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Abstract- This paper proposes and presents a method that would enable the use of dummy variable 
multiple regression techniques for the analysis of sample data appropriate for analysis with the traditional 
two factor analysis of variance techniques with one, equal and unequal replications per treatment 
combination and with interaction. 

The proposed method, applying the extra sum of squares principle develops F ratio-test statistics 
for testing the significance of factor and interaction effects in analysis of variance models. The method 
also shows how using the extra sum of squares principle to build more parsimonious explanatory models 
for dependent or criterion variables of interest. 

In addition, unlike the traditional approach with analysis of variance models the proposed method 
easily enables the simultaneous estimation of total or absolute and the so-called direct and indirect 
effects of independent or explanatory variables on given criterion variables. The proposed methods are 
illustrated with some sample data and shown to yield essentially the same results as would the two factor 
analysis of variance techniques when the later methods are equally applicable.        

Keywords: dummy variable regression, Analysis of variance, degrees of freedom, treatment, 
regression coefficient.. 

 
 
 TwoFactorAnalysisofVarianceandDummyVariableMultipleRegressionModels

 
 

 Strictly as per the compliance and regulations of
 

:
 

 
 
 

 

GJSFR-F Classification : MSC 2010: 62J05



 
 
 

Two Factor Analysis of Variance and Dummy 
Variable Multiple Regression Models 

Oyeka ICA α & Okeh UM σ 

Abstract- This paper proposes and presents a method that would enable the use of dummy variable multiple regression 
techniques for the analysis of sample data appropriate for analysis with the traditional two factor analysis of variance 
techniques with one, equal and unequal replications per treatment combination and with interaction. 

The proposed method, applying the extra sum of squares principle develops F ratio-test statistics for testing 
the significance of factor and interaction effects in analysis of variance models. The method also shows how using the 
extra sum of squares principle to build more parsimonious explanatory models for dependent or criterion variables of 
interest. 

In addition, unlike the traditional approach with analysis of variance models the proposed method easily 
enables the simultaneous estimation of total or absolute and the so-called direct and indirect effects of independent or 
explanatory variables on given criterion variables. The proposed methods are illustrated with some sample data and 
shown to yield essentially the same results as would the two factor analysis of variance techniques when the later 
methods are equally applicable.  
Keywords: dummy variable regression, Analysis of variance, degrees of freedom, treatment, regression 
coefficient. 

I. Introduction 

Analysis of variance and regression analysis whether single-factor or multi-factor, 
sometimes both in theory and applications have often been treated and presented as 
rather different concepts by various authors. In fact only limited attempts seem to have 
been made to present analysis of variance as a regression problem (Draper and Smith, 
1966; Neter and Wasserman, 1974). 

Nonetheless analysis of variance and regression analysis are actually similar 
concepts, especially when analysis of variance is presented from the perspective of 
dummy variable regression models. This is the focus of the present paper, which 
attempts to develop a method to use dummy variable multiple regression models and 

apply the “extra sum of squares principle” in the analysis of two-factor analysis of 
variance models with unequal replications per treatment combination as a multiple 
regression problem. 

II. The Proposed Method 

Regression techniques can be used for the analysis of data appropriate for two 

factor or two –way analysis of variance with replications and possible interactions. This 
approach is a more efficient method than the method of unweighted means discussed in 
Oyeka et al (2012). 
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In a two factor analysis of variance involving factors A and B with interactions 
between these two factors, as discussed in Oyeka (2013), the resulting model is   

( )1iljljjlilj ey ++++= λβαµ  

Where iljy is the  observation or response at the level of factor A and 

level of factor B; µ  is the grand or overall mean, lα is the effect of the level of 

factor A, jβ is the effect of the  level of factor B; ljλ is the interaction effect between 

the level of factor A and level of factor B; ilje are independent and normally 

distributed error terms with constant variance, for  the ‘a’  levels 

of factor A;  the ‘b’  levels of factor B, subject  to  the  constraints  

( )∑ ∑ ∑ ∑
= = = =

====
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l

b

j

a

l

b

j
ljljji

1 1 1 1
20λλβα  

Let  ∑∑
= =

=
a

l

b

j
ijnn

1 1
be the total sample size or observations for use in the analysis.  

To obtain a dummy variable regression model of 1s and 0s equivalent to  
equation 1 and also subject to the constraints imposed on the parameters by equation 2, 
we would as usual use for each factor one dummy variable of 1s and 0s less than the 
number of levels, classes, or categories that factor has (Boyle 1974). Similarly the 
interaction effects will be factored in by taking the cross-products of the set of dummy 
variables representing one of the  factors with the set of dummy variables representing 

the other factor. Thus factor A with ‘a’  levels will be represented by a-1 dummy 

variables of 1s and 0s, factor B with ‘b’  levels will be represented by b-1 dummy 
variables of 1s and 0s and the factors A by B interaction effects will be represented by 
(a-1)(b-1)dummy variables of 1s and 0s.Specifically to obtain the required dummy 
variables for factors A and B. we may define  
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Using these specifications we have that the dummy variable multiple regression 
model equivalent to the two factor analysis of variance model of equation 1 is

 

 

( )( ) ( )( ) iljbaibai

IilBibBbBiBBiBAiaAaAiAAiAilj

eIxIIxI

IxIxxxxxxy

++++

+++++++++=

−−−−

−−−−

;.:...;.;

;.;;.;....;......

111122

111;22;1;1;1;1;2.;2;1;10

ββ

ββββββββ  

OR when more compactly expressed

 

( )






= 3
,0

,,1
; otherwise

Afactoroflevelltheatisyresponseornobservatioitheif
x

th
ilj

th

Ail

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Notes

© 2014   Global Journals Inc.  (US)

42

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IV

 I
ss
ue

  
  
  
er

sio
n 

I
V

V
I

Ye
ar

20
14

  
 

F
)

)

Two Factor Analysis of Variance and Dummy Variable Multiple Regression Models

  i th l th

l th

l th

i =1,2..nij, ɩ = 1,2…a,

j = 1,2…b,

j th

j th

j th



( )5;...
1

1

1

1

)1)(1(

1
;;;;;0 ∑ ∑ ∑

−

=

−

=

−−

=

++++=
a

l

b

j

ba

k
iljikIkBijBjAilAlilj eIxxxy ββββ

Where the sβ are partial regression coefficients and ije are independent and 

normally distributed error terms with constant variance with 

The expected value of iljy of Equation (5) is  

( ) ( )6;...
1

1

1

1

)1)(1(

1
;;;;;0 ∑ ∑ ∑

−

=

−

=

−−

=

+++=
a

l

b

j

ba

k
ikkBijBjAilAlilj IxIxxyE ββββ

Note that the interaction terms may be more completely represented as 

ljijkijilBijAilik ABIandxxxxIx βββ ==== :;;.. ::;

For

Hence Equation 6 may alternatively be expressed as
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Now the mean value or mean response in the language of analysis of variance at 

the level factor A and level of factor B is obtained by setting 1:; ==
BijAil xx the 

for all ‘g’not equal to in Equation (7) to obtain   

For

Similarly the mean response or mean of the criterion variable at the level of 

factor A is obtained by setting ;A=1 and all other while  the mean 

response at the level of factor B is obtained by setting  and all other  

in Equati on (6) giving 

For 
These are the same results that are obtained using conventional two factor 

analysis of variance methods. The partial regression parameter : A is as usual 

interpreted as the change in the dependent variable ‘Y’ percent change in the level 
of factor A compared with all its other levels holding the levels of all other independent 

variables in the model constant; : B is similarly interpreted. The interaction effect 

is interpreted as the dependent variable Y per unit change at the level of factor A 
thcj level of the change at the level of factor B confounded by or in the presence of 

the effect of the level of factor B ( level of factor A).
Now Equation 5 can be more compactly expressed in matrix form as 

( )10eXy += β

I.
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( ) ( )11.βXyE =

 Note that use of Equations 3-5 or 10 makes it unnecessary, at least for the fixed 
effects model of primary interest here, to treat one observation per cell, equal and 
unequal observations per cell in two factor analysis of variance problems differently. 
The same dummy variable regression models can be used in all these cases except that 
in the case of one observation per cell where it is not possible to calculate the error sum 
of squares and hence the corresponding error mean square, the interaction mean square 
is instead used in all tests.  

Use of the usual least squares methods with either Equations (5) or (10) yields 
unbiased estimates of the partial regression parameters which again expressed in matrix 
form is  

( )12'.)'(ˆ 1 yXXXb −==β  

Where 1)'( −XX  is the matrix inverse of the non singular variance-covariance 

matrix XX ' .  
The resulting estimated or fitted value of the response or dependent variable is  

( )13.ˆ bXy =  

In the conventional two factor analysis of variance a null hypothesis that is 
usually of interest first is that treatment means are equal for all treatment 
combinations. In the dummy variable regression approach an equivalent null hypothesis 
would be that the specified model that is either Equations (5) or (10) fits. This null 
hypothesis when expressed in terms of the regression parameters would be  

( )140:0: 1 ≠= ββ HversusH o  

This null hypothesis is tested using the usual testF  presented in the familiar 

analysis of variance table where the required sums of squares are obtained as follows:-  
The total sum of squares is as usual calculated as  

( )15' 2ynyySSSS TotTotal −==  

Which has the chi-square distribution with 1−n degrees of freedom where y is 

the mean of the criterion or dependent variable. The sum of squares regression or the 
so-called treatment sum of squares in analysis of variance parlance is  

( )16''. 2ynyXbSSTSSR −==
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Which has the chi-square distribution with 1. −= bar degrees of freedom. Similarly the 
error sum of squares is 

Where y is an column vector of response outcomes or values of the 

criterion or dependent variable; X is an design matrix of 1s and 0s; β is an 

column vector of partial regression parameters and e is an column vector of 

normally  distributed error terms with constant variance with ( ) 0=eE ,where

representing the number of dummy variables of 1s and 0s in the model.
The corresponding expected value of the criterion variable equivalent to Equation (6) is

nx1

nxr rx1

nx1

 r=a.b -1



 
( )17''.' yXbyySSRSSSSE Total −=−=

 
With ( 1−n )-( 1. −ba ) = ban .− degrees of freedom.

 

These results may be summarized in an analysis of variance Table (Table 1)

 
Table 1:

 

Analysis of variance table for regression model of Equation (10)

 
Source of 
Variation

 

Sum of Squares 

 

(SS)

 

Degrees of 
Freedom (DF)

 

Mean sum of 
Squares (MS)

 

F-Ratio

 
Regression  
(treatment)

 

2.'' ynyXbSSTSSR −==

 

1. −ba

 

MSR=

 

F=

 

Error

 

yXbyySSE ''' −=

 

ban .−

 

MSE=

 
 

Total

 

2.' ynyySSToat −=

 

1−n

   
The null hypothesis of Equation 4 is rejected at the level of significance if the 

calculated ratioF − of Table 1 is such that

 
( )18.,1.;1 banFF ba −≥ −−α

 
Otherwise the null hypothesis is accepted.

 
If the model fits, that is if the null hypothesis of Equation

 

(14) is rejected, in 
which case not all the regression parameters are equal to zero, then one can proceed to 
test other null hypothesis concerning factors A and B level effects as well as factors A 
by B interaction effects. Thus additional null hypothesis

 

that may be tested are that 
factor A has no effects on the criterion variable; factor B has no effects on the criterion 
variable; and that there are no factors A by B interaction effects. Stated notation ally 
the null hypotheses are  

 
0:0 =

AAH β

 

Versus

 

( )190:1 ≠
AAH β

 
0:0 =

BBH β

 

Versus

 

( )200:1 ≠
BBH β

 
0:0 =

ABABH β

 

Versus  ( )210:1 ≠
ABABH β

 
To test these hypotheses one needs to calculate the contribution of each factor 

separately to the treatment or regression sum of squares. The treatment or regression 
sum of squares SST in analysis of variance parlance which is the regression sum of 

squares SSR in regression models distributed as chi-square with degrees of 
freedom is made up of three sums of squares each having the chi-square distribution, 

namely the sum of squares due to row or factor A, SSA with 

 

degrees of freedom, 

the sum of squares due to column or factor B, SSB with 

 

degrees of freedom, and 
the row by column of factors A by B interaction sum of squares, SSAB with 

( )( ) degrees of freedom. Thus notationally we have that

 
( )22SSABSSBSSASSRSST ++==

 
To obtain these sums of squares we note that the design matrix X of Equation 

(10) with

 

dummy variables 0s and 1s because of 0s and 1s of dummy variables 

I.
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of 1s and 0s can be partitioned into three sub matrices namely an ( )1−× an matrix AX

of dummy variables representing the included levels of factor A, the 



 

 

  

1−b included levels of factor B; and the ( )( )11 −−× ban matrix ABX of ( )( )11 −− ba

 

dummy variable of 1s and 0s representing interaction between factors A and B .

 

The ( ) 11 ×−ab column vector of estimated partial regression coefficients b can be 

similarly partitioned into the corresponding ( ) 11 ×−a column vector b A of effects due to 

factor A; the ( ) 11 ×−b column vector of b B of effects due to factor B and the 

( )( ) 111 ×−− ba column vector ABb

 

of effects due to factors A by B interaction. Now the 

sum of squares yXb .. ′′

 

of Equation (16) may hence equivalently be expressed as

  ( ) (( ) ) y
b
b
b

XXXybXyXb

AB

B

A

ABBA
′
















== '..''

 OR

 

( )23.'.'.'.'.'.''' yXbyXbyXbyXb ABABBBAA ++=

 

The sum of squares regression or the treatment sum of squares, SSTSSR = of the 
full model of Equation 10 is 

 
( ) ( ) ( ) ( )

( )
( )factoradjustment

meanSSABSSBSSASSTSSR

ynynyXbynyXbynyXbynyXbSSR ABABBBAA

+++=

+−+−+−=−= 24..2..'.'..'.'..'.'.'.'. 22222

 

Now to find the required sums of squares after fitting the full regression model of 
Equation (10) one then proceeds to fit, that is regress the dependent variable y

 

separately as reduced models on ABBA XandXX

 

to obtain using the usual least square 

methods, the three terms of Equation (20) or (24). Now the sums of squares and the 
corresponding estimated regression coefficients on the right hand side of Equation (24) 

are obtained by fitting reduced regression models separately of ABBA XandXX ,

 

as 

reduced design matrices. That is the dependent variable y is separately fitted, that is 

regressed on each of the reduced design matrices ABBA XandXX , .

 

These regression models would yield estimates of the corresponding reduced 

partial regression parameters, 
ABBA

and βββ ,

 

as respectively 

 
( ) ( ) ( ) ( )25.'..'ˆ;.'..'ˆ;.'..'ˆ 111 yXXXbyXXXbyXXXb ABABABABABBBBBBAAAAA

−−− ====== βββ

 

If the full model of Equation (10) fits, that is if the null hypothesis of Equation 
(14) is rejected, then the additional null hypothesis of Equations 19-21 may be tested 
using the extra sum of squares principle (Drapa and Smith, 1966). If we denote the sum 
of squares

 

due to the full model of Equation (10) and the reduced models due to the 
fitting of the criterion variable y 

( ) ( ),RSSandFSS
 

to any of the reduced design matrices by 

respectively then following the extra sum of squares principle (Draper 

and Smith, 1966;Neter and Wasserman 1974), the extra sum of squares due to a given 
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( )1−× bn matrix BX comprising 1−b dummy variables of 1s and 0s representing the 

factor is calculated as ( ) ( )RSSFSSESS −= Equation (26)with degrees of  freedom 

obtained as the difference between the degrees of freedom of  ( ) ( )RSSandFSS . That is
as 



 

 

( )27)()( RdfFdfEdf −=

 

Thus the extra sums of squares for factors A, B and A by B interaction are 
obtained as respectively

 

( )28;; SSABSSRESSABSSBSSRESSBSSASSRESSA −=−=−=

With degrees of freedom of respectively

 

( )292)1)(1()1();1()1()1();1()1()1( −+=−−−−−=−−−−=−−− babaababbabbaaab

 

Note that since each of the reduced models and the full model have the same 

total sum of squares, TotSS ,the extra sum of squares may alternatively be obtained as the 

difference between the error sum of squares of each reduced model and the error sum of 
squares of the full model.  In other words the extra sum of squares is equivalently 
calculated as

 

( )30)()())(())(()()( FSSERSSERSSSSFSSSSRSSFSSESS TotTot −=−−−=−=

With the degrees of freedom similarly obtained as

 

( )31)()( FSSEdfRSSEdfEdf −=

 

 

Thus the extra sums of squares due to factors A, B and A by B interaction are 
alternatively obtained as

 

( )32;; SSESSEABESSABSSESSEAESSBSSESSEAESSA −=−=−=

 

Where SSR

 

and SSE

 

are respectively the regression sum of squares and the 
error sum of squares for the full model. The null hypothesis of Equations (19) -

 

(21) are 
tested using the F ratios as summarized in Table 2 which for completeness also includes 
the values of Table 1 for the full model. 
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Note that the F ratios of Table 2 are each the ratio of the extra mean sum of 
squares of the corresponding reduced model to the mean sum of squares of the full 

model. Where SSR is the regression sum of Squares with 1. −ba degrees of freedom, SSE 

is the error sum of Squares with ban .−  degrees of freedom and MSE is the mean error 
sum of Squares, all for the full model of Equation (10). The results of Table 2 are the 
same as would be obtained using the conventional two factor or two way analysis of 
variance with replications and interactions. Usually, the hypothesis of no interaction is 
tested first using the corresponding F ratio of Table 2. If the hypothesis of no 
interaction is accepted, then one may proceed to test the null hypotheses about factors 
A and B effects again using the corresponding F ratios of Table 2. If however the null 
hypothesis of no interaction is rejected, then one may use any of the familiar and 
appropriate methods of treating interactions and proceed with further analysis.  

Thus if the model of Equation (10) fits, that is if the null hypothesis of Equation 
(14) is rejected then the null hypotheses of Equations 19-21 of no factors A, B and A by 
B interaction are respectively tested using the corresponding test statistics (see Table 
2), namely 

( )33;;
MSE

EMSABF
MSE

EMSBF
MSE

EMSAF ABBA ===  

With numerator degrees of freedom of ( ) ( ),1,1 −− abba and 2−+ ba respectively 

and common denominator degrees of freedom of ban .− for use to obtain the necessary 

critical ratiosF − for comparative purposes for rejection or acceptance of the 
corresponding null hypothesis. 

Note that in general whether or not the independent or explanatory variables 
used in a regression model are dummy variables or numeric measurements, the extra 
sum of squares principle is most useful in determining the contribution of an 
independent variable or a subset of the independent variables among all the 
independent variables in the model in explaining the variation of a specified dependent 
on criterion variable. This would inform the inclusion or exclusion of the independent 
variable or the subset of the independent variables in the hypothesized model depending 
on the significance of the contribution. 

Thus the extra sum of squares principle enables one select important variables 
and formulate a more parsimonious statistical model of explanatory variables for a 
dependent variable of interest. To do this, for example, for one independent variable 

,jX included in a regression model with say a total of '' r independent variables, over fits 

the full model with all the independent variables and reduced model with only one 

independent variable jAX .Suppose as discussed earlier that the regression sums of 

squares for the full model and the reduced model are respectively )()( RSSandFSS  

which have degrees of freedom of ''r and 1 respectively. Then from Equation (28) the 

extra sum of squares regression with respect to jX is 

 ( )34)()()( RSSFSSXESS j −=   

With r-1 degrees of freedom. The corresponding extra mean sum of squares is 

( ) ( )35
1

)(
−

=
r

XESS
XEMS j

j
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The significance of jβ , the partial regression coefficient or effect jX on the 

criterion variable y is determined using the test statistic.  

( )36
)(

MSE
XEMS

FX j
j =

 
Which has 1−r and rn − degrees of freedom for ;,...2,1 rj = where MSE is the error 

mean square for the full model and ‘n’  is the total sample size.  
An advantage of using dummy variable regression models in two factor and 

multi factor analysis of variance is that the method enables the estimation of other 
effects separately of several factors on a specified dependent or criterion variable. For 
example it enables the estimation of the total or absolute effect, the partial regression 
coefficient or the so-called direct effect of a given independent variable on the 
dependent variable through the effects of its representative dummy variables as well as 
the indirect effect of that parent independent variable through the meditation of other 
parent independent variables in the model (Wright, 1934).  

The total or absolute effect of a parent independent variable on a dependent 
variable is estimated as the simple regression coefficient of that independent variable 
represented by codes assigned to its various categories, when regressed on the 
dependent variable. The direct effect of a parent independent variable on a dependent 
variable is the weighted sum of the partial regression coefficients or effects of the 
dummy variables representing that parent independent variable on the dependent 
variable, where the weights are the simple regression coefficients of each representative 
dummy variable regressing on the specified parent independent variable represented by 
codes. The indirect effect of a given parent independent variable on a dependent 
variable is then simply the difference between its total and direct effects (Wright 1973). 
Now the direct effect or partial regression coefficient of a given parent independent 
variable A say on a dependent variable Y is obtained by taking the partial derivative of 
the expected value of the corresponding regression model with respect to that parent 
independent variable. Thus the direct effect of the parent independent variable A on 
the dependent variable Y is obtained from Equation 7 as  

( ) ( ) ( )
OR

dA
ZxdE

Z
d

AxdE
A

d
ydE

dir
g

ig
g

A

il
a

l
l

A

ilj
A ∑∑ +==

−

=

;
;

;
.;

1

1
βββ          

( ) ( )37; ;
1

1 dA
xdE

Adir Ail
a

l
lA ∑

−

=

= ββ  

Since 
( )

,0
:

; =∑ dA
ZxdE

Z ig

g
gβ for all other independent variables Z in the model 

different from A.  

The weight,  
( )
dA
xdE

A Ail
l

;; =α is estimated by fitting a simple regression line of the 

dummy variable Ailx ;  regressing on its parent independent variable, A represented by 

codes and taking the derivative of its expected value with respect to A, Thus if the 

expected value of the dummy variable Ailx ;  regressing on its parent independent 

variable A is expressed as   
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 Then the derivative of  ( )AilxE ;

 
with respect to A is 

  ( ) ( )39;
;

Aj
Ail

dA
xdE

α=                
 

Hence using Equation 39 in Equation 37 gives the direct effect of the parent 
independent variable A on the dependent variable Y as 

 
( )40.

1

1
;;∑

−

=

=
a

l
AlAlAdir l

βαβ     
 

Whose sample estimate is from Equation 12
 

( )41.ˆ
;

1

1
; Al

a

l
AlAdirAdir bb ∑

−

=

== αβ     
 

The total or absolute effect of A on Y is estimated as the simple regression 
coefficient or effect of the parent independent variable A represented by codes on the 
dependent variable Y as

 ( )42ˆ
AA b=β          

 
Where Ab is the estimated simple regression coefficient or effect of A on Y. The 

indirect effect of A on Y is estimated as the difference between Ab
 
and ,Adirb that is as 

 
( )43ˆ

AdirAAindAind bbb −==β
 
    

               
The total, direct and indirect effects of factor B are similarly estimated. These 

results clearly give additional useful information on the effects of  given factors on a 
specified dependent or criterion variable than would the traditional two factor analysis 
of variance model. 

 
III.

 
Illustrative Example

 
In a study of Encephalitic and Meningitic brain damage each of a random sample 

of 36 patients is given a battery of tests on mental acuity recording a composite score 
for each patient. Low scores on this composite measure indicate some degree of brain 
damage. The patients are divided into 3 groups according to the predisposing factor of 
initial infection and into 3crossed groups according to time to observed physical 
recovery from the illness. A control group of other mental patients are similarly studied 
with the following results. (Table 3)

 
Table 3

 
:
 
Mental acuity of sample data of patients with diagnosed metal illness

 
by 

factor and time to recovery.
 

 
Time to Recovery (B)

 Predisposing factor
 
(A)

 
1 –

 
2 years

 
(1)

 
3 –

 
5 years

 
(2)

 
7 –

 
10 years

 
(3)

 Encephalitis
 
(1)

 
76  73

 75  62
 

69  53
 72

 

59,  43
 41  57,  55

 Meningitis
 
(2)

 
81  89

 83
 

82  70
 91,  74  75

 

68  50
 75  47
 Other

 
(Control (3)

 
75  79  84

 65  63
 

85
 76  87

 

98  100
 82  79

 
Do there seem to be significant differences in performance among the 

encephalitic, meningitic and other (control) patients? Among patients according to time 
to recovery? Is there any interaction between predisposing factor of illness and time to 
recovery of patients?
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To answer these questions using dummy variable multiple regression analysis or 
model, we represent the predisposing factor here called factor A which has three levels 



with two dummy variables of Is and Os namely xi1.A

 

for (1) Encephalitis and x12;A

 

for (2) 
Meningitis. Time to recovery here called factor B also with three levels is represented 

by two dummy variables of Is and 0s namely xi1;B

 

for (1) 1 –

 

2 years and xi2;B

 

for (2) 3 –

 
5 years. The interaction terms are represented by the cross products of these dummy 

variables namely

 

36...2,1..;.;;. ;2.;26;1;25;2;14;2;13 ===== iforxxxandxxxxxxxxx BiAiiBiBiiBiAiiBiAii

 
yielding the design matrix of Table 4.

 Table 4

 

:

 

Design Matrix X for the Data of Table 3

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S/
N iljy 0ix Aix ;1 Aix ;2 Bix ;1 Bix ;2

( )BiAi

i

xx
x

;1;1

3

. ( )BiAi

i

xx
x

;2;1

4

. ( )BiAi

i

xx
x

;1;2

5

. ( )BiAi

i

xx
x

;2;2

6

.

1. 76 1 1 0 1 0 1 0 0 0
2. 73 1 1 0 1 0 1 0 0 0
3. 75 1 1 0 1 0 1 0 0 0
4. 62 1 1 0 1 0 1 0 0 0
5. 69 1 1 0 0 1 0 1 0 0
6. 53 1 1 0 0 1 0 1 0 0
7. 72 1 1 0 0 1 0 1 0 0
8. 59 1 1 0 0 0 0 0 0 0
9. 43 1 1 0 0 0 0 0 0 0
10. 41 1 1 0 0 0 0 0 0 0
11. 57 1 1 0 0 0 0 0 0 0
12. 55 1 1 0 0 0 0 0 0 0
13. 81 1 0 1 1 0 0 0 1 0
14. 89 1 0 1 1 0 0 0 1 0
15. 83 1 0 1 1 0 0 0 1 0
16. 82 1 0 1 0 1 0 0 0 1
17. 70 1 0 1 0 1 0 0 0 1
18. 91 1 0 1 0 1 0 0 0 1
19. 74 1 0 1 0 1 0 0 0 1
20. 75 1 0 1 0 1 0 0 0 1
21. 68 1 0 1 0 0 0 0 0 0
22. 50 1 0 1 0 0 0 0 0 0
23. 75 1 0 1 0 0 0 0 0 0
24. 47 1 0 1 0 0 0 0 0 0
25. 75 1 0 0 1 0 0 0 0 0
26. 79 1 0 0 0 0 0 0 0 0
27. 84 1 0 0 0 0 0 0 0 0
28. 65 1 0 0 0 0 0 0 0 0
29. 63 1 0 0 0 0 0 0 0 0
30. 85 1 0 0 1 1 0 0 0 0
31. 76 1 0 0 1 1 0 0 0 0
32. 87 1 0 0 1 1 0 0 0 0
33. 98 1 0 0 1 0 0 0 0 0
34. 100 1 0 0 1 0 0 0 0 0
35. 82 1 0 0 1 0 0 0 0 0
36. 79 1 0 0 1 0 0 0 0 0
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–

–

–

Fitting the full model of Eqn 10 using the design matrix X of table 4, we obtain 
the fitted regression equation

)0000.0(383.2860.29499.6
942.30168.7442.10726.18642.32642.83ˆ

654

3;2;12;1

=+++

−+−−−=

Pvaluexxx
xxxxxy

iii

iBiBiAiAiilj    (44)



 

  

A P-value of 0.0000 clearly shows that the model fits.

 

The expected score by patients on the mental acuity test by predisposing factor 
(factor A), is obtained by setting xi1;A

 

= xi2;A

 

= 1, and all other xijs

 

= 0 in equation (44) 
giving

 

274.32726.18642.32642.83ˆ =−−=iljy

 

The estimated response or score on the mental acuity test by length of time to 

observed physical recovery is similarly estimated by setting

 

1;2;1 == BiBi xx

 

and all other 0=ilsx in Equation (44) yielding

 

368.80168.7442.10642.83ˆ =+−=iljy

 

The corresponding analysis of variance table for the full model is presented in Table 5.

 

Table 5 : Anova Table for the Full Model of Equation (44)

 

Source of 
Variation

 

Sum of Squares 
(SS)

 

Degrees of freedom 
(Df)

 

Mean Sum of 
Squares (MS)

 

F-Ratio

 

P-Value

 

Regression 
(treatment)

 

4597.321

 

8

 

574.665

 

5.468

 

0.0000

 

Error

 

2837.652

 

27

 

105.098

   

Total

 

7434.972

 

35

    

Having fitted the full model which is here seen to fit, we now proceed to fit the 
dependent variably y

 

separately on each of the sub matrices XA

 

and XB

 

each with two 
dummy variables of Is and 0s and XAB

 

with four dummy variables of Is and 0s as 
reduced models to obtain the corresponding sum of

 

squares due to each of these factors. 
The sums of squares due to factor A, B and A by B interaction are calculated following 
Equation (24). The results are summarized in a two factor analysis of variance Table 
with extra sums of squares (Table 6)

 

Table 6

 

: Two factor Analysis of Variance Table with Extra Sums of Squares for the 
Sample Data of Table 3

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 
Variation

Sum of
Squares 
(SS)

Degrees 
of 
freedom 
(Df)

Mean of 
sum of 
squares 
MS

F-
Ratio 

Extra 
Sum of 
Squares 
(ESS)

Degrees 
of 
freedom 
(Df)

Extra 
mean 
sum of 
squares 
(EMS)

F-
Ratio

Critical 
F 
value
P-
value

Full Model

Regression 4597.321      8 574.665 5.468 4597.321    8 574.665 5.468 3.030
Error 2837.652     27 105.098 2837.652   27 105.098

Factor A
Regression 2413.556      2 1206.778 7.931 2183.765     6 363.963 3.463 2.46
Error 5021.417     33 152.164 2837.652     6 472.942

Factor B
Regression 817.650       2 408.825 2.039 3779.671     6 629.945 1.096 2.46
Error 6617.322      33 200.525 -3779.67     6 -629.95
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Note: * indicates statistical significance at the 5 percent level

Factor A 
by B 
Interaction
Regression 624.201      4 156.050 0.710 3973.12    4 993.28 1.728 2.73
Error 6810.771     31 219.702 -3973.12    4 -993.23

Total 7434.972     35 7434.972    35



 

 

 

 

 

 

 

These analyses indicate that the hypothesized model fits, that is that not all the 

factor level effects are zero. Furthermore, there does not seem to exist any significant 

interaction between predisposing factor of illness A and time to observed physical 

recovery B. However only the predisposing factor of illness A is seen to have significant 

effect on the criterion variable Y namely patient composite score on mental acuity.

 

Finally to estimate the direct effect or partial regression coefficient of A, say, 

represented by the dummy variables xi1;A

 

and xi2;A, we first estimate the simple 

regression coefficient resulting when theses dummy variables are each regressed on A

 

using Equation 39, yielding.

 

   0;5.0
2
1

;2;1 =−=−= AA αα

 

Using these results with Equation (44) in (41), we obtain an estimate of the direct effect 
of A on ‘y’

 

as

 

( )( ) ( )( ) 321.16442.100642.325.0 =−+−−=dirbA

 

The estimated simple regression coefficient or effect of A on y is bA

 

= 9.917

 

Hence the estimated indirect effect of A on’y’

 

is from Equation (43)

 

404.6321.16917.9 −=−=indbA

 

The absolute, direct and indirect effects of B on ‘y’

 

are similarly estimated. 

 

IV.

 

Summary and Conclusion

 

We have in this paper proposed and developed a method that enabled the use of 

dummy variable multiple regression techniques for the analysis of data appropriate for 
use with two factor analysis of variance models with unequal observations per 

treatment combination and with interactions. The proposed model and method 

employed the extra sum of squares principle to develop appropriate test statistics of F 

ratios to test for the significance of factor and interaction effects.

 

The method which was illustrated with some sample data was shown to yield 
essentially the same results as would the traditional two factor analysis of variance 
model with unequal observations per cell and interaction. However the proposed 
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method is more generalized in its use than the traditional method since it can easily be 

used in the analysis of two-factor models with one observation, equal, and unequal 
observations per cell as a rather unified analysis of variance problem. 

Furthermore unlike the traditional analysis of variance models the proposed 

method is able to enable one using the extra sum of squares principle, to determine the 

relative contributions of independent variables or some combinations of these variables 
in explaining variations in a given dependent variable and hence build a more 

parsimonious explanatory model for any variable of interest. In addition, the method 

enables the simultaneous estimation of the total or absolute, direct and indirect effects 

of a given independent variable on a dependent variable, which provide  additional 

useful information.  
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