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Specific Growth Rate and Sliding Mode
Stabilization of Fed-Batch Processes

Yuri Pavlov

Summary - The subject of this paper is specific growth rate
control of a fed-batch biotechnological process. The objective
of the paper is to present comfortable tools and mathematical
methodology that permits control  stabilization  of
biotechnological processes with synchronized utilization of
different mathematical approaches. The control design is
based on the equivalent transformations to Brunovsky normal
form of an enlarged Monod-Wang model, on a chattering
optimal control and sliding mode control solutions. This
approach permits new precise control solutions for
stabilization of continuous and fed-batch cultivation
processes. In the paper are investigated Monod-Wang kinetic
model and it singular Monod form. The simpler Monod and
Monod-Wang models are resiricted forms of Wang-
Yerusalimsky model. The Wang-Yerusalimsky kinetic model
could be accepted as a common model. A second order
sliding mode is investigated and compared with standard
sliding mode algorithms. The sliding mode control permits to
solve the control problems with smaller quantity of priory
information and elimination of parameters and measurements
noises.

Keywords . Sliding mode control, Fed-balch process,
Monod kinetic, Monod-Wang model, Optimal control,
Brunovsky normal form.

[. INTRODUCTION

iotechnological processes are relatively difficult
Bobjects for control.  Their features have been

discussed repeatedly. Among the most-widely
used control models for Biotechnological Processes are
the so called unstructured models, based on mass
balance. In these models the biomass is accepted as
homogeneous, without internal dynamic. Most widely
used are models based on the description of the kinetic
via the well known equation of Monod or some of its
modifications (Neeleman, 2002; Galvanauskas, 1998;
Staniskis, 1992 Pirt, 1975;).

One of the most important characteristics of
biotechnological processes, which make the control
design more difficult, is the change of cell population
state. A serious obstacle is the existence of noise of non
Gaussian type. This type of noise appears in the
measurement process as well as in the process of the
determination of the structure parameters of the model.
But may be the most serious obstacle is provoked by
the differences in the rate of changes of the elements of
the state space vector of the control system. Combined
with the strong nonlinearity of the control system of the
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Monod type this feature of the control system leads to
numerical instability or to unsatisfactory performance of
the control algorithms (Neeleman, 2002; Tzonkov, 2006;
Roeva, 2007).

The use of the classical methods of the linear
control theory is embarrassed, mainly due to the fact
that the noise in the system is not of Gaussian or
colored type. The changes of the values of the structural
parameters of the Monod kinetics models also lead to
bad estimates when using Kalman filtering (Diop, 2009).
Another serious flaw is that using classical linearization
and control solutions via the feeding rate, the linear
system is not observable (Wang, 1987). In addition, the
Monod kinetics models are characterized by another
feature of the optimal control solutions. The dynamic
optimization based on the Pontryagin maximum leads to
singular optimal control problems (Alekseev, 1979;
Krotov, 1973). The above problems have led to
development of extended dynamical models in which
the dynamic of the changes of the growth rate of the
BTP is described by separate equation on the general
differential equation. Such extended observable models
based on Monod kinetics are the Monod-Wang and
Wang-Yerusalimsky models used in the paper (Pavlov,
2008).

These characteristics of  biotechnological
processes and models have led to search for solutions
via approaches and methods related to a wide range of
contemporary mathematical areas (Delisa, 2001;
Levisauskas, 2003; Roeva, 2007; Bamieh, 2007;
Montseny, 2008; Diop, 2009). Such areas are adaptive
systems, nonlinear systems, theory of variable structure
systems and their main direction sliding mode control
(SMC) (Emelyanov, 1993; Selisteanu, 2007; Mohseni,
2009). In the last decade up to date methods and
approaches in the areas of functional analysis,
differential geometry and its modern applications in the
areas of nonlinear control systems as reduction,
equivalent diffeomorphic transformation to equivalent
systems and optimal control have been used
(Neeleman, 2002; Pavliov, 2001; Mahadevan, 20071;
Bamieh, 2007; Montseny, 2008).

In the paper is proposed a new control solution
based on a contemporary differential geometric
approach for exact linearization of non-linear Monod
type models. In our control solution are used observable
model based on Monod kinetics, namely the Monod-
Wang and Wang-Yerusalimsky kinetic models. Based on
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these models a control design for optimal control and
stabilization of the specific growth rate of fed-batch
biotechnological processes is presented. The control is
written based on information of the growth rate
(Neeleman, 2002).

II. MONOD AND MONOD-WANG
BIOTECHNOLOGICAL MODELS

Most widely used are models based on the
description of the kinetic via the well known equation of
Monod or some of its modifications. The rates of cell
growth, sugar consumption, concentration in a yeast
fed-batch growth are commonly described as follows:

—u > x-Fx
Ks+S Vv
. S F
S = —ku, X .~ (So—S 1
Y Ks+ S V( 0 ) (1)

This differential equation is often part of more
general and complex dynamic models. Here X is the
concentration of the biomass, S is the substrate
concentration, V is the volume of the bioreactor. The
maximal growth rate is denoted by u, and Ks is the
coefficient of Michaelis-Menten. With k we denote a
constant typical for the corresponding process. The
feeding rate is denoted by F. If the process is
continuous (F/V) is substituted by the control D, the
dilution rate of the biotechnological process (BTP). The
third equation is dropped off. Often used models are
described in table 1 (Staniskis, 1992; Zelic, 2004;
Galvanauskas, 1998; Tzonkov, 2006).

Table 1

Moae/ U
) S
Hma (1 +5)
S K
2 e .+ 5) (ki + A)
, S
Hmax (4 S+ S2/k)

The first model is the well known Monod type
model (Roeva, 2004, 2007), the second is the
Yerusalimsky model (Galvanauskas, 1998) and the third
model includes inhibition term in the denominator. The
non-observability of the Monod model has led to the
development of the widened dynamical models, in
which the dynamics of the specific growth rate of the
BTP is described via separate equation in the system of
differential equations. The dynamics of the growth rate u
in the Monod-Wang model is modeled as a first order
lag process with rate constant m, in response to the
deviation in the growth rate. This model called also the
model of Monod-Wang determines a linear observable

system in the classical linearization (Wang, 1987;
Pavlov, 2007).
v F
X=uX-——X
Xa
S = kux - (s,—9)
ARV @)
. S
J— m p—
M (44m Ket S £)
V =F
This model concerns a fed-batch

biotechnological process. Obviously model (1) is a
singular form of model (2). The comparison of both
models is shown in Figures (1, 2, 3):

Figure : Growth of the biomass using Monod model (1) and Wang-Monod model (2).
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Figure 3 . Feeding rate using Monod model (1) and Wang-Monod model (2).

One general description of the fed-batch
biotechnological process looks like (Pavlov, 2007).

F
X = puX —— X
HETY

S = —kuX + (S0 — 5)5,

a=m(py, H), 3)

S
(Ks+3S)

V=F,

. F

Here X denotes the concentration of biomass,
[0/l]; S — the concentration of substrate (glucose), [g/l];
V - bioreactor volume, [I]; F — substrate feed rate, [h];
S, — substrate concentration in the feed, [g/l]; Wmax -
maximum specific growth rate, [h"]; Ks — saturation
constant, [g/l]; k and k,; — yield coefficients, [g/g], m —
rate coefficient [-];. The dynamics of u in the Monod-
Wang model is modeled as a first order lag process with
rate constant m, in response to the deviation in & The
last equation describes the production of acetate (A).
This equation is dynamically equivalent to the first one
after the implementation of a simple transformation (X =
(1/k) A). That is why we replace A with X in
Yerusalimsky model. The best description is given by
the so called model of Wang-Yerusalimsky:

X = uX - X,
v

S = —kuX + (S0 — 5)5,

S K;
. (4)
(Ks+S) (i~ X) ),

pm=m(u,

V=F,

. F

In the formula X is the concentration of
biomass, [g/l]; S-the concentration of substrate
(glucose), [g/l]; Wbioreactor volume, [l]; F-substrate
feed rate (control input), [h7; Srsubstrate
concentration in the feed, [g/]; max-maximum specific
growth rate, [hY]; Kssaturation constant, [g/l]; k, ks
constants, [g/g]; m—coefficient [-]; £~the concentration
of ethanol, [g/l]; A-the concentration of acetate [g/l].
The system parameters are as follows: ;=059 [h],
Ks=0.045 [g/l], m=3 [], S¢=100 [g/l], k=1/Y gx,, k=2 [],
ks=1/Yax, ks=53 [], ki=50 [], Frmax= 0.19 [N], Vmax=1.5[]
. These data desribed an £. Coli process (Cockshott,
1999) and are chosen close to data in table 2 (Roeva,
2004, 2007):
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Table 2
Parameter Model 1 Model 2 Model 3
U [h-l] 0,55 0,52 0,54
max
k [gl—l] 0,039 0,027 0,029
S 1}
K (g 51,3 53,6 50,8
i
Y. ) [gg-l] 0,501 0,498 0,497
S/X
Y / [gg-l] 0,015 0,015 0,015
Al X 1

The last equation describes the production of
acetate (A). This equation is dynamically equivalent to
the first one after the implementation of a simple
transformation (X = (I/ks)A). The initial values of the state
variables are: X(0)=0.99; S(0)=0.01; u(0)=0.1; A(0) = 0,03;
V(0)=0.5.

The following mathematical condition (ke—x)
determines the Wang-Monod model as a restricted form
of the Wang-Yerusalimsky model (4). The Monod model
is a singular form of Wang-Monod model obtained by
omission of the third equation. That is why the Wang-
Yerusalimsky model is a more general model form.

Interesting moment is that these models are
dynamically equivalent to the following Brunovsky
normal form (Pavlov, 2001, 2004, 2007):

Y.1=Y2
Y,=Y; 5)
Y, =W

Here by Wis noted the control input. This model
is linear. The non-linearity of model (1) is transformed
and included in the input function W (Montseny, 2008;
Bamieh, 2007; Elkin, 1999; Gardner, 1992). The input
function W depends from the space vector of model (1)
and that has to be underlined because this is a limitation
of the application of the Pontryagin maximum principle
(Alekseev, 1979; Krotov, 1973; Hsu, 1972). Different
diffeomorfic transformations of the Monod, Wang and
Yerusalimsky models are analyzed in details in the
following papers (Pavlov, 2001, 2004, 2007, 2008). The
Brunovsky form is a linear model and permits easy
optimal control solutions with application of the
Pontryagin’s maximum principle.

The complexity of the biotechnological systems
and their singularities make them difficult objects for
control. They are difficult to control also because of the
fact that it is difficult to determine their optimal
technological parameters. These parameters can
depend on very complicated technological, ecological
or economical market factors. Their taking into account
in one mathematical model directly is impossible for the
time being. Because of this reason often in practice

© 2011 Global Journals Inc. (US)

expert estimates are used. From outside the estimates
are expressed only by the qualitative preferences of the
Biotechnologist. The preferences themselves are in rank
scale and bring the internal indetermination, the
uncertainty of the qualitative expression, which is a
general characteristic of human thinking. Because of
this reason here the mathematical models from the
Utility theory and stochastic programming can be used
(Kivinen, 2004; Fishburn, 1970; Keeney, 1993;
Aizerman, 1970).

Thus the incomplete information usually is
compensated with the participation of imprecise human
estimations. Our experience is that the human
estimation of the process parameters of a cultivation
process contains uncertainty at the rate of [10, 30] %.
Here is used a mathematical approach for elimination of
the uncertainty in the DM’s preferences based both on
the Utility theory and on the Stochastic programming
(Pavlov, 2010, 2011). The algorithmic approach permits
exact mathematical evaluation of the optimal specific
growth rate of the fed-batch cultivation process
according to the DM point of view even though the
expert thinking is qualitative and pierced by uncertainty.
The assessed utility criteria are shown on the following
figure 4:

e Umuy assessvEnT
I Seicled e SGR_512

UTILITY:

07
06
05
04
03

02
0
0

0 = =
05GR 3 06 SGI 8

- - = UTILITY scale: 0.5 - 1.5
s - —J Additive const: 0.6 + 0.5

SAVE the graphic
END

RETURN J || AMBIGUDUS ANSWERS | ERHANCE o ANSWERS |

Figure 4 . Expert utility versus Growth rate

Thus we achieve totally analytical mathematical
description of the complex system “Technologist-
biotechnological process “(Pavlov, 2010, 2011).

[II.  OPTIMAL CONTROL AND
STABILIZATION OF THE GROWTH RATE

The presentation of the control design follows
the presentations in papers (Pavlov, 2004, 2007, 2008).
We use the general model (Technologist-
biotechnological process). We preserve the notation (/)
for the DM utility function (Pavlov, 2010; Fishburn, 1970;
Keeney, 1993). The control design of the fed-batch
process is based on the next subsidiary optimal control

problem:
Max(Uu(7,,), where the variable p is the

specific growth rate, (ue€l0, tmax], D€[0, Dmaxl). Here
U(w) is an aggregation objective function (the utility
function — fig.4 and D is the control input (the dilution
rate):



max(U (u)), g €[0, tmax], t €[0,Ti ], D €[0, D may]

X = uX — DX

S=—kuX +(So-S)D (6)

p=m( — 1)

Hr (Ks+S)

When Ty is sufficiently small the optimization is
in fact “time minimization”. The differential equation in
(6) describes a continuous fermentation process. The
model permits exact linearization to the next Brunovsky

Y1
Y2

- U1,
2
us(u;—kuy),

Y; = u3 (u;— 3ku? + 2k?u; )+ m(um

X
Ul(X,S,/.l) SO—S
us(X,S,u)|=| S
us(X, S, ) H

The derivative of the function Y3 determines the
interconnection between W model (7) and J-model (6).
The control design is a design based on the Brunovsky
normal form and application of the Pontrjagin’s

normal form (Goursat, as regard to the differential forms)
(Gardner, 1992; Elkin, 1999; Paviov 2001):

Yl == YZ 3
Y2 = Y3 ’ (7)
Y3 =W .

The Brunovsky normal form of Wang-

Yerusalimsky model (4) is the same (Pavlov, 2008). Here
W denotes the control input. The new state vector (Y;,
Y,, Ys) is:

u, 2
———Uu u,—ku ,
(Kst 1) 3)(Uy 1)

maximum principle step by step for sufficiently small
time periods T. The optimal control law has the
analytical form (Pavlov, 2007):

Dopt = Sgn((é |C”u(l - 1))("’ _ t{(T - t)ﬂ(zl_ Zle) _ 1i|JDmax

where: sign(r)=1,r >0, sign(r)=0,r <0.

The optimal control law of Wang-Yerusalimsky
model (4) has the same form (Pavlov, 2008).This type of
control may be used only for cumulative criteria for
which the Bellman principle is valid in the optimal control
(Hsu, 1972). For example, such are the amount of
biomass at the end of the process and the time-
minimization optimal control. The sum is the derivative of
the utility function U).The time interval 7 can be the
step of discretization of the differential equation solver.

It is clear that the “time-minimization” control is
determined from the sign of the utility derivative. Thus,
the control input is D=Dp or D=0. The solution is a
“time-minimization” control (if the time period 7 is
sufficiently small) (Paviov, 2004). The control brings the
system back to the set point for minimal time in any

case of specific growth rate deviations. The
demonstration is shown in (Pavlov, 2007).
The  previous  solution  permits  easy

determination of the control stabilization of the fed-baich
process. The control law is based on the solution of the
next optimization problem:

Max(U((Tiw))), where the variable u is the
specific growth rafe, (uel0, umsx], Fel0, Fra]). Here
U(w) is the utility function in figure (3) and Fis the control
input (the substrate feed rate):

max(U (u(T in))), £ €[0, tmax], t €[0, Tine], F €[0, F max]

. F
X = iX =X
S=—kuX +(So-S)

v 10
: < (10)
ﬂ=m(ﬂmm—ﬂ)
V=F

The control law of the fed-batch process has
the same form (9) because D(t) is replaced with F(t)/V(t)
in the fed-batch model. Thus, the feeding rate A} takes
F)=Fmx Or F(t)=0, depending on D(t) which takes
D=Dx or D=0.

(Us)
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We conclude that the control law (9) bring the
system fo the optimal point (optimal growth rate) with a”
time minimization” conirol, starting from any deviation
point of the specific growth rate (Fig. 5).

Thus, we design the next control law:

1. At the interval [0, 4] the control is “time-
minimization” control (9), where u(t;))=(Xs-¢), £>0,
xzo=max(U(w)). D is replaced with F=yFna, 1>y>0,
when D=D . The choice of y depends on the step
of the equation solver and is not a part of the
optimization (here y=0.123);

2. Attheinterval [ty, t;] the control is F=0 ( u(ty)=(Xs0-€),
u(t2)=xz0- to be escaped an overregulation);

3. After this moment the control is the control (9) with
F=yFra, When D =Dg, (chattering control with
1>y>0).

The deviation of the fed-batch process with this
control is shown on figures (5, 6).

0.5
pPTI MAL CONTROL
0.45
04 /\ Second Order| Sliding M ode Control
’ \
w 0.35 \ / E—
< 03Hf J Wy M
x O \/ VYV \
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E : Specific Growth Rate
S 02 =
©0.15 Equivalent Sliding M ¢de Control \
0.1 \
0.05 e
ol e
(0] 2 4 6 8 10 12 14
TIME [h]

Fig. 5 - Stabilization of the fed-batch process
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Fig. 6 : Optimal profile

After the stabilization of the system in equivalent
sliding mode control position the system can be
maintained around the optimal parameters with sliding
mode control (Fig.5, 6). Possible solution in sliding

© 2011 Global Journals Inc. (US)

mode is alternation of u, (as a function of the
temperature and the acidity in the bioreactor) or
alternation of F (Pirt, 1975; Pavlov, 2007). The iterative
utility function design and the iterative corrections in the
DM preferences permit adjustment of the control law
and of the optimal control final results in agreement with
the changes in the opinion of biotechnologist. The
procedure could be interprets as learning procedure in
the two opposite directions, in direction to
biotechnologist or in direction to the final optimal
solution.

IV. MATHEMATICAL PROBLEMS ARISING
FROM THE SLIDING MODE CONTROL

Control solution results are shown in control
systems based on the solutions of variable structure
systems (Selisteanu, 2007; Mohseni, 2009). Here a
different problem arises. Good control via sliding mode
control is possible when the system is led to the initial
position in a point from the area of the “equivalent
control solution” (Pavlov, 2007, 2008). This is a specific
task for fed-batch control via information about the
growth rate of the biomass.

A common manifestation in sliding mode
control is some overregulations of the biotechnological
process. Such overregulations are shown in figures (7
and 8). In case of start in sliding mode in system
conditions different from the area of “equivalent sliding
mode control” then the process arrives in some over
regulations (Utkin, 1981).

Sliding mode control, continuos process
11 ] r ‘ . -

| | |
10 —— === ) R I i I |
a | L | 1 L |
Substrate concentration I |
ke | T | 1 r |
7P | | |
| L. ST 'Biomass - overregulation _ __
N i gl | |
5 -
| |
4 | = e .
. | | |
*I | | |
2l | Il | ] ! |
| _Growth rate - Sliding mode control |
1 - ¥ - =
LV Sl S e B Ry e R e '
o i ~ ~} . — — —1 e i — il |
o 2 4 & = 10 12

Time [h]

Fig.7 : Continuous process — overregulation of the
biomass in SMC
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Fig.8 . Fed batch process- overregulation of the growth rate in SMC

These characteristics of biotechnological
processes table new mathematical control problems for
discussion and resolution. The overregulations in SMC
are provoked by the differences in the rate of changes of
the elements of the state space vector of the control
system. It is needed control solution that fixes the
system in “equivalent control” position, staring from any
initial positions.

These characteristics of biotechnological
processes and models have led to search for solutions
via approaches and methods related to a wide range of
contemporary mathematical areas. Such areas are
differential geometry and its modern applications in the
areas of nonlinear control systems as diffeomorphic
transformation to equivalent systems. Solutions that fix
the system in “equivalent control” position, staring from
any initial positions are showed in (Fig. 9, 10).

o |||u||\I\I|l|!||ﬂTWW‘I\M\|muunii\ihiii\i‘i‘""I:‘I.l‘!l!‘lﬂ.!!1‘.‘.11!1!.!!!!‘!!“I\IIIH‘I\I‘M‘ e
: Ay

| | | | |
0] 1 2 3 4 5
Time [h]

Fig.9 . Continuous process — Optimal feed rate and
fixation of the biomass

stabilization under
deviations, noises etc.) (Emelyanov, 1993, 1996; Utkin
1987; Selisteanu, 2007). In the paper is demonstrated a
sliding mode control for stabilization of the specific
growth rate in “the best” growth rate (Pavlov, 2007).

0.6

0.5

°
IS

Specific growth rate
o

o
T ] ‘ 7777777
0'1 LU 7 ‘ 77777777
0 : : ‘
0 0.5 1 1.5 2 25 3 4.5
Time [h]

Fig. 70 : Fed batch process, Chattering control: growth
rate (1); feed rate control (2)

Detailed descriptions of such controls are

discussed in (Pavlov, 2007, 2008). In the last decade up
to date methods and approaches in the areas of
functional analysis, differential geometry and its modern
applications in the areas of nonlinear control systems as
reduction,
systems have been used for surmount the discussed
difficulties (Pavlov, 2005; Bamieh, 2007;
2008; Diop, 2009).

equivalent transformation to equivalent

Montseny,

V. SLIDING MODE CONTROL AND
STABILIZATION OF THE FED-BATCH
PROCESS

The sliding mode control is a good solution for
varying conditions (parameters

© 2011 Global Journals Inc. (US)
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For some types of BTP it is possible to choose
the control via the temperature and/or via changing the
acidity in the bioreactor (Pirt, 1975). What we mean is
indirect influence on the biomass maximum growth rate,
which, according to the contemporary researches, is
one of the main factors, determining the quality of the
cultivation process (Neeleman, 2002). Here the problem
about the observability of the control system arises
again, because this directly concerns the possibility for
satisfactory identification of the state space vector of the
control system and more specifically for the
determination of the specific growth rate of the BTP. This
group of questions is still a topical branch in the theory
of the biotechnological control systems (Diop, 2009).

The sliding mode in the paper is realized with
Wang-Monod model (3). This more exotic SM control
solution is obtained with alternations of the maximum
specific growth rate un(T, pH) through changes of the
temperature (t°) and the acidity of the bioreactor
medium (pH)(Pirt, 1975) = This control gives us the
possibility to use the temperature (#° and the acidity
(pH) as input control values. More classical SM solutions

with substrate concentration S as control value could be
seen in the literature (Selisteanu, 2007; Mohseni, 2009).

The sliding affine subspace is defined by the
equation S(u)=(u—-0,31)=0. The general stability
conditions are derived from the Liapunov’s function
(S(w))* (Utkin, 1981). In sliding mode control the
substrate concentration S in the bioreactor is constant.
The substrate  concentration § is  constant
Se=0,0498. The equivalent growth rate control is

determined exactly and the SM control is possible
(Utkin, 1981):

_ (Ks+ S)u

Ue
B s

(11)

The feeding rate At) is derived from the
substrate  concentration:  F(t)=(kX({)u()V(t)/(So-Se),
where X(.) is the quantity of biomass in the bioreactor.
Deviations of the system in sliding mode are showed in
Fig. (11, 12).

ing Mode Contrg
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Fig. 117 : Specific Growth Rate stabilization in sliding mode

The mathematical model and the corresponding
stability conditions determine the SM control law:

(Ks+ S)ﬂ _

Control = Aym = —H S TS

+,umz]sign(SI1)
(12)

The variations of the temperature (T) and the
acidity (pH) assure the chattering of u, around the
equilibrium (um=pmo+Apm),
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M“l=0_31,‘umo=w. (13)
Se
The value u,?> is a sufficiently small

supplementary value. This SM control law eliminates the
deviations of the parameters, noises and structure
modifications. This solution overcomes successfully
some of the difficulties mentioned above.
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The Russian scientists Emelyanov, Korovin and
Levant evolve high-order sliding mode methods in
control systems (Emelyanov, 1993, 1996). We propose
in our investigation a second order sliding mode control
following Emelyanov and Korovin. The control
algorithms of second order are used so that the system
deviations become cooler but a little more imprecise.
Out of this approach the second order SM manifold
becomes:

S1n él, whereS1=(u-0.31) and élistheti me

derivative. (14)

Here is used the so-called “contraction”
algorithm [5]. After Emelyanov the second order SM
control input in the “contraction” algorithm becomes:

Specific Growth Rate

Control => A = ‘H(MSKS; LSS

2 . 1 . S
x(§5|9n(51)+§5|9n ((Hmm

It is known that this algorithm ends for finite time
(Emelyanov, 1993, 1996). The input in second order SM
is smoother but the control becomes is more imprecise.

The performances of the system with this SM control are
showed in Fig. (13, 14) (Pavlov, 2007, 2008).
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The devolving from the “discontinuity” to
“continuity” in sliding mode control not only raise the
control quality but permits to solve control problems with
smaller quantity of priory information (Emelyanov, 1993,
1996).

By now we have reached a full mathematical
description of the complex system “Biotechnologist-fed-
batch process”. We have overcome the restrictions

connected with the observability of the Monod kinetics;
we have overcome the obstacles with the singularities of
the optimal control via finding and using of the
Brunovsky normal form of the differential equation. The
system was led to the working point from the “equivalent
control in sliding mode” smoothly and stabilized in the
optimal specific growth rate position (Pavlov, 2007). The
solution and the determination of the optimal profile was

© 2011 Global Journals Inc. (US)
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done via synchronized usage of several mathematical

approaches for modeling, reduction of nonlinear
system, application of the Pontryagin  maximum
principle.

VI.  CONCLUSION

A methodology for specific growth rate optimal
control is developed. This approach aims utilization of
control based only on specific growth rate
measurement. In the paper are investigated the
possibilities of the second order sliding mode. We have
overcome the restrictions connected with the
observability of the Monod kinetics through Monod-
Wang and Wang-Yerusalimsky models; we have
overcome the obstacles with the singularities of the
optimal control via finding and using of the Brunovsky
normal form of the differential equation. The system was
led to the working point from the “equivalent control in
sliding mode” smoothly and stabilized in the optimal
specific growth rate position. This solution permits to win
through difficulties arising from the biotechnological
peculiarities in order to be obtained good control
solutions.

The inclusion of a value model as objective
function as part of a dynamical system reached a full
mathematical description of the complex system
“Biotechnologist-fed-batch process”. This is done with
the use of the expected utility theory and the stochastic
programming.  Such a good objective function would
allow the user to vary iteratively his value judgments and
to correct iteratively the control law in agreement with his
value judgments.
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