
was found that the nonlinear core loss model causes the 
mitigation and delay in chaotic ferroresonant 
oscillations. Also presence of nonlinear term in core loss 
function causes PDBs become more regular.
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