
Global Journal of Computer Science and Technology Vol. 10 Issue 9 Ver. 1.0 September 2010 P a g e |73

GJCST Computing Classification
B.5.2 C.m

Function Optimization Using Genetic Algorithm
By VHDL

1D.C. Dhubkarya , 2Deepak Nagariya, 3Jay Kumar,

Abstract- This paper presents the work regarding the

synthesis and implementation of a hardware genetic algorithm
utilizing very high speed integrated circuit hardware
description language (VHDL) for programming FPGAs.
Genetic Algorithms were invented to mimic some of the
processes observed in natural evolution. The idea with GA is to
use this power of evolution to solve optimization problems.
They are based on the principles of the evolution via natural
selection, employing a population of individuals that undergo
selection in the presence of variation-inducing operators such
as mutation and recombination (crossover). we solved the
problem with the help of hardware description language so it’s
take less time to find a result as compare to GA’s because of
HDL solve the problem by parallel processing. The present
work deals with implementation and optimization of De jong’s
first function.

Genetic algorithms need large memory banks to store the
intermediate results and this has made the hardware
implementation of GAs very inefficient but by using FPGA our
task become simpler. Field-Programmable Gate Arrays
(FPGAs) are flexible circuits that can be easily reconfigured by
the designer. The program is written in VHDL and compiled
with 32-Bit Microsoft Windows and implemented on a
Spartan-3A FPGA from Xilinx.
Keywords- Fitness function, Crossover, mutation, random
no, population, FPGA.

I. INTRODUCTION

A Genetic Algorithm is a search/optimization technique
inspired by biological processes such as Natural Selection
and Evolution. This project explores the application of such
techniques to Parameter optimization problems [17]. A
software framework was developed to store and manipulate
data representations. Each data representation is a candidate
solution to the problem being examined.
These candidates Solutions are grouped together into a
family/generation. Starting from generation zero (Initial
data), the algorithm iteratively processes each family
allowing solutions to ―breed‖, thus creating new candidate
solutions. By discarding weak solutions and favoring the
reproduction of strong ones the algorithm progressively
refines each generation, leading to successive generations
containing stronger solutions [10] we are using here
VHDL for solving the problem of population control and
these populations are randomly generated. So we use

1D.C. Dhubkarya , BIET Jhansi ,India , dcd3580@yahoo.com
2Deepak Nagariya, BIET Jhansi ,India , deepaknagaria@gmail.com
3Jay Kumar, FET RBSAgra,India, jaykumar_1981@yahoo.co.in

random bitgenerator here [7]. After thebit generation we
need optimal solution result and also need fitness function.
If you have above requirement than we select the best two
functions and crossover between them and find the best
result after finding the result we follow mutation operation if
you find the less value of result as compare to fitness
function then good otherwise you can follow these operation
again and again.The paper is organized as follows. In
section 2, an overview on Genetic Algorithm discussed in
Section 3 previous work in brief. Section 4, presents the
Hardware model Section 5 Simulation results and the paper
is concluded in section 6.

Figure (1) Evolution flow of genetic algorithm [13]

II. OVERVIEW OF GENETIC ALGORITHMS

Genetic algorithms (GAs) were invented by John Holland in
the 1960s and were developed by Holland and his students
and colleagues at the University of Michigan in the 1960s
and the 1970s. In contrast with evolution strategies and
evolutionary programming, Holland's original goal was not
to design algorithms to solve specific problems, but rather to
formally study the phenomenon of adaptation as it occurs in
nature and to develop ways in which the mechanisms of
natural adaptation might be imported into computer systems
[4]
Genetic Algorithms (GAs) are adaptive heuristic search
algorithm based on the evolutionary ideas of natural
selection and genetics. As such they represent an intelligent
exploitation of a random search used to solve optimization
problems. Although randomized, GAs are by no means
random, instead they exploit historical information to direct
the search into the region of better performance within the
search space. The basic techniques of the GAs are designed
to simulate processes in natural systems necessary for
evolution, specially those follow the principles first laid

mailto:dcd3580@yahoo.com
mailto:deepaknagaria@gmail.com

 Vol. 10 Issue 9 Ver.1.0 September 2010 P a g e | 74 Global Journal of Computer Science and Technology

down by Charles Darwin of "survival of the fittest.". Since
in nature, competition among individuals for scanty
resources results in the fittest individuals dominating over
the weaker ones. [11]
GAs simulates the survival of the fittest among individuals
over consecutive generation for solving a problem. Each
generation consists of a population of character strings that
are analogous to the chromosome that we see in our DNA.
Each individual represents a point in a search space and a
possible solution. The individuals in the population are then
made to go through a process of evolution. GAs is based on
an analogy with the genetic structure and behavior of
chromosomes within a population of individuals using the
following steps:

A. Random Number Generation

A linear feedback shift register (LFSR) is a shift register
whose input bit is a linear function of its previous state. The
only linear functions of single bits are xor and inverse-xor;
thus it is a shift register whose input bit is driven by the
exclusive-or of some bits of the overall shift register value.
The initial value of the LFSR is Called the seed, and
because the operation of the register is deterministic, the
sequence of values produced by the register is completely
determined by its current (or previous) state. Likewise,
because the register has a finite number of possible states, it
must eventually enter a repeating cycle. However, a LFSR
with a well-chosen feedback function can produce a
sequence of bits which appears random and which has a
very long cycle. [7]
LFSR has two parts shift register & feedback function. A
shift register is a device whose identifying function is to
shift its contents into adjacent positions within the register.
The feedback function is used in LFSR is XOR.[5]

B. Selection

Two chromosomes must be chosen from the population and
recombined to produce a pair of new genomes in the new
population for the next generation. Randomly choosing two
chromosomes would be undesirable, as poor solutions
would have an equal chance of being chosen as good
solutions. Instead, a method such as roulette wheel selection
is used. Roulette Wheel selection has been chosen for this
application [14]. This means that the chance of an
individual being chosen is proportional to its fitness.
Individuals are not removed from the source population, so
those with a high fitness will be chosen more times than
those with a low fitness.

C. Crossover

With a crossover probability cross over the parents to form a
new offspring (children). If no crossover was performed,
offspring is an exact copy of parents.[3]

Figure 2 Crossover

D. Mutation

With a mutation probability mutate new offspring at each
locus (position in chromosome)[3]

Figure 3 Mutation

III. RELATED WORK

There have been few reported studies on GA hardware
implementations, one AHDL description has been
announced in {10] but no performance estimations were
made. In hardware description of GAPA system containing
multiple FPGA chips and multiple digital signal processors
was given. In our work we have implemented a GA in
hardware using VHDL hardware description language and
simulated the performance of the system on FPGA chip [10]

IV. HARDWARE IMPLEMENTATION

Our hardware consists of a Pentium microprocessor 4 which
has high-speed PCI bus slots available. This is connected to
Xilinx‘s 3 family of FPGA chip. The population resides in
FPGA chip which are flexible RAM.

 Fig 4 Block diagram of model
Initial Parameters

i. Crossover Rate:100%
ii. Crossover Type: 1 Pt.
iii. Mutation Rate: 2.5%
iv. Population Size: 10
v. Chromosome Length : 40 bit

A. Random Number Generation
In this block all the component of these blocks working to
greater on the basic of clock pulse. Whenever we start the

Global Journal of Computer Science and Technology Vol. 10 Issue 9 Ver. 1.0 September 2010 P a g e |75

FPGA kit. These all the process depend upon the clock and
works as concurrently.
When the clock=0:- Random bit initialized the bit first bit
between 0 and one and these bit passes to the solution string
block after one clock delay.
When the clock =1:-New random bit generate for the next
solution string and solution string passes to the next block
and the population

B. Fitness Function

we have used the De Jong‘s function (1): since It is
considered the easiest and simplest test function among De
Jong‘s other functions [13]. It is also called ―The Sphere
Model‖. It is a good example of a continuous, strong
convex, unimodel function [15]. The structure of the first is
defined as follows:

 Fig 5 De Jong’s functions
Where fi(x) is Fitness Function , & range for Xi is between
0 to 1.

Implementation

When the clock=0:-1st solution string selected and passed
on to block 2nd.When the clock=1:-1st solution string pass
to the next block Identifying genes*(X1 to X5) and
solution string select a new solution string.
When the clock=2:-Identify genes (X1 to X5)1 pass to next
block and convert this value in float form. And 2nd block
identify the 2nd solution string and 1st block select 3rd
string.
When the clock=3:-3rd block pass to the floating value to
the next 4th block this block collect. Identify genes (X1 to
X5)2 pass to next block and convert these value in float
form. And 2nd block identify the 3nd solution string and 1st
block select 4rd string.
When the clock=4:-in this clock 4th block pass to the value
to 5th block .this 5th block calculate the some of fitness of
each solution string. 3rd block pass to the floating value to
the next 4th block this block collect. Identify genes (X1 to
X5)3 pass to next block and convert these value in float
form. And 2nd block identify the 4nd solution string and 1st
block select 4rd string.All the Block works on the basis of
clock pulse and each block have one latency time. So all
block work after the single clock delay.

C. Selection

All the Block works on the basis of clock pulse and each
block have one latency time. So all block work after the
single clock delay.
When the clock=0:-fitness of the 1st solution string pass on
to block 2nd (probability selection) and at the same clock
1st fitness goes to the fit sum block.

When the clock=1:-this block we have two in coming node
1st value come to the fitness block(2) and other value come
to the fit sum (3)block and this block divide the value
(fitness/fit sum).
When the clock=2:-this block calculate the cumulative vale
of the fitness. it has single incoming node. The value comes
from the 2nd block. And this time 2nd block divide the 2nd
fitness.
When the clock=3:-4th block passes the cumulative value
and this clock also involved to generate the new ten random
number in between 0 to 1. And all previous block working
in same nature in same clock.
When the clock=4:-in this clock value 6th block take the
value from the 5th block and generate the parent

D. Cross Over

The algorithm for crossover operates as follows: The first
chromosome is split in two at the crossover point. Both
halves are then matched with the second Chromosome to
find the longest common subsequence. Matching is done as
follows: The first half is matched with the first character
from the second chromosome, then with the first two
characters and so on. The second half is matched with the
last character from the second chromosomes, then with the
last two characters and so on. The results of each match are
stored in an array. The code in the fig implements the
crossover part of GA.
begin
ncp<=CONV_INTEGER(cp);
ncp1:=ncp;
if (ncp1>38) then ncp1:=38; end if;
c1<=p1(39 downto ncp1) & p2(ncp1-1 downto 0);
c2<=p2(39 downto ncp1) & p1(ncp1-1 downto 0);

E. Mutation

Mutation is implemented by toggling randomly bit. Here
mutation rate is 100% but can be varied easily. The code in
the fig implements the mutation part of GA.
process(clk)
variable nm3:integer;
begin
nm3:=conv_integer(nm2);
if(nm3=40) then nm3:=39; end if;
sout<=sin(39 downto nm3+1)&(not sin(nm3))&sin(nm3-1
downto 0);
end process

V. Results

A top-down design methodology was adopted. A High-level
VHDL model for the circuits was generated.[2] The logic
was partitioned. Each part was re-described in a lower level
description (RTL) required for the circuit synthesis,
optimization and mapping to the specific technology by
assigning current FPGA family and device. The resulting
optimized circuit description was verified through extensive
simulation. The proposed design was coded in VHDL. It

 Vol. 10 Issue 9 Ver.1.0 September 2010 P a g e | 76 Global Journal of Computer Science and Technology

was functionally verified by writing a test bench and
simulating it using ISE simulator and synthesizing it on
Spartan 3A using Xilinx ISE 9.2i.[16]

Fig 5: Generation Of Random Numbers

Fig 6: Optimisation Results

HDL Synthesis Report
Macro Statistics
Adders/ Subtractors : 1
 32-bit adder : 1
 Counters : 2
 32-bit up counter : 2
 #Registers : 82
 13-bit register : 40
 2-bit register : 1
 32-bit register : 1
 40-bit register : 22
 8-bit register : 10
 9-bit register : 8
 #Comparators : 6
 32-bit comparator great equal : 1
 32-bit comparator less : 1
 8-bit comparator greater : 4
Multiplexers : 2
 40-bit 10-to-1 multiplexer : 2
Xors : 83
 1-bit xor2 : 73
 1-bit xor3 : 10

The Xilinx Spartan 3A was adopted in our study as the
features such as Suspend power-saving mode, high-speed
I/O options, DDR2 SDRAM memory interface, commodity
flash configuration support, and FPGA/IP protection using
Device DNA Security. [16]. The Spartan-3A FPGA
platform is a full feature platform of five devices with
system gates ranging from 50K to 1.4M gates, and I/Os
ranging from 108 to 502 I/Os, with density migration. The

Spartan-3A FPGAs also support up to 576 Kbits of fast-
block RAM with byte-write enable, and up to 176 Kbits of
distributed RAM. Additionally, there are built-in multipliers
for efficient DSP implementation and Digital Clock
Managers (DCMs) for system level clock management
function.

VI. CONCLUSION AND FUTURE WORK

In this paper a We have studied the use of genetic
algorithms in the optimization of Function F(x), the initial
results are promising.
Other Genetic Algorithm operators could be implemented
like, multi-point crossover, Partially Mapped crossover and
different selection methods as well. The design can also be
enhanced by incorporating a local search engine to create a
hybrid memetic GA. The chromosome representation used
in this project requires a relatively large amount of external
memory to store the population and net list. Alternate
chromosome representations can be explored in order to
reduce the memory requirements. Furthermore,
hardware/software co-design can be implemented and it can
be compared with current implementation. Other real-time
applications which require rapid and robust optimization can
also be tackled with hardware based genetic algorithm.

VII. REFERENCES

1) Chatchawit and Prabhas, ―A Hardware
Implementation of compace Genetic Algorithm‖, in
Proceedings of the 2001 IEEE Congress on
Evolutionary Computation, pp.624–629, Seoul,
Korea, May 2001.

2) Douglas L Perry (2006), ―VHDL Programming by
Example‖, McGraw- Hill

3) G. Koonar S. Areibi M. Moussa, ―Hardware
implementation of Genetic Algorithms for VLSI
CAD design‖, School of Engineering
University of Guelph Guelph, Ontario,CANADA
N1G 2W1.

4) Goldberg, D. E. (1989). ―Genetic Algorithms in
Search, Optimization & Machine Learning‖,
Pearson Education, Inc

5) http://www.geatbx.com/docu/fcnindex.html
#P74_1604.

6) http://www.obitko.com
7) Javad Frounchi Mohammad Hossein Zarifi Sanaz

Asgari Far Hamed Taghipou ―Design and Analysis
of Random Number Generator for Implementation
of Genetic Algorithms using FPGA‖

8) . Microelectronic and Microsensor Research Lab,
Faculty of Electrical and Computer Engineering,
University of Tabriz,Iran

9) J. H. Holland, ―Adaptation in Natural and Artificial
Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial
Intelligence‖ MIT Pre Cambridge, MA, USA,
1992.

file:///D:/products/design_resources/security/devicedna.htm
http://www.obitko.com/

Global Journal of Computer Science and Technology Vol. 10 Issue 9 Ver. 1.0 September 2010 P a g e |77

10) K. Skahill, VHDL for Programmable Logic,
Addison Wesley, Reading, Massuchusetts, 1996.

11) Matti Tommiska and Jarkko Vuori,‖Hardware
Implementation of GA‖ Helsinki University of
Technology, Otakaari Finland.

12) Mitchell Melanie,‖ An Introduction to Genetic
Algorithms‖, The MIT Press Cambridge.

13) Mustapha Abdulai, Inexpensive Parallel Random
Number Generator for Configurable Hardware
2003

14) Nagham Azmi AL-Madi, Ahamad Tajudin Khader,
De Jong‘s Sphere Model Test for A Social-Based
Genetic‖, IJCSNS International Journal of
Computer Science and Network Security, VOL.8
No.3, March 2008

15) Russell Pinnington(1999) , ―Implementation of
Genetic Algorithm‖MEng Cybernetics

16) T. Back. ―Evolutionary Algorithms in theory and
practice Evolution Strategies, Evolutionary
Programming, Genetic Algorithms‖. Accessed
2008.

17) Xilinx Corporation, ―ISE Manual‖, San Jose, CA.
18) [17] Zbigniew Michalewiez (1996),‖ Genetic

algorithm + data structures = Evolution
Programs‖,3rd Edition, Springer press.

	Function Optimization Using Genetic Algorithm By VHDL
	Authors
	Abstract
	I. INTRODUCTION
	II. OVERVIEW OF GENETIC ALGORITHMS
	A. Random Number Generation
	B. Selection
	C. Crossover
	D. Mutation

	III. RELATED WORK
	IV. HARDWARE IMPLEMENTATION
	A. Random Number Generation
	B. Fitness Function
	C. Selection
	D. Cross Over
	E. Mutation

	V. Results
	VI. CONCLUSION AND FUTURE WORK
	VII. REFERENCES

