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Abstract-This paper proposes and presents a method that would enable the use of dummy variable multiple regression
techniques for the analysis of sample data appropriate for analysis with the traditional two factor analysis of variance
techniques with one, equal and unequal replications per treatment combination and with interaction.

The proposed method, applying the extra sum of squares principle develops F ratio-test statistics for testing

the significance of factor and interaction effects in analysis of variance models. The method also shows how using the
extra sum of squares principle to build more parsimonious explanatory models for dependent or criterion variables of
interest.

In addition, unlike the traditional approach with analysis of variance models the proposed method easily
enables the simultaneous estimation of total or absolute and the so-called direct and indirect effects of independent or
explanatory variables on given criterion variables. The proposed methods are illustrated with some sample data and
shown to yield essentially the same results as would the two factor analysis of variance techniques when the later
methods are equally applicable.

Keywords: dummy variable regression, Analysis of variance, degrees of freedom, treatment, regression
coefficient.

I. [NTRODUCTION

Analysis of variance and regression analysis whether single-factor or multi-factor,
sometimes both in theory and applications have often been treated and presented as
rather different concepts by various authors. In fact only limited attempts seem to have
been made to present analysis of variance as a regression problem (Draper and Smith,
1966; Neter and Wasserman, 1974).

Nonetheless analysis of variance and regression analysis are actually similar
concepts, especially when analysis of variance is presented from the perspective of
dummy variable regression models. This is the focus of the present paper, which
attempts to develop a method to use dummy variable multiple regression models and

apply the “extra sum of squares principle” in the analysis of two-factor analysis of
variance models with unequal replications per treatment combination as a multiple
regression problem.

[I. THE PROPOSED METHOD

Regression techniques can be used for the analysis of data appropriate for two

factor or two —way analysis of variance with replications and possible interactions. This
approach is a more efficient method than the method of unweighted means discussed in
Oyeka et al (2012).
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In a two factor analysis of variance involving factors A and B with interactions
between these two factors, as discussed in Oyeka (2013), the resulting model is

Vij =H+a + B + A4 +€ (1)

|th

Where Y, is the i™ observation or response at the level of factor A and

j™ level of factor B; u is the grand or overall mean, «,is the effect of the 1™ level of
factor A, B;is the effect of the j™ level of factor B; 4;is the interaction effect between
the 1™ level of factor A and ™ level of factor B;g; are independent and normally

distributed error terms with constant variance, for 1=12.nij,1=12..a, the ‘a’ levels

of factor A; j=12..b, the ‘b’ levels of factor B, subject to the constraints

a

Z“i :Zb:ﬂj =24 :Zb‘/lu =0 (2)

a
1=1 =1 =1 =

a b
Let n= ZZ n; be the total sample size or observations for use in the analysis.
=L j=1

To obtain a dummy variable regression model of 1s and 0Os equivalent to
equation 1 and also subject to the constraints imposed on the parameters by equation 2,
we would as usual use for each factor one dummy variable of 1s and Os less than the
number of levels, classes, or categories that factor has (Boyle 1974). Similarly the
interaction effects will be factored in by taking the cross-products of the set of dummy
variables representing one of the factors with the set of dummy variables representing

the other factor. Thus factor A with ‘a’ levels will be represented by a-1 dummy

variables of 1s and 0Os, factor B with ‘b’ levels will be represented by b-1 dummy
variables of 1s and Os and the factors A by B interaction effects will be represented by
(a-1)(b-1)dummy variables of 1s and O0s.Specifically to obtain the required dummy
variables for factors A and B. we may define

&)

« {lif thei ™ observation or response, y;; isat thel™ level of factor A
iA =

0, otherwise
for i=12.n;l=12..a-1,forallj=12..b
For factor B define

(4)

y _{lif thei "observation or response, y,; isat the J" level of factor B
ij;B

0, otherwise
for i=1,2 My =120 —1,foralll=12..a

Using these specifications we have that the dummy variable multiple regression
model equivalent to the two factor analysis of variance model of equation 1 is

yilj =ﬁ0 +ﬂl;A'Xil;A + IBZ;A.XiZ;A oot IBa—l;A'Xia—l;A + ﬂl;B'Xil;B +ﬂ2;B'Xi2;B oot le—l;B'Xib—l;B—l—ﬁl; l 'Xil ;I l

+ By L Xigs | 4+ ﬂ(a—l)(b—l) | Xi(a-1)(b-1)? I +e,

OR when more compactly expressed
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(a-1(b-1)

Yij = ﬁo"‘ZIBlA |IA+ZﬂJBX|JB+ Zﬁkl X s |+ € (5)

Where the Bsare partial regression coefficients and g, are independent and

normally distributed error terms with constant variance with E(e; j} = 0.
The expected value of y,, of Equation (5) is

l b-1 (a-1)(b-1)
E(y”i ):ﬁo * Z'BI:A'XM;A + Zﬂj;B-Xij;B + Zﬂk;l'xik; | (6)
1=1 j=1 1

Note that the interaction terms may be more completely represented as

|kI _XllAX _X|I X|J’and ﬁkl :ﬂij: AB:ﬂlj

Forl=12.a—-1:j=12,..b -1
Hence Equation 6 may alternatively be expressed as

(a-1)(b-1)

E(ym) ﬂO+ZIBlA IIA+ZﬂJB IJB+ZZ'BU Xip X (7)

=1 j=1
Now the mean value or mean response in the language of analysis of variance at
the 1" level factor A and j" level of factor B is obtained by setting Xi:a = X;. =1the

I"™and x;; = 0 for all ‘g’not equal to |J in Equation (7) to obtain

E(vy;) =y = Bo + By + Bj.5 + By; (®)

Forl=12,.a—-1;j=12,..b—1
Similarly the mean response or mean of the criterion variable at the [ level of
factor A is obtained by setting ¥*it;A=1 and all other Xi=0 (9#1) while the mean
response at the j™ level of factor B is obtained by setting %ijiB =1 4nq all other
Xigs =0 (g#j) in Equation (6) giving
Bj = Bo+ frzAsand pj = o + Bj:B (9)

Fori=12,.a-1;j=12,..b -1
These are the same results that are obtained using conventional two factor
analysis of variance methods. The partial regression parameter fi: A is as usual

interpreted as the change in the dependent variable ‘Y’ percent change in the 1" level
of factor A compared with all its other levels holding the levels of all other independent

variables in the model constant; i : B is similarly interpreted. The interaction effect A
is interpreted as the dependent variable Y per unit change at the ™ level of factor A

¢j"level of the change at the It level of factor B confounded by or in the presence of

the effect of the J™ level of factor B (1" level of factor A).
Now Equation 5 can be more compactly expressed in matrix form as

y=Xp+e (10)
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Where y is an nx1 column vector of response outcomes or values of the

criterion or dependent variable; X is an nxr design matrix of 1s and 0s; f is an rxl
column vector of partial regression parameters and € is an nx1 column vector of

normally distributed error terms with constant variance with E(§)= 0 ,where r=ab-1

representing the number of dummy variables of 1s and Os in the model.
The corresponding expected value of the criterion variable equivalent to Equation (6) is

Ey)= X (12)

Note that use of Equations 3-5 or 10 makes it unnecessary, at least for the fixed
effects model of primary interest here, to treat one observation per cell, equal and
unequal observations per cell in two factor analysis of variance problems differently.
The same dummy variable regression models can be used in all these cases except that
in the case of one observation per cell where it is not possible to calculate the error sum
of squares and hence the corresponding error mean square, the interaction mean square
is instead used in all tests.

Use of the usual least squares methods with either Equations (5) or (10) yields
unbiased estimates of the partial regression parameters which again expressed in matrix
form is

f=b=(X'X)"X"y (12)

Where (X'X)™ is the matrix inverse of the non singular variance-covariance

matrix X' X .
The resulting estimated or fitted value of the response or dependent variable is

y=Xb (13)

In the conventional two factor analysis of variance a null hypothesis that is
usually of interest first is that treatment means are equal for all treatment
combinations. In the dummy variable regression approach an equivalent null hypothesis
would be that the specified model that is either Equations (5) or (10) fits. This null
hypothesis when expressed in terms of the regression parameters would be

H,:B=0versusH,:f+0 (14)

This null hypothesis is tested using the usual F,, presented in the familiar

analysis of variance table where the required sums of squares are obtained as follows:-
The total sum of squares is as usual calculated as

SSipw = SSiq = Y'Y — 1Y’ (15)

Which has the chi-square distribution with n-1degrees of freedom where Yis

the mean of the criterion or dependent variable. The sum of squares regression or the
so-called treatment sum of squares in analysis of variance parlance is

SSR=SST =b' X'y - ny? (16)

Which has the chi-square distribution with r = ab—1degrees of freedom. Similarly the
error sum of squares is
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SSE =SSy - SR=y'y-b'X'y (17)

With (n-1)-( ab-1) =n-abdegrees of freedom.
These results may be summarized in an analysis of variance Table (Table 1)

Table 1: Analysis of variance table for regression model of Equation (10)

Source of Sum of Squares (SS) Degrees of Mean sum of F-Ratio
Variation Freedom (DF) Squares (MS)
Regression _ _hX'v_nv2 ab-1 55R M5R
(reameny | SSR=SST=b'Xy=ny MSR=a. b — 1 F=MSE
Error SE=yy-bX'y n-ab S5E
- - MSE=n — . b
Tore S =Y y-Ny’ n-1

The null hypothesis of Equation 4 is rejected at the & level of significance if the
calculated F —ratioof Table 1 is such that

F>F_ n—ab (18)

a;a.b-11
Otherwise the null hypothesis is accepted.

If the model fits, that is if the null hypothesis of Equation (14) is rejected, in
which case not all the regression parameters are equal to zero, then one can proceed to
test other null hypothesis concerning factors A and B level effects as well as factors A
by B interaction effects. Thus additional null hypothesis that may be tested are that
factor A has no effects on the criterion variable; factor B has no effects on the criterion
variable; and that there are no factors A by B interaction effects. Stated notation ally
the null hypotheses are

Hon: B, =0 Versus Hy, : f, #0 (19)
Hos : B, =0 Versus Hyg 1 §_#0 (20)
Hopg 1B, =0 Versus Hypg i, #0 (21)

To test these hypotheses one needs to calculate the contribution of each factor
separately to the treatment or regression sum of squares. The treatment or regression
sum of squares SST in analysis of variance parlance which is the regression sum of

squares SSR in regression models distributed as chi-square with a.b—1 degrees of
freedom is made up of three sums of squares each having the chi-square distribution,

namely the sum of squares due to row or factor A, SSA with @ =1 degrees of freedom,

the sum of squares due to column or factor B, SSB with 2 =1 degrees of freedom, and
the row by column of factors A by B interaction sum of squares, SSAB with

(@ —1)(b —1) degrees of freedom. Thus notationally we have that
SST = SSR=SSA+ SB + SSAB (22)

To obtain these sums of squares we note that the design matrix X of Equation
(10) with @2 =1 dummy variables 0s and 1s because of 0s and 1s of dummy variables

of 1s and Os can be partitioned into three sub matrices namely an nx (a-21)matrix X,

of @=1 dummy variables representing the (a — 1).included levels of factor A, the
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nx(b—l)matrix Xg comprising b—1 dummy variables of 1s and 0Os representing the

b-lincluded levels of factor B; and the nx(a-1)fb-1)matrix X,zof (a-1fb-1)
dummy variable of 1s and 0Os representing interaction between factors A and B .

The (ab-1)x1column vector of estimated partial regression coefficients b can be
similarly partitioned into the corresponding (a—l)xlcolumn vector b ,of effects due to
factor A; the (b—1)xlcolumn vector of bgof effects due to factor B and the
(a—1)b—1)x1column vector b,, of effects due to factors A by B interaction. Now the

sum of squares b".X".y of Equation (16) may hence equivalently be expressed as

N
D'XIX:(X-Q)I-X:((XA Xg Xag) bg )X
bAB
OR
DX'y=b', X 0y + b X gy + 0. X 5.y (23)

The sum of squares regression or the treatment sum of squares, SSR= SST of the
full model of Equation 10 is

SR=b.X'y-ny?= (DIA'XIA'X_ ny?)+ (D'B-X'B-X— ny?)+ (D'AB-X'AB-X— ny?)+2ny?  (24)
SSR(SST) = SA +SB + SSAB + mean
(adjustment factor )

Now to find the required sums of squares after fitting the full regression model of
Equation (10) one then proceeds to fit, that is regress the dependent variable y

separately as reduced models on X, X and X ,; to obtain using the usual least square
methods, the three terms of Equation (20) or (24). Now the sums of squares and the
corresponding estimated regression coefficients on the right hand side of Equation (24)
are obtained by fitting reduced regression models separately of X,,Xz and X,; as
reduced design matrices. That is the dependent variable yis separately fitted, that is

regressed on each of the reduced design matrices X ,, X and X 5.

These regression models would yield estimates of the corresponding reduced

partial regression parameters, f [, and 8 . as respectively
EA =b, :(X'A'XA)_l'XIA'X;éB =b, = (XIB'XB)_l'XlB'X;éAB =Dy = (X'AB'XAB )_l'x'AB 24 (25)

If the full model of Equation (10) fits, that is if the null hypothesis of Equation
(14) is rejected, then the additional null hypothesis of Equations 19-21 may be tested
using the extra sum of squares principle (Drapa and Smith, 1966). If we denote the sum
of squares due to the full model of Equation (10) and the reduced models due to the
fitting of the criterion variable y to any of the reduced design matrices by

SS(F)and SS(R), respectively then following the extra sum of squares principle (Draper
and Smith, 1966;Neter and Wasserman 1974), the extra sum of squares due to a given
factor is calculated as ESS=SS(F)-SS(R) Equation (26)with degrees of freedom

obtained as the difference between the degrees of freedom of SS(F)and SS(R). That is
as

© 2014 Global Journals Inc. (US)
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Edf =df (F) — df (R) (27)

Thus the extra sums of squares for factors A, B and A by B interaction are
obtained as respectively

ESSA = SSR - SSA; ESSB = SSR— SSB; ESSAB = SSR—- SSAB (28)

With degrees of freedom of respectively
(ab-1)—(a-D=a(b-1);(@b-1)-(b-1)=b(a-1);@-1)-(a-Yb-Y=a+b-2 (29)

Note that since each of the reduced models and the full model have the same
total sum of squares, SS;, ,the extra sum of squares may alternatively be obtained as the

difference between the error sum of squares of each reduced model and the error sum of
squares of the full model. In other words the extra sum of squares is equivalently
calculated as

ESS=SS(F) - SS(R) = (SS,,, - SS(F)) - (S5, - SS(R) =SE(R) - SE(F)  (30)
With the degrees of freedom similarly obtained as
Edf = df SSE(R) — df SSE(F) (31

Thus the extra sums of squares due to factors A, B and A by B interaction are
alternatively obtained as

ESSA= SSEA - SSE; ESSB = SSEA — SSE; ESAB = SSEAB — SSE (32)

Where SSR and SSE are respectively the regression sum of squares and the
error sum of squares for the full model. The null hypothesis of Equations (19) - (21) are
tested using the F ratios as summarized in Table 2 which for completeness also includes
the values of Table 1 for the full model.
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Note that the F ratios of Table 2 are each the ratio of the extra mean sum of
squares of the corresponding reduced model to the mean sum of squares of the full

model. Where SSR is the regression sum of Squares with ab—1degrees of freedom, SSE

is the error sum of Squares with n—ab degrees of freedom and MSE is the mean error
sum of Squares, all for the full model of Equation (10). The results of Table 2 are the
same as would be obtained using the conventional two factor or two way analysis of
variance with replications and interactions. Usually, the hypothesis of no interaction is
tested first using the corresponding F ratio of Table 2. If the hypothesis of no
interaction is accepted, then one may proceed to test the null hypotheses about factors
A and B effects again using the corresponding F ratios of Table 2. If however the null
hypothesis of no interaction is rejected, then one may use any of the familiar and
appropriate methods of treating interactions and proceed with further analysis.

Thus if the model of Equation (10) fits, that is if the null hypothesis of Equation
(14) is rejected then the null hypotheses of Equations 19-21 of no factors A, B and A by
B interaction are respectively tested using the corresponding test statistics (see Table
2), namely

EMSA EMSB EMSAB
= ; = ; FAB = (33)

FA T Mo ' B
MSE MSE MSE

With numerator degrees of freedom of a(b—1)b(a—1),and a+b— 2respectively

and common denominator degrees of freedom of n—abfor use to obtain the necessary
critical F —ratiosfor comparative purposes for rejection or acceptance of the
corresponding null hypothesis.

Note that in general whether or not the independent or explanatory variables
used in a regression model are dummy variables or numeric measurements, the extra
sum of squares principle is most useful in determining the contribution of an
independent variable or a subset of the independent variables among all the
independent variables in the model in explaining the variation of a specified dependent
on criterion variable. This would inform the inclusion or exclusion of the independent
variable or the subset of the independent variables in the hypothesized model depending
on the significance of the contribution.

Thus the extra sum of squares principle enables one select important variables
and formulate a more parsimonious statistical model of explanatory variables for a
dependent variable of interest. To do this, for example, for one independent variable

X, included in a regression model with say a total of 'r'independent variables, over fits

the full model with all the independent variables and reduced model with only one
independent variable X , .Suppose as discussed earlier that the regression sums of

squares for the full model and the reduced model are respectively SS(F)and SS(R)

which have degrees of freedom of 'r'and 1 respectively. Then from Equation (28) the
extra sum of squares regression with respect to X | Is

ESS(X ;) = SS(F) - SS(R) (34)
With r-1 degrees of freedom. The corresponding extra mean sum of squares is
ESS(X;)

EMS(X , )= —

(35)
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The significance of §,, the partial regression coefficient or effect X on the

criterion variable y is determined using the test statistic.

EMS(X
FX, =—MéE ) (36)

Which has r —1and n—r degrees of freedom for j=212,..r;where MSEis the error

mean square for the full model and ‘n’ is the total sample size.

An advantage of using dummy variable regression models in two factor and
multi factor analysis of variance is that the method enables the estimation of other
effects separately of several factors on a specified dependent or criterion variable. For
example it enables the estimation of the total or absolute effect, the partial regression
coefficient or the so-called direct effect of a given independent variable on the
dependent variable through the effects of its representative dummy variables as well as
the indirect effect of that parent independent variable through the meditation of other
parent independent variables in the model (Wright, 1934).

The total or absolute effect of a parent independent variable on a dependent
variable is estimated as the simple regression coefficient of that independent variable
represented by codes assigned to its various categories, when regressed on the
dependent variable. The direct effect of a parent independent variable on a dependent
variable is the weighted sum of the partial regression coefficients or effects of the
dummy variables representing that parent independent variable on the dependent
variable, where the weights are the simple regression coefficients of each representative
dummy variable regressing on the specified parent independent variable represented by
codes. The indirect effect of a given parent independent variable on a dependent
variable is then simply the difference between its total and direct effects (Wright 1973).
Now the direct effect or partial regression coefficient of a given parent independent
variable A say on a dependent variable Y is obtained by taking the partial derivative of
the expected value of the corresponding regression model with respect to that parent
independent variable. Thus the direct effect of the parent independent variable A on
the dependent variable Y is obtained from Equation 7 as

. i at dE CA dE(x,,;Z
,BAdII'— (y|J) Z X|| )+Zﬂg,z ( g ) OR
= d, 3 dA
B a-l ( )
Badir = Zﬁw (37)
dE(xig :Z)
Since Zﬂg;szo, for all other independent variables Z in the model
g
different from A.
dE(X, .
The weight, «,; A=%i$ estimated by fitting a simple regression line of the

dummy variable Xx,., regressing on its parent independent variable, A represented by

codes and taking the derivative of its expected value with respect to A, Thus if the
expected value of the dummy variable x;., regressing on its parent independent

variable A is expressed as
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Then the derivative of E(x“; A) with respect to A is

dE(x, »)
T (&)
Hence using Equation 39 in Equation 37 gives the direct effect of the parent
independent variable A on the dependent variable Y as

a-1
Pagr = Zam Biia (40)
1=1
Whose sample estimate is from Equation 12
R a-1
Bage =Bagie = ZaI;A'bI;A (41)
1=1

The total or absolute effect of A on Y is estimated as the simple regression
coefficient or effect of the parent independent variable A represented by codes on the
dependent variable Y as

ﬂA A =D4 (42)
Where b,is the estimated simple regression coefficient or effect of A on Y. The

indirect effect of A on Y is estimated as the difference between b, and b,y that is as

B Aind — bAind = bA - bAdir (43)

The total, direct and indirect effects of factor B are similarly estimated. These
results clearly give additional useful information on the effects of given factors on a
specified dependent or criterion variable than would the traditional two factor analysis
of variance model.

[1. [LLUSTRATIVE EXAMPLE

In a study of Encephalitic and Meningitic brain damage each of a random sample
of 36 patients is given a battery of tests on mental acuity recording a composite score
for each patient. Low scores on this composite measure indicate some degree of brain
damage. The patients are divided into 3 groups according to the predisposing factor of
initial infection and into 3crossed groups according to time to observed physical
recovery from the illness. A control group of other mental patients are similarly studied
with the following results. (Table 3)

Table 3 : Mental acuity of sample data of patients with diagnosed metal illness by
factor and time to recovery.

Time to Recovery (B)

Predisposing factor (A) |1 -2 years (1) | 3 -5 years (2) | 7 — 10 years (3)
Encephalitis (1) 76 73 69 53 59, 43

75 62 72 41 57, 55
Meningitis (2) 81 89 82 70 68 50

83 91, 74 75 75 47
Other (Control (3) 75 79 84 85 98 100

65 63 76 87 82 79

Do there seem to be significant differences in performance among the
encephalitic, meningitic and other (control) patients? Among patients according to time
to recovery? Is there any interaction between predisposing factor of illness and time to
recovery of patients?

To answer these questions using dummy variable multiple regression analysis or
model, we represent the predisposing factor here called factor A which has three levels
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with two dummy variables of Is and Os namely x; , for (1) Encephalitis and x,,, for (2)
Meningitis. Time to recovery here called factor B also with three levels is represented

by two dummy variables of Is and Os namely x;, 5 for (1) 1 — 2 years and x5 for (2) 3 —
5 years. The interaction terms are represented by the cross products of these dummy

variables namely Xi; =Xy a-Xip5: Xia:= Xiza-Xi251 Xis = Xipp-Xizg AN Xjg = X5 0 X fOr i=1,2..36
yielding the design matrix of Table 4.
Table 4 : Design Matrix X for the Data of Table 3

Notes

Yii Xic Xiza Xi2za Xz X2 X3 Xi4 X5 Xig
\ \ \ \
(XiL'A'Xil;B) (Xi];A'XiZ;B) (XiZ;A'Xil;B) (XiZ;A'XiZ;B)

76
73
75
62
69
53
72
59
43
10. 41
11. 57
12. 55
13. 81
14. 89
15. 83
16. 82
17. 70
18. 91
19. 74
20. 75
21. 68
22. 50
23. 75
24. 47
25. 75
26. 79
27. 84
28. 65
29. 63
30. 85
31. 76
32. 87
33. 98
34. 100
35. 82
36. 79

CoNoUA~AWDNE

PRRPRRPRRRPRRPRPRRPRPRRPRRPRPRRPRPRREPRPRPRRPEPRPRREPRPRREPRRREPRRERRRER
OO0 00000O0O00O0O0O0OO0O0O0O0O0OO0O0O0OO0ORRRERRRRERRERLRRER
OO0OO0O0O0OO0OO0OO0OO0OO0OO0OORRRRPRPRRREPRPRRREPRLRRPOOODODOOOOOOOOO
PR RPRRPRRPRRPRRPROOOOROO0OO0OO0OO0O0O0OO0OORRRPROO0OO0ODO0OO0OO0OOORRERER
OO0OO0OO0ORRPRROOO0OO0OO0OO0OO0OO0OORRRPRRLRRPROOO0OO0OO0OO0OO0OORRLRRPROOOO
locNeoNeoNoNoNoloNoNoloNeoNoloNoRoNoNoloNeoNoloNoRoNoNoloNeNoNoNoRo Ne W El SNy
lcNoNoNoNoNololoNoloNeRoloNoRoNoNoloNeNoloNoloNeNoloNeRoNao NSNS Yoo NoNo)
leNoNoNoNoNooloNoNoNoNoloNoNolcNoNoNoNo oSN oo NoRoNoNoNoNoNoloNo No)
lcNeoNeoNoNoNoNoloNoNoNeRoloNeRo N oW ryty YoloNeo oo oo NoNoNoNoNo o NoNo)

Fitting the full model of Eqn 10 using the design matrix X of table 4, we obtain
the fitted regression equation

§i; =83.642 — 32.642X,,,, —18.726X,,, —10.442X,,.5 + 7.168X 5 — 30.942x,,

a4
+6.499x,, + 29.860x,, + 2.383x,, (Pvalue=0.0000) 49
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A P-value of 0.0000 clearly shows that the model fits.
The expected score by patients on the mental acuity test by predisposing factor
(factor A), is obtained by setting x;,., = X;,, = 1, and all other x;;, = 0 in equation (44)

giving

Y, =83.642-32.642-18.726=32.274

The estimated response or score on the mental acuity test by length of time to

Table 5 : Anova Table for the Full Model of Equation (44)

observed physical recovery is similarly estimated by setting
X185 = Xi2g =1 and all other X, =0in Equation (44) yielding

§,, =83.64210.442 + 7.168 = 80.368

The corresponding analysis of variance table for the full model is presented in Table 5.

Source of | Sum of Squares | Degrees of freedom | Mean Sum of | F-Ratio | P-Value
Variation (SS) (Di) Squares (MS)

Regression 4597.321 8 574.665 5.468 0.0000
(treatment)

Error 2837.652 27 105.098

Total 7434.972 35

Having fitted the full model which is here

seen to fit, we now proceed to fit the

dependent variably y separately on each of the sub matrices X, and X3 each with two
dummy variables of Is and Os and X,; with four dummy variables of Is and 0Os as
reduced models to obtain the corresponding sum of squares due to each of these factors.
The sums of squares due to factor A, B and A by B interaction are calculated following
Equation (24). The results are summarized in a two factor analysis of variance Table
with extra sums of squares (Table 6)

Table 6 : Two factor Analysis of Variance Table with Extra Sums of Squares for the
Sample Data of Table 3

Source of Sum of Degrees Mean of F- Extra Degrees  Extra F- Critical
Variation = Squares  of sum of Ratio  Sum of of mean Ratio F
(SS) freedom  squares Squares freedom sum of value
(Df) MS (ESS) (Df) squares P-
(EMS) value
Full Model
Regression  4597.321 8 574.665  5.468 4597.321 8 574.665 5.468  3.030
Error 2837.652 27 105.098 2837.652 27 105.098
Factor A
Regression 2413.556 2 1206.778  7.931 2183.765 6 363.963 3.463  2.46
Error 5021.417 33 152.164 2837.652 6 472.942
Factor B
Regression  817.650 2 408.825  2.039 3779.671 6 629.945 1.096  2.46
Error 6617.322 33 200.525 -3779.67 6 -629.95
Factor A
by B
Interaction
Regression  624.201 4 156.050  0.710 3973.12 4 993.28 1.728  2.73
Error 6810.771 31 219.702 -3973.12 4 -993.23
Total 7434.972 35 7434.972 35

Note: * indicates statistical significance at the 5 percent level

© 2014 Global Journals Inc. (US)

Global Journal of Science Frontier Research (F) Volume XIV Issue VI Version I E Year 2014



Global Journal of Science Frontier Research (F ) Volume XIV Issue VI Version I E Year 2014

These analyses indicate that the hypothesized model fits, that is that not all the
factor level effects are zero. Furthermore, there does not seem to exist any significant
interaction between predisposing factor of illness A and time to observed physical
recovery B. However only the predisposing factor of illness A is seen to have significant
effect on the criterion variable Y namely patient composite score on mental acuity.

Finally to estimate the direct effect or partial regression coefficient of A, say,
represented by the dummy variables x;,, and x;,,, we first estimate the simple
regression coefficient resulting when theses dummy variables are each regressed on A
using Equation 39, yielding.

Qypp = —% =-05a,,=0

Using these results with Equation (44) in (41), we obtain an estimate of the direct effect
of Aon 'y as

b,dir = (- 0.5)-32.642) + (0)(— 10.442) = 16.321

The estimated simple regression coefficient or effect of A on y is b, = 9.917
Hence the estimated indirect effect of A on’y’ is from Equation (43)

b,ind =9.917 -16.321= -6.404

The absolute, direct and indirect effects of B on 'y’ are similarly estimated.

V. SUMMARY AND CONCLUSION

We have in this paper proposed and developed a method that enabled the use of
dummy variable multiple regression techniques for the analysis of data appropriate for
use with two factor analysis of variance models with unequal observations per
treatment combination and with interactions. The proposed model and method
employed the extra sum of squares principle to develop appropriate test statistics of F
ratios to test for the significance of factor and interaction effects.

The method which was illustrated with some sample data was shown to yield
essentially the same results as would the traditional two factor analysis of variance
model with unequal observations per cell and interaction. However the proposed
method is more generalized in its use than the traditional method since it can easily be
used in the analysis of two-factor models with one observation, equal, and unequal
observations per cell as a rather unified analysis of variance problem.

Furthermore unlike the traditional analysis of variance models the proposed
method is able to enable one using the extra sum of squares principle, to determine the
relative contributions of independent variables or some combinations of these variables
in explaining variations in a given dependent variable and hence build a more
parsimonious explanatory model for any variable of interest. In addition, the method
enables the simultaneous estimation of the total or absolute, direct and indirect effects
of a given independent variable on a dependent variable, which provide additional

useful information.
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