
© 2011 .  Yuri Pavlov. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, 
distribution, and reproduction inany medium, provided the original work is properly cited. 

 Global Journal of Computer Science and Technology 
Volume 11 Issue 20 Version 1.0 December 2011 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 

Specific Growth Rate and Sliding Mode Stabilization of Fed-
Batch Processes 

By Yuri Pavlov 
Bulgarian Academy of Sciences  

Summary - The subject of this paper is specific growth rate control of a fed-batch biotechnological 
process. The objective of the paper is to present comfortable tools and mathematical 
methodology that permits control stabilization of biotechnological processes with synchronized 
utilization of different mathematical approaches. The control design is based on the equivalent 
transformations to Brunovsky normal form of an enlarged Monod-Wang model, on a chattering 
optimal control and sliding mode control solutions. This approach permits new precise control 
solutions for stabilization of continuous and fed-batch cultivation processes. In the paper are 
investigated Monod-Wang kinetic model and it singular Monod form. The simpler Monod and 
Monod-Wang models are restricted forms of Wang-Yerusalimsky model. The Wang-Yerusalimsky 
kinetic model could be accepted as a common model. A second order sliding mode is 
investigated and compared with standard sliding mode algorithms. The sliding mode control 
permits to solve the control problems with smaller quantity of priory information and elimination of 
parameters and measurements noises.  

Keywords : Sliding mode control, Fed-batch process, Monod kinetic, Monod-Wang model, 
Optimal control, Brunovsky normal form.  

 

Specific Growth Rate and Sliding Mode Stabilization of Fed-Batch Processes  

 
 

Strictly as per the compliance and regulations of: 
 

GJCST Classification : D.4.1, H.2.m



Specific Growth Rate and Sliding Mode 
Stabilization of Fed-Batch Processes 

Yuri Pavlov 

  The subject of this paper is specific growth rate 
control of a fed-batch biotechnological process. The objective 
of the paper is to present comfortable tools and mathematical 
methodology that permits control stabilization of 
biotechnological processes with synchronized utilization of 
different mathematical approaches. The control design is 
based on the equivalent transformations to Brunovsky normal 
form of an enlarged Monod-Wang model, on a chattering 
optimal control and sliding mode control solutions. This 
approach permits new precise control solutions for 
stabilization of continuous and fed-batch cultivation 
processes. In the paper are investigated Monod-Wang kinetic 
model and it singular Monod form. The simpler Monod and 
Monod-Wang models are restricted forms of Wang-
Yerusalimsky model. The Wang-Yerusalimsky kinetic model 
could be accepted as a common model. A second order 
sliding mode is investigated and compared with standard 
sliding mode algorithms. The sliding mode control permits to 
solve the control problems with smaller quantity of priory 
information and elimination of parameters and measurements 
noises.  
Keywords : Sliding mode control, Fed-batch process, 
Monod kinetic, Monod-Wang model, Optimal control, 
Brunovsky normal form.   

I. INTRODUCTION 

iotechnological processes are relatively difficult 
objects for control.  Their features have been 
discussed repeatedly. Among the most-widely 

used control models for Biotechnological Processes are 
the so called unstructured models, based on mass 
balance. In these models the biomass is accepted as 
homogeneous, without internal dynamic. Most widely 
used are models based on the description of the kinetic 
via the well known equation of Monod or some of its 
modifications (Neeleman, 2002; Galvanauskas, 1998; 
Staniskis, 1992 Pirt, 1975;).  
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The use of the classical methods of the linear 

control theory is embarrassed, mainly due to the fact 
that the noise in the system is not of Gaussian or 
colored type. The changes of the values of the structural 
parameters of the Monod kinetics models also lead to 
bad estimates when using Kalman filtering (Diop, 2009). 
Another serious flaw is that using classical linearization 
and control solutions via the feeding rate, the linear 
system is not observable (Wang, 1987). In addition, the 
Monod kinetics models are characterized by another 
feature of the optimal control solutions. The dynamic 
optimization based on the Pontryagin maximum leads to 
singular optimal control problems (Alekseev, 1979; 
Krotov, 1973). The above problems have led to 
development of extended dynamical models in which 
the dynamic of the changes of the growth rate of the 
BTP is described by separate equation on the general 
differential equation. Such extended observable models 
based on Monod kinetics are the Monod-Wang and 
Wang-Yerusalimsky models used in the paper (Pavlov, 
2008). 

These characteristics of biotechnological 
processes and models have led to search for solutions 
via approaches and methods related to a wide range of 
contemporary mathematical areas (DeLisa, 2001; 
Levisauskas, 2003; Roeva, 2007; Bamieh, 2007; 
Montseny, 2008; Diop, 2009). Such areas are adaptive 
systems, nonlinear systems, theory of variable structure 
systems and their main direction sliding mode control 
(SMC) (Emelyanov, 1993; Selişteanu, 2007; Mohseni, 
2009). In the last decade up to date methods and 
approaches in the areas of functional analysis, 
differential geometry and its modern applications in the 
areas of nonlinear control systems as reduction, 
equivalent diffeomorphic transformation to equivalent 
systems and optimal control have been used 
(Neeleman, 2002; Pavlov, 2001; Mahadevan, 2001; 
Bamieh, 2007; Montseny, 2008).  

In the paper is proposed a new control solution 
based on a contemporary differential geometric 
approach for exact linearization of non-linear Monod 
type models. In our control solution are used observable 
model based on Monod kinetics, namely the Monod-
Wang and Wang-Yerusalimsky kinetic models. Based on 

B 
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Summary -

One of the most important characteristics of 
biotechnological processes, which make the control 
design more difficult, is the change of cell population 
state. A serious obstacle is the existence of noise of non 
Gaussian type. This type of noise appears in the 
measurement process as well as in the process of the 
determination of the structure parameters of the model. 
But may be the most serious obstacle is provoked by 
the differences in the rate of changes of the elements of 
the state space vector of the control system. Combined 
with the strong nonlinearity of the control system of the 

Monod type this feature of the control system leads to 
numerical instability or to unsatisfactory performance of 
the control algorithms (Neeleman, 2002; Tzonkov, 2006; 
Roeva, 2007).



these models a control design for optimal control and 
stabilization of the specific growth rate of fed-batch 
biotechnological processes is presented. The control is 
written based on information of the growth rate

 (Neeleman, 2002).
 

II.
 

MONOD AND MONOD-WANG 
BIOTECHNOLOGICAL MODELS

 
Most widely used are models based on the 

description of the kinetic via the well known equation of 
Monod or some of its modifications. The rates of cell 
growth, sugar consumption, concentration in a yeast 
fed-batch growth are commonly described as follows:
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This differential equation is often part of more 
general and complex dynamic models. Here X

 
is the 

concentration of the biomass, S is the substrate 
concentration, V

 
is the volume of the bioreactor. The 

maximal growth rate is denoted by μm
 
and

 
KS

 
is the 

coefficient of Michaelis-Menten. With k
 

we denote a 
constant typical for the corresponding process. The 
feeding rate is denoted by F. If the process is 
continuous (F/V)

 
is substituted by the control

 
D, the 

dilution rate of the biotechnological process (BTP). The 
third equation is dropped off. Often used models are 
described in table 1 (Staniskis, 1992; Zelic, 2004; 
Galvanauskas, 1998; Tzonkov, 2006). 
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The first model is the well known Monod type 
model (Roeva, 2004, 2007), the second is the 
Yerusalimsky model (Galvanauskas, 1998) and the third 
model includes inhibition term in the denominator. The 
non-observability of the Monod model has led to the 
development of the widened dynamical models, in 
which the dynamics of the specific growth rate of the 
BTP is described via separate equation in the system of 
differential equations. The dynamics of the growth rate µ  
in the Monod-Wang model is modeled as a first order 
lag process with rate constant m, in response to the 
deviation in the growth rate. This model called also the 
model of Monod-Wang determines a linear observable 
system in the classical linearization (Wang, 1987; 
Pavlov, 2007).
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This model concerns a fed-batch 
biotechnological process. Obviously model (1) is a 
singular form of model (2). The comparison of both 
models is shown in Figures (1, 2, 3):
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Figure1 : Growth of the biomass using Monod model (1) and Wang-Monod model (2).
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One general description of the fed-batch 
biotechnological process looks like (Pavlov, 2007).
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Here X denotes the concentration of biomass, 
[g/l]; S –

 

the concentration of substrate (glucose), [g/l]; 
V -

 

bioreactor volume, [l]; F –

 

substrate feed rate, [h-1]; 
S0

 

–

 

substrate concentration in the feed, [g/l]; µmax

 

-

 

maximum specific growth rate, [h-1]; KS

 

–

 

saturation 
constant, [g/l]; k and k3 –

 

yield coefficients, [g/g], m –

 

rate coefficient [-];. The dynamics of µ  in the Monod-
Wang model is modeled as a first order lag process with 
rate constant m, in response to the deviation in µ. The 
last equation describes the production of acetate (A). 
This equation

 

is dynamically equivalent to the first one 
after the implementation of a simple transformation (X = 
(1/k3) A). That is why we replace A

 

with X

 

in 
Yerusalimsky model. The best description is given by 
the so called model of Wang-Yerusalimsky: 
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In the formula X is the concentration of 
biomass, [g/l]; S–the concentration of substrate 
(glucose), [g/l]; V-bioreactor volume, [l]; F–substrate 
feed rate (control input), [h-1]; S0–substrate 
concentration in the feed, [g/l]; µmax-maximum specific 
growth rate, [h-1]; KS–saturation constant, [g/l]; k, k3–
constants, [g/g]; m–coefficient [-]; E–the concentration 
of ethanol, [g/l]; A–the concentration of acetate [g/l]. 
The system parameters are as follows: µm=0.59 [h-1], 
KS=0.045 [g/l], m=3 [–], S0=100 [g/l], k=1/YS/X,, k=2 [–], 
k3=1/YA/X, k3=53 [–], ki=50 [–], Fmax= 0.19 [h-1], Vmax=1.5 [ ]
. These data desribed an E. Coli

 

process (Cockshott, 
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Figure2 : Specific growth rate using Monod model (1) and Wang-Monod model (2).

                   

Figure 3 : Feeding rate using Monod model (1) and Wang-Monod model (2).

1999) and are chosen close to data in table 2 (Roeva, 
2004, 2007):

© 2011 Global Journals Inc.  (US)
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Parameter

 

Model 1

 

Model 2

 

Model 3

 
maxµ , [h-1]

 

0,55

 

0,52

 

0,54

 Sk , [gl-1]

 

0,039

 

0,027

 

0,029

 ik , [gl-1]

 

51,3

 

53,6

 

50,8

 /S XY , [gg-1]

 

0,501

 

0,498

 

0,497

 /A XY , [gg-1]

 

0,015

 

0,015

 

0,015

 

 

The last equation describes the production of 
acetate (A). This equation is dynamically equivalent to 
the first one after the implementation of a simple 
transformation (X = (1/k3)A). The initial values of the state 
variables are: X(0)=0.99; S(0)=0.01; µ(0)=0.1; A(0) = 0,03; 
V(0)=0.5. 

 

The following mathematical condition (kE→∞)

 

determines the Wang-Monod model as a restricted form 
of the Wang-Yerusalimsky model (4).  The Monod model 
is a singular form of Wang-Monod model obtained by 
omission of the third equation. That is why the Wang-
Yerusalimsky model is a more general model form.

 

Interesting moment is that these models are 
dynamically equivalent to the following Brunovsky 
normal form (Pavlov, 2001, 2004, 2007):

 

WY

YY

YY

=

=

=

•

•

•

3

32

21

       (5)

                                                                                                      Here by W

 

is noted the control input. This model 
is linear. The non-linearity of model (1) is transformed 
and included in the input function W (Montseny, 2008; 
Bamieh, 2007; Elkin, 1999; Gardner, 1992). The input 
function W

 

depends from the space vector of model (1) 
and that has to be underlined because this is a limitation 
of the application of the Pontryagin maximum principle 
(Alekseev, 1979; Krotov, 1973; Hsu, 1972). Different 
diffeomorfic transformations of the Monod, Wang and 
Yerusalimsky models are analyzed in

 

details in the 
following papers (Pavlov, 2001, 2004, 2007, 2008). The 
Brunovsky form is a linear model and permits easy 
optimal control solutions with application of the 
Pontryagin’s maximum principle. 

 

The complexity of the biotechnological systems 
and their singularities make them difficult objects for 
control. They are difficult to control also because of the 
fact that it is difficult to determine their optimal 
technological parameters. These parameters can 
depend on very complicated technological, ecological 
or economical market factors. Their taking into account 
in one mathematical model directly is impossible for the 
time being. Because of this reason often in practice 

expert estimates are used. From outside the estimates 
are expressed only by the qualitative preferences of the 
Biotechnologist. The preferences themselves are in rank 
scale and bring the internal indetermination, the 
uncertainty of the qualitative expression, which is a 
general characteristic of human thinking. Because of 
this reason here the mathematical models from the 
Utility theory and stochastic programming can be used 
(Kivinen, 2004; Fishburn, 1970; Keeney, 1993; 
Aizerman, 1970).  

 

Thus the incomplete information usually is 
compensated with the participation of imprecise human 
estimations. Our experience is that the human 
estimation of the process parameters of a cultivation 
process contains uncertainty at the rate of [10, 30] %. 
Here is used a mathematical approach for elimination of 
the uncertainty in the DM’s preferences based both on 
the Utility theory and on the Stochastic programming 
(Pavlov, 2010, 2011). The algorithmic approach permits 
exact mathematical evaluation of the optimal specific 
growth rate of the fed-batch cultivation process 
according to the DM point of view even though the 
expert thinking is qualitative and pierced by uncertainty. 
The assessed utility criteria are shown on the following 
figure 4:

 
 

 
 

Figure 4 :

 

Expert utility versus Growth rate

 
 
 

Thus we achieve totally analytical mathematical 
description of the complex system “Technologist-

 

biotechnological process “(Pavlov, 2010, 2011).

 
 

III.

 

OPTIMAL CONTROL AND 
STABILIZATION OF THE GROWTH RATE

 

The presentation of the control design follows 
the presentations in papers (Pavlov, 2004, 2007, 2008). 
We use the general model (Technologist-

 

biotechnological process). We preserve the notation U(.)

 

Specific Growth Rate and Sliding Mode Stabilization of Fed-Batch Processes

Table 2

for the DM utility function (Pavlov, 2010; Fishburn, 1970; 
Keeney, 1993). The control design of the fed-batch 
process is based on the next subsidiary optimal control 
problem: 

Max(U(µ(Tint))), where the variable µ is the 
specific growth rate, (µ∈[0, µmax], D∈[0, Dmax]). Here 
U(µ) is an aggregation objective function (the utility 
function – fig.4) and D is the control input (the dilution 
rate): 

©  2011 Global Journals Inc.  (US)
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(8)

The derivative of the function Y3 determines the
interconnection between W-model (7) and D-model (6). 
The control design is a design based on the Brunovsky 
normal form and application of the Pontrjagin’s 

maximum principle step by step for sufficiently small 
time periods T. The optimal control law has the 
analytical form (Pavlov, 2007):
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The optimal control law of Wang-Yerusalimsky
model (4) has the same form (Pavlov, 2008).This type of 
control may be used only for cumulative criteria for 
which the Bellman principle is valid in the optimal control 
(Hsu, 1972). For example, such are the amount of 
biomass at the end of the process and the time-
minimization optimal control. The sum is the derivative of 
the utility function U(µ).The time interval T can be the 
step of discretization of the differential equation solver. 

It is clear that the “time-minimization” control is 
determined from the sign of the utility derivative. Thus, 
the control input is D=Dmax or D=0. The solution is a 
“time-minimization” control (if the time period T is 
sufficiently small) (Pavlov, 2004). The control brings the 
system back to the set point for minimal time in any 
case of specific growth rate deviations. The 
demonstration is shown in (Pavlov, 2007).

The previous solution permits easy 
determination of the control stabilization of the fed-batch 
process

Max(U(µ(Tint))), where the variable µ is the 
specific growth rate, (µ∈[0, µmax], F∈[0, Fmax]). Here 
U(µ) is the utility function in figure (3) and F is the control 
input (the substrate feed rate): 

. The control law is based on the solution of the 
next optimization problem:
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(6)

When Tint is sufficiently small the optimization is 
in fact “time minimization”. The differential equation in 
(6) describes a continuous fermentation process. The 
model permits exact linearization to the next Brunovsky 

normal form (Goursat, as regard to the differential forms) 
(Gardner, 1992; Elkin, 1999; Pavlov 2001): 

.

,

,

3

32

21

WY

YY

YY
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=

=

•

•

•

                                                                        (7)

The Brunovsky normal form of Wang-
Yerusalimsky model (4) is the same (Pavlov, 2008). Here
W denotes the control input. The new state vector (Y1, 
Y2, Y3) is:

© 2011 Global Journals Inc.  (US)

in the fed-batch model. Thus, the feeding rate F(t) takes 

The control law of the fed-batch process has 
the same form (9) because D(t) is replaced with F(t)/V(t)

F(t)=Fmax or F(t)=0, depending on D(t) which takes 
D=Dmax or D=0. 



 

Fig. 6 :

 

Optimal profile 

 

After the stabilization of the system in equivalent 
sliding mode control position the system can be 
maintained around the optimal parameters with sliding 
mode control (Fig.5, 6). Possible solution in sliding 

mode is alternation of μm

 

(as a function of the 
temperature and the acidity in the bioreactor) or 
alternation of F (Pirt, 1975; Pavlov, 2007). The iterative 
utility function design and the iterative corrections in the 
DM preferences permit adjustment of the control law 
and of the optimal control final results in agreement with 
the changes in the opinion of biotechnologist. The 
procedure could be interprets as learning procedure in 
the two opposite directions, in direction to 
biotechnologist or in direction to the final optimal 
solution.

 

IV.

 

MATHEMATICAL PROBLEMS ARISING 
FROM THE SLIDING MODE CONTROL

 

Control solution results are shown in control 
systems based on the solutions of variable structure 
systems (Selişteanu, 2007; Mohseni, 2009). Here a 
different problem arises. Good control via sliding mode 
control is possible when the system is led to the initial 
position in a point from the area of the “equivalent 
control solution” (Pavlov, 2007, 2008). This is a specific 
task for fed-batch control via information about the 
growth rate of the biomass.

 

A common manifestation in sliding mode 
control is some overregulations of the biotechnological 
process. Such overregulations are shown in figures (7 
and 8). In case of start in sliding mode in system 
conditions different from the area of

 

“equivalent sliding 
mode control” then the process arrives in some over 
regulations

 

(Utkin, 1981). 

 

 
 

Fig.7 :

 

Continuous process –

 

overregulation of the 
biomass in SMC
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We conclude that the control law (9) bring the 
system to the optimal point (optimal growth rate) with a” 
time minimization” control, starting from any deviation 
point of the specific growth rate (Fig. 5).

Thus, we design the next control law:

1. At the interval [0, t1] the control is “time-
minimization” control (9), where μ(t1)=(x30-ε), ε>0, 
x30=max(U(µ)). D is replaced with F=γFmax, 1≥γ>0,
when D=Dmax. The choice of γ depends on the step 
of the equation solver and is not a part of the 
optimization (here γ=0.123);

2. At the interval [t1, t2] the control is F=0 ( μ(t1)=(x30-ε),
μ(t2)=x30 -  to be escaped an overregulation);

3. After this moment the control is the control (9) with 
F=γFmax, when D =Dmax (chattering control with 
1≥γ>0).

The deviation of the fed-batch process with this 
control is shown on figures (5, 6).
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Fig. 5 : Stabilization of the fed-batch process1
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contemporary mathematical areas. Such areas are 
differential geometry and its modern applications in the 
areas of nonlinear control systems as diffeomorphic 
transformation to equivalent systems. Solutions that fix 
the system in “equivalent control” position, staring from 
any initial positions are showed in (Fig. 9, 10). Fig.10 : Fed batch process, Chattering control:  growth 

rate (1); feed rate control (2)

Detailed descriptions of such controls are 
discussed in (Pavlov, 2007, 2008). In the last decade up 
to date methods and approaches in the areas of 
functional analysis, differential geometry and its modern 
applications in the areas of nonlinear control systems as 
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reduction, equivalent transformation to equivalent 

system in “equivalent control” position, staring from any 
initial positions. 

These characteristics of biotechnological 
processes and models have led to search for solutions 
via approaches and methods related to a wide range of 

These characteristics of biotechnological 
processes table new mathematical control problems for 
discussion and resolution. The overregulations in SMC 
are provoked by the differences in the rate of changes of 
the elements of the state space vector of the control 
system. It is needed control solution that fixes the 

fixation of the biomass

Fig.8 : Fed batch process- overregulation of the growth rate in SMC
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V. SLIDING MODE CONTROL AND 
STABILIZATION OF THE FED-BATCH 

PROCESS

The sliding mode control is a good solution for 
stabilization under varying conditions (parameters 

systems have been used for surmount the discussed 
difficulties (Pavlov, 2005; Bamieh, 2007; Montseny, 
2008; Diop, 2009).

deviations, noises etc.) (Emelyanov, 1993, 1996; Utkin 
1987; Selişteanu, 2007). In the paper is demonstrated a 
sliding mode control for stabilization of the specific 
growth rate in “the best” growth rate (Pavlov, 2007). 



 
 

 
 

 

    
  

 

 

 
 

 

 
 

 

 

  
 

 

 

 

 
 

 

 

 

The feeding rate F(t) is derived from the 
substrate concentration: F(t)=(kX(t)µ(t)V(t)/(So-Se),

 

where X(.)

 

is the quantity of

 

biomass in the bioreactor. 
Deviations of the system in sliding mode are showed in 
Fig. (11, 12).
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Fig.11 : Specific Growth Rate stabilization in sliding mode

The mathematical model and the corresponding 
stability conditions determine the SM control law:

)()(
1

21 Slsign
S

SK
mControl mm

s








+−

+
−=∆⇒ µµµµ

                                            

(12)

The variations of the temperature (T) and the 
acidity (pH) assure the chattering of µm around the 
equilibrium (µm=µm0+∆µm),

Se
SeK

m
s

m
31.0)(,31.0 0

1 ×+
== µµ .                               (13)

                                                                       

The value μm
2 is a sufficiently small 

supplementary value. This SM control law eliminates the 
deviations of the parameters, noises and structure 
modifications. This solution overcomes successfully 
some of the difficulties mentioned above. 
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medium (pH)(Pirt, 1975) . This control gives us the 
possibility to use the temperature (t o) and the acidity 
(pH) as input control values. More classical SM solutions 

with substrate concentration S as control value could be 
seen in the literature (Selişteanu, 2007; Mohseni, 2009). 

The sliding affine subspace is defined by the 
equation 0)31,0()( =−= µµS . The general stability 
conditions are derived from the Liapunov’s function

2))(( µS (Utkin, 1981). In sliding mode control the 
substrate concentration S in the bioreactor is constant. 
The substrate concentration S is constant

0,0498=Se . The equivalent growth rate control is 
determined exactly and the SM control is possible 
(Utkin, 1981):

S
SKUe S µµ )( +

=                                                  (11)

specific growth rate μm(T, pH) through changes of the  
temperature (to) and the acidity of the bioreactor 

solution is obtained with alternations of the maximum 

The sliding mode in the paper is realized with 
Wang-Monod model (3). This more exotic SM control 

For some types of BTP it is possible to choose 
the control via the temperature and/or via changing the 
acidity in the bioreactor (Pirt, 1975). What we mean is 
indirect influence on the biomass maximum growth rate, 
which, according to the contemporary researches, is 
one of the main factors, determining the quality of the 
cultivation process (Neeleman, 2002). Here the problem 
about the observability of the control system arises 
again, because this directly concerns the possibility for 
satisfactory identification of the state space vector of the 
control system and more specifically for the 
determination of the specific growth rate of the BTP. This 
group of questions is still a topical branch in the theory 
of the biotechnological control systems (Diop, 2009).



                                     

  

 
 

 
 
 

   
 
 

  

Fig.14 :

 

Second order SM -
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The devolving from the “discontinuity” to 
“continuity” in sliding mode control not only raise the 
control quality but permits to solve control problems with 
smaller quantity of priory information (Emelyanov, 1993, 
1996). 

 

By now we have reached a full mathematical 
description of the complex system “Biotechnologist-fed-  
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Fig.13 : Second order SM - µ
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−=∩ µ
                                                                                    

(14)

Here is used the so-called “contraction” 
algorithm [5].  After Emelyanov the second order SM 
control input in the “contraction” algorithm becomes:
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(15)

It is known that this algorithm ends for finite time 
(Emelyanov, 1993, 1996). The input in second order SM 
is smoother but the control becomes is more imprecise. 
The performances of the system with this SM control are 
showed in Fig. (13, 14) (Pavlov, 2007, 2008).

Fig.12 : Substrate concentration S in sliding mode
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The Russian scientists Emelyanov, Korovin and 
Levant evolve high-order sliding mode methods in 
control systems (Emelyanov, 1993, 1996). We propose 
in our investigation a second order sliding mode control 
following Emelyanov and Korovin. The control 
algorithms of second order are used so that the system 
deviations become cooler but a little more imprecise. 
Out of this approach the second order SM manifold 
becomes:                                                                                   

batch process”. We have overcome the restrictions 

we have overcome the obstacles with the singularities of 
the optimal control via finding and using of the 
Brunovsky normal form of the differential equation. The 
system was led to the working point from the “equivalent 

connected with the observability of the Monod kinetics; 

control in sliding mode” smoothly and stabilized in the 
optimal specific growth rate position (Pavlov, 2007). The 
solution and the determination of the optimal profile was 



  

 

 

The inclusion of a value model as objective 
function as part of a dynamical system reached a full 
mathematical description of the complex system 
“Biotechnologist-fed-batch process”. This is done with 
the use of the expected

 

utility theory and the stochastic 
programming.   Such a good objective function would 
allow the user to vary iteratively his value judgments and 
to correct iteratively the control law in agreement with his 
value judgments.
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VI. CONCLUSION

A methodology for specific growth rate optimal 
control is developed. This approach aims utilization of 
control based only on specific growth rate 
measurement. In the paper are investigated the 
possibilities of the second order sliding mode. We have 
overcome the restrictions connected with the 
observability of the Monod kinetics through Monod-
Wang and Wang-Yerusalimsky models; we have 
overcome the obstacles with the singularities of the 
optimal control via finding and using of the Brunovsky 
normal form of the differential equation. The system was 
led to the working point from the “equivalent control in 
sliding mode” smoothly and stabilized in the optimal 
specific growth rate position. This solution permits to win 
through difficulties arising from the biotechnological 
peculiarities in order to be obtained good control 
solutions.
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