Global Journal of Computer Science and Technology \ Vol. 10 Issue 14 (Ver. 1.0) November 2010Page | 7

Simplified AES for Low Memory Embedded

Processors

GJCST Classification
E.3,C.3,C.1.M

Suhas J Manangi, Parul Chaurasia, Mahendra Pratap Singh

Abstract-Embedded Processors have 2 main constraints™):
Memory and Processing Power. Encryption algorithm running
on such processors should be specially customized to overcome
these 2 constraints. AES? is a well-known standard algorithm
for encryption but its memory and processing power
requirements are very high. This paper proposes modifications
to AES to optimize it to overcome above 2 constraints.
Keywords-AES, Encryption, Decryption, Embedded
Processors.

1. INTRODUCTION

mbedded systems are those which are complete devices

often including hardware and mechanical parts. For Eg:
Digital watches, MP3 players, mobile phones, videogame
consoles, GPS receivers, Wireless Sensor Nodes, dedicated
routers and network bridges etc. Embedded systems have
mainly 2 constraints'': Low memory and Low Processor
Capacity. In this paper a simplified version of Advanced
Encryption Standard is designed for low memory embedded
processors. This algorithm can be used in cases where data
or network security is required involving embedded systems
like Wireless Sensor Nodes, Mobile Phones etc. The
proposed algorithm tries to reduce amount of memory
needed by AES and also increasing amount of processing
needed for encryption and decryption.AES™ is Advanced
Encryption Standards designed from larger collection of
Rijndael algorithm. AES has 3 flavors AES-128, AES-192,
AES-256 with block size 128 and number of rounds is 10,
12, and 14 respectively.

1L PRrOPOSED ALGORITHM (LMEP-S-AES)

LMEP-S-AES is a simplified version of AES, it has all the
functions AES has but made suitable for embedded systems
by optimizing on its memory and processor requirements.
Encryption part of LMEP-S-AES has 5 sub functions: Key
Expansion, Adding Key Round, Substitution Function, Row
Transformation function and Mix Column function.
Decryption part of LMEP-S-AES has 5 sub functions: Key
Expansion, Inverse Mix Column functions, Inverse Row
Transformation function, Inverse Substitution function and
Adding Key Round

1) Key Expansion

Key length here is not fixed but can vary between 1 Byte to
16 Bytes"!. Initial key is expanded to 16 bytes expanded

About- Department of Computer Engineering B.Tech in Computer
Engineering suhasjm@gmail.com, stylishparul@gmail.com,
mps_82@aol.inNational Institute of Technology Karnataka —

key. This same key is applied in each round during
encryption and also during decryption. Key is basically
XORed with data blocks during encryption as well as
decryption. Initial key is expanded using substitution S Box
mentioned in algorithm in Figure 1.

KeyExpansion (ByteString InputKey, Int Keylen)
{
RoundKey = InputKey

for (i=0; i<16; i++)
{

RoundKey[i] = SubByte (RoundKey[i%KeyLen])
}

return RoundKey

Figure 1: Key Expansion
2) Encryption

Block size is same as AES, 128 bits arranged in 4x4 bytes
called State Box. Encryption algorithm is explained in
Figure 2. Number of rounds here is reduced to three and
transformation functions are applied in the order of adding
round key, substation, row rotation and mix column
functions.

Encryption (ByteString Input, ByteString Output, ByteString InputKey, int ByteKeylen)
(

ByteString State[4][4] = Input
ByteString RoundKey = KeyExpansion (InputKey, ByteKeylen)

for (i=0;i<3;i++)
{
State = AddRoundKey (State, RoundKey)
State = SubByte (State)
State = ShiftRows (State)
State = MixColumns (State)
)

State = AddRoundKey (State, RoundKey)

Output = State

}

Figure 2: Encryption[2] [3]

a) Add Round Key

For each round key used is same, and is XORed with data in State
Box. Complete algorithm is shown in Figure 3 below.

Page |8Vol.10Issue 14 (Ver.1.0) November 2010 Global Journal of Computer Science and Technology

void AddRoundKey (ByteString RoundKey) 0 1 2 3
{ ke0: 0 21 20 23 10
for (i=0; i<k i+) 1 03 32 00 01
2 12 33 30 02
pr=tistie) 3 11 22 13 31

State[i][j] = State[i][j] XOR RoundKey[k-+]
Table 1: S-Box

¢) Row Transformation

return ;
} | ShiftRows () |
~
Figure 3: Add Round Key[2] [3] Sro | Sea | Sr2 |Srs Sro|Sra [Sr2 |53
b) Substitution Transformation s s
S Box is modified into 4x4 Matrix from 16x16 Matrix in So0 | So1 | S0 | Sos Soo | Soa | Soa | Sos
AES. Each byte in State Box is split into 2 Nibble. Each - e s 1s ETT s s 1
Nibble is replaced by another nibble from S-Box in same il Al il Al
manner of AES. First 2 bits of nibble represents row number Sa0 | S2x [S22 | Sos | LIS | 522|520 | S20 | 52
and next 2 bits represents column number. For Eg: if Nibble Spo | Say [Saa | Sea | (L= | 535 | Sa0 | iy | 532

value is 1010 then present nibble is replaced with 2™ row,
2" column nibble of S-Box. Substitution of bytes is shown . o
in Figure 4, breaking of each Byte into 2 nibbles is shown in Figure 7: Shift Rows{2] [3]
figure 5, substituting each nibble with nibble from S-Box is d) Column Transformation

shown in Figure 6. S-Box is shown in Table I. Mix Columns function is exactly same as in AES algorithm.

o.B This is represented as matric multiplication as shown below.
-Box ‘ . : . -
S | Sox | S0z | Soat— | 500 | So1 | S0z | %03 s.. | [02 03 01 o1][s,,]
S| e 2| S S1o vz | Sis 5el | 01 02 03 01)]s, |
Cre e .| "lor o1 02 03))s,, |
S20 | S21 | S22 523 S20 | S21 | S22 | S23 52 | | = D3| Sae |
: — — T sie| 103 01 o1 02]]s,, |
S30| 531 | 532|533 330 | S31 | S32 | Sas) - s -

Figure 4: Byte Substitution[2] [3] Figure 8: Matrix Multiplication[2] [3]

Above matrix multiplication is expanded as below. This includes

Byte SubByte (Byte B) scalar multiplication thus ensuring final value not exceeding 8 bits
i length.
N e e N2 Soe = ({02} @ 50,) D ({03} 0 5,) D 5, D 55,

N1 = SubNibble { N1)
N2 = SubNibble { N2)
B = N1, N2 "
return B; Sae

Slf,c = SO__C‘(_B ({02} . S]._r) (_B ({03} . S2.c) (_B S3,c

‘SIO,CG_) S].._fg_) ({02} b S2_c) (—B‘ ({03} . SE,C)

S;,c ({03} . SO,C) (_B ‘Yl_r(_B SZ,C(_B ({02} b SE,C)

Figure 5: Substitution Byte Function . o
Figure 9: Scalar Multiplication[2] [3]

Nibble SubNMNibble { Nibble M)
{

Based r,c

rc=N

M = S5-Box|[r][c]

return N

Figure 6: Substitution Nibble Function

S]] E NI g EI R O aa o PN e = L e MLl o (o)Al VVol. 10 Issue 14 (Ver. 1.0) November 2010Page | 9

MixColumns () Byte InvSubByte (Byte B)
| E {

Soo Soe o L50s —5:?- Soc s m:lbl:;:; NlB, N2
— s . S : - . —

Stol 2 Pia | Sis S1o Sie S1.2 | $13 N1 = InvSubNibble { N1)
?0 Sre |, 524 Syo S'z.c o | s N2 = InvSubNibble { N2)
|] . i ,’ T B = N1, N2

Siol S50 sz | 53s 5;,0 Sic 32 5;_3 return B;

— ' }

Figure 10: Column Transformation[2] [3]

3) Decryption Figure 14: Inverse Byte Substitution Function

Decryption (ByteString Input, ByteString Output, ByteString InputKey, int ByteKeylLen)

{
ByteString State[4l4] = Input Nibble InvSubNibble (Nibble N)
ByteString RoundKey = KeyExpansion (InputKey, ByteKeyLen) i
State = AddRoundKey (State, RoundKey) Based r,c
for (i=0;i<3;i++) FrC= N
{ _
State = InvMixColumns (State) N = InvS-Box[r][c]
State = [nvShiftRows (State) return N
State = InvSubByte (State) }
State = AddRoundKey (State, RoundKey)
}

Output = State
}

Figure 15: Inverse Nibble Substitution Function

Figure 11: Decryption Function[2] [3]

0 1 2 3
a) Add Round Key 0 12 13 23 10
void AddRoundKey (ByteString RoundKey) 1 03 30 20 32
{ 2 01 00 31 02
k=0;
for (i=0; i<d: i++) 3 22 33 11 21
{
for (j=0; j<d; j++) Table 2: Inverse S-Box
{
State[il[j] = State[il[j1 XOR RoundKey[k-+] ¢) Inverse Row Transformation
}
1 | InvShiftRows () |
return ; \
} Sr.() Sr.l Sr.! Sfﬂ} Sr.o Sr.l Srj Sr.3
Figure 12: Add Round Key Function[2] [3] . >
L. . Soo | Soq|Seo |8 Sool Sorl 84,
b) Inverse Substitution Transformation bt Ml Bl Ml il I
S | S| S| S | LIS | S | Sio | Su | 512
Inverse Sp0| 521|822 | S2s | PP | S22 | S2s | S20 | Sur
S0.0 | So1 | So2 | Sozf— S-Box So.0 | Soa | So2 | Sos
/3— [S30 | S31 | $32| 533 @ S31 | 552 | 533 | Saa
510 o h2 | Sis S1.0 v b2 | Sis
re Tre Figure 16: 1 Row Transformation[2] [3
Sao| 5211 Baa | 525 Soo | S21T Sos | Sas igure 16: Inverse Row Transformation[2] [3]
. . . : d) Inverse Column Transformation
S30 | 531|532 | %33 S30 | 531 | S32 | 533
Inverse Mix Columns function is exactly same as in AES

] o algorithm. This is represented as matric multiplication as
Figure 13: Inverse Byte Substitution[2] [3] shown below.

Page |10Vol.10 Issue 14 (Ver.1.0) November 2010 Global Journal of Computer Science and Technology

O 0b 0d 09][s,,] Inv MixColumns ()

""':I.c :
[$.] |09 Oe 0b 04| 5, | .
[- [=] " Soce T ~al 5o, |- .
[2e | O0d 09 0Oe 0D I Fre | S0 02 | %03 So.0 0.2 | So3
5., [0 04 09 Ue'|.s s [T s T
|_ b J L dL™3e | S0l 2 b | i Spo L2 dsis | sis
. . T s | S2e ks | s s s s
Figure 17: Matrix Multiplication[2] [3] 201 7 P22 723 20 | 3 P | 53
Above matrix multiplication is expanded as below. This includes Syl 3¢ [f32] S35 S30 | 73 Pa2 | S

scalar multiplication thus ensuring final value not exceeding 8 bits
length.

Figure 19: Inverse Column Transformation[2] [3]
s = ({06} 0.5,) © ({00} 0 5,) D ({0} o 5,) © ({09} 0 55,)
s = ({09} 0.5,) D ({0} 5,)& ({0b} 0 5,) & ({0d} 0 5,)
S0 = ({0} 0 5,,.) © ({09) 0 5,) © ({0} 0 5,.) © ({00} 0 55,)

$30= ({00} 0 5,,) € ({0d} 0 5,) D({09) 0 5,) & ({0} 0 55,

Figure 18: Scalar Multiplication[2] [3]

111 COMPARISON OF AES WITH PROPOSED ALGORITHM (LMEP-S-AES)
AES LMEP-S-AES
Key Length 128, 192, 256 Bits Variable Length
(Max 128 bits)
Number of Rounds | 10, 12, 14 3
Round Key Different for each round Same for all rounds
Key Expansion Complexcombination of | Simplified
SubByte() and Scalar
Multiplication
S-Box size 16x16 4x4
S-Box Memory 256 Bytes 8 Bytes
Inverse S-Box | 256 Bytes 8 Bytes
Memory

Table 3: Comparison between AES and LMEP-S-AES

2. Same key is used for al rounds, thus reducing
v, ANALYSIS OF LMEP-S.AES memory consumption of expanded key like in AES
algorithm.
1) Memory Optimization 2) Processing Optimization
Embedded processors need applications to be running in low
memory constraints.

1. The proposed AES optimizes memory

Embedded processors are generally low end processors with
processing power constraints.

requirements by reducing S-Box and Inverse S- L The proposed algorithm optimizes processing

Box Togethei] S-Box needs 16 Bytes in power requirements by reducing number of
Co . rounds to 3.

comparison to 512 Bytes of actual AES algorithm. IL Key Expansion algorithm is simplified.

Global Journal of Computer Science and Technology

Vol. 10 Issue 14 (Ver. 1.0) November 2010 Page | 11

III. Additional computations needed in choosing
round key for each round is reduced, since same
key is used for all rounds.

V. CONCLUSION

Embedded systems like Mobile phones, GPS receivers,
Wireless Sensor Nodes etc handle sensitive data, hence
requires data security mechanisms. AES algorithm which is
a standard algorithm for data encryption is unsuitable for
such scenarios where memory and processing power
constraints are very high.The proposed Simplified AES for
Low Memory Embedded Processors” algorithm is optimized
to overcome these 2 constraints.

VI REFERENCES

1) Embedded Software”, Edward A. Lee, Advances
in Computers, Academic Press London 2002

2) Advanced Standard Encryption” Federal
information Processing Standards Publication 197

3) Merging of RC5 with AES - Incorporating more
Flexibility and Security in AES” ICIT 2009, ISBN:
978-0-07-068014-2

	Simplified AES for Low Memory EmbeddedProcessors
	Author
	Abstract
	I. INTRODUCTION
	II. PROPOSED ALGORITHM (LMEP-S-AES)
	1) Key Expansion
	2) Encryption
	a) Add Round Key
	b) Substitution Transformation
	c) Row Transformation
	d) Column Transformation

	3) Decryption
	a) Add Round Key
	b) Inverse Substitution Transformation
	c) Inverse Row Transformation
	d) Inverse Column Transformation

	III. COMPARISON OF AES WITH PROPOSED ALGORITHM (LMEP-S-AES)
	IV. ANALYSIS OF LMEP-S-AES
	1) Memory Optimization
	2) Processing Optimization

	V. CONCLUSION
	VI. REFERENCES

