
© 2011I . Mehul Mahrishi, Devendra Kr. Sharma, Anita Shrotriya. This is a research/review paper, distributed under the terms of
the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/),
permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Volume 11 Issue 23 Version 1.0 December 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

“Globally Recorded binary encoded Domain Compression
algorithm in Column Oriented Databases”

By Mehul Mahrishi, Devendra Kr. Sharma, Anita Shrotriya

Suresh Gyan Vihar University, Jaipur, Rajasthan, India

Abstract - through this study, we propose two algorithms. The first algorithm describes the
concept of compression of domains at attribute level and we call it as “Attribute Domain
Compression”. This algorithm can be implemented on both row and columnar databases. The
idea behind the algorithm is to reduce the size of large databases as to store them optimally. The
second algorithm is also applicable for both concepts of databases but will optimally work for
columnar databases. The idea behind the algorithm is to generalize the tuple domains by giving
it a value say (n) such that all other n-1 tuples or at least maximum can be identified.

Keywords : Compression, Columnar database, tuples, tables.

Globally Recorded binary encoded Domain Compression algorithm in Column Oriented Databases

Strictly as per the compliance and regulations of:

GJCST Classification : H.2.4

“Globally Recorded binary encoded Domain
Compression algorithm in Column Oriented

Databases”
Mehul Mahrishi α, Devendra Kr. SharmaΩ, Anita Shrotriya β

Abstract - through this study, we propose two algorithms. The
first algorithm describes the concept of compression of
domains at attribute level and we call it as “Attribute Domain
Compression”. This algorithm can be implemented on both
row and columnar databases. The idea behind the algorithm is
to reduce the size of large databases as to store them
optimally. The second algorithm is also applicable for both
concepts of databases but will optimally work for columnar
databases. The idea behind the algorithm is to generalize the
tuple domains by giving it a value say (n) such that all other n-
1 tuples or at least maximum can be identified.
Keywords : Compression, Columnar database, tuples,
tables.

I. INTRODUCTION

ill now we have studied that a database is a
collection of inter-related data which is organized
in a matrix with rows and columns. Each column

represents the attribute of that particular entity which is
converted into the database table, while each row of the
matrix generally called a tuple represents the different
values that an attribute can possess. Each row in a table
represents a set of related data, and every row in the
table has the same structure.

For example, in a table that represents
employee, each row would represent a single employee.
Columns might represent things like employee name,
employee street address, his SSN etc. In a table that
represents the relationship of employees with
departments, each row would relate one employee with
one department.

Table 2.1 : a Typical Row oriented Database

Column 1

Column 2

Column 3

Row 1

Row1 &
Column 1

 Row1 &
Column 2

 Row1 &
Column 3

Row 2

Row2 &
Column 1

 Row2 &
Column 2

 Row2 &
Column 3

Author α

: Dept. of Information Communication, Suresh Gyan Vihar

University, Jaipur, Rajasthan, India. E-mail : mehul.aqua@gmail.com

Author Ω

:

Dept. of Information Communication, Suresh Gyan Vihar

University, Jaipur, Rajasthan, India.

E-mail : er.devendrasharma@gmail.com

Author β

:

Dept. of Information Communication, Suresh Gyan Vihar

University, Jaipur, Rajasthan, India.

E-mail : anitashrotriya@gmail.com

II. RISE OF COLUMN DATABASE

The relational databases present today are
designed predominantly to handle online transactional
processing (OLTP) applications. A transaction (e.g. an
online purchasing a laptop through internet dealer)
typically maps to one or more rows in a relational
database, and all traditional RDBMS designs are based
on a per row paradigm. For transactional-based
systems, this architecture is well suited to handle the
input of incoming data.

Data warehouses are used in almost every large
organizations and research states that their size doubles
after every third year. Moreover the hourly workload of
these warehouses is huge and approximately 20lakhs
SQL statements are encountered hourly.

Warehouses contain a lot of data and hence
any leak or illegal publication of information risks the
individuals’ privacy. However, for applications that are
very read intensive and selective in the information being
requested, the OLTP database design isn’t a model that
typically holds up well. Business intelligence and
analytical applications queries often analyze selected
attributes in a database. The simplicity and performance
characteristic of columnar approach provides a cost
effective implementation.

Column oriented database generally known as
“columnar database” reinvents how data is stored in
databases. Storing data in such a fashion increases the
probability of storing adjacent records on disk and
hence odds of compression. This architecture suggests
a different model in which inserting and deleting
transactional data are done by a row-based system, but
selective queries that are only interested in a few
columns of a table are handled by columnar approach.

As we know that logical and critical queries
requires more number of rows that that of physical I/O
queries which are comparatively slower queries, the
performance gap between row-oriented architectures
and column-oriented architecture oftentimes widens as
the database grows.

Different methodologies such as indexing,
materialistic views, horizontal partitioning etc. are
provided by row oriented databases which are rather

T

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

27

20
11

D
ec

em
be

r

better ways of query execution, but they also have some

http://en.wikipedia.org/wiki/Value_added_tax_identification_number�

 disadvantages of their own. For example, in business
intelligence/analytic environments, the ad-hoc nature of
such scenarios makes it nearly impossible to predict
which columns will need indexing, so tables end up
either being over-indexed (which causes load and
maintenance issues) or not properly indexed and so
many queries end up

running much slower than desired.

III.

ANONYMIZATION

Warehouses contain a lot of data and hence

any leak or illegal publication of information risks the
individuals’ privacy. N-Anonymity is a major technique to
deidentify a data set. The idea behind the technique is
to determine the value of a tuple, say n, such that other
remaining n-1 tuples or at least maximum tuples can be
identified by the value of n.

The intensity of protection increases with
increase the number of n. One way to produce n
identical tuples

within the identifiable attributes is to
generalize values within the attributes, for example,
removing city and street information in a address
attribute.

There are many ways through which data
unidentification can be done and one of the most
appropriate

approaches is generalization. Various
generalization techniques include global recoding
generalization multidimensional recoding generalization,
and local recoding generalization. Global recoding
generalization maps the current domain of an attribute
to a

more general domain. For example, ages are
mapped from years to 10-year intervals.

Multidimensional recoding generalization maps
a set of values to another set of values, some or all of
which are more general than the corresponding
premapping values. For

example, {male, 32, divorce} is
mapped to {male, [30, 40), unknown}.

Local recoding
generalization modifies some values in one or more
attributes to values in more general domains.

IV.

PROBLEM

DEFINITION

AND

CONTRIBUTION

From the very beginning we have cleared that

our objective is to make every tuple of a published table
identical to at least n-1 other tuples. Identity-related
attributes are those which potentially identify individuals
in a table. For example, the record of an old-aged male
in the rural

area with the postcode of 302033 is unique in
Table 4.1, and hence, his problem of asthma may be
revealed if the table is published. To preserve his
privacy, we may generalize Gender and Postcode
attribute values such that each tuple in attribute set
{Gender, Age, Postcode} has at least two occurrences.

Table 4.1 :

Published Table

 No.

Gender

Age

Postcode

Problem

 01

Male

Young

302020

Heart

 02

Male

Old

302033

Asthma

 03

Female

Young

302015

Obesity

 04

Female

Young

302015

Obesity

Table 4.2 : View of published table by Global recording

No. Gender Age Postcode Problem

01 * Young 3020* Heart

02 * Old 3020* Asthma

03 * Young 3020* Obesity

04 * Young 3020* Obesity

A view after this generalization is given in Table
4.2. Since various countries use different postcode
schemes, we adopt a simplified postcode scheme,
where its hierarchy {302033, 3020*, 30**, 3***, *}
corresponds to {rural, city, region, state, unknown},
respectively.

a) Identifier attribute set
A set of attributes that potentially identifies the

individuals in a table is a set of identifier attribute. For
example, attribute set {Gender, Age, Postcode} in Table
1a is an identifier attribute set.

b) Equivalent Set (€)
An equivalent set of a table with respect to an

attribute set is the set of all tuples in the table containing
identical values for the attribute set. Table 4.1 forms a
equivalent set with respect to attributes {Gender, Age,
Postcode, Problem}. Therefore table 4.2 is the 2-
Anonymity view of the table 4.1 since two attribute are
used to deidentify the published table.

V. QUALITY MEASURES OF

ANONYMIZATION

After the study we can easily conclude that
larger the size of equivalent set easier the compression
and obviously cost of anonymization is a factor of
equivalent set. On the basis of this theory, we can
determine that:

()
∑

∑=
€

RECORDS
CAVG

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

28

20
11

D
ec

em
be

r
“Globally Recorded binary encoded Domain Compression algorithm in Column Oriented Databases”

 VI.

DOMAIN

COMPRESSION

THROUGH

 BINARY

CONVERSION

 We integrate two key methods, namely binary
encoding of distinct values and pair wise encoding of
attributes, to build our compression technique.

 a)

Encoding of Distinct values

This compression technique is based on the

assumption that the table we have published contains
minimum distinct domain of attributes and these values
repeat over the huge number of tuples present in the
database. Therefore, binary encoding of the distinct
values of each attribute, followed by representation of
the tuple values in each column of the relation with the
corresponding encoded values would transform the
entire relation into bits and thus compress it.

We will find out the number of distinct values in

each column and encode the data into bits accordingly.
For example consider an instant given below which
represents the two major attributes of a relation Patients.

 Table 4.3 : an instance of relation Student

Age

Problem

10

Cough & Cold
 20

Cough & Cold

 30

Obesity
 50

Diabetes

 70

Asthma

Now if we adopt the concept of N-
Anonymization with global recording (refer 4.2), we can
map the

current domain of attributes to more general

domain. For example Age can be mapped into 10-Age
interval as shown in the figure 4.4.

 To examine the compression benefits achieved
by this method assume that Age is of integer type and
has 5 distinct values as

in Table 4.3. Suppose if there

are 50 patients then the total storage required by Age
attribute will be 50*size of (int) = 50*4 = 200 bytes.

 With our compression technique, we find that
there are 9 distinct values for age therefore we need the
upper bound

of log (9) i.e. 4 bits to represent each data

value in the Age field. It is easy to calculate that we
would need 50*4 (bits) = 200 bits = 25 bytes

which are

reasonably less.
 We call this as our stage 1

of our compression

which just transforms one column into bits. If we apply
this compression to all columns of the table, the result
will be significant.

Table 4.4 : Representing Stage 1 of compression
technique

 Age

Problem

 10-20

Cough & Cold

 30-40

Obesity

 50-60

Diabetes

 70-100

Asthma

Table 4.5 :

Representing Stage 1 with binary

compression

Age

Problem

00

Cough & Cold

01

Obesity

10

Diabetes

11

Asthma

b) Paired Encoding
It can be easily seen from the above example

that besides optimizing the memory requirement of the
relations, above encoding technique is also helpful in
reducing redundancy (repetition values) from the
relation. That is, it is likely that they are few distinct
values of even (column1, column2) taken together, in
addition to just column1’s distinct values or column2’s
distinct values. We then represent the two columns
together as a single column with pair values transformed
according to the encoding. This constitutes Stage 2 of
our compression in which we use the bit-encoded
database from Stage 1 as input and further compress it
by coupling columns in pairs of two, applying the
distinct-pairs technique outlined. To examine the further
compression advantage achieved, suppose that we
couple ‘Age’ and ‘Problem’ columns. We can see in our
table 4.3 that there are 5 distinct pairs (10, Cough &
Cold), (20, cough & cold), (30, obesity), (50, Diabetes),
(70, Asthma) and hence our upper bound is log (5) = 2
bits approx. Table 4.6 shows the result of stage 2
compression.

Table 4.6 : Representing Stage 2 compression

Age Problem

00 00

01 01

10 10

11 11

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

29

20
11

D
ec

em
be

r

“Globally Recorded binary encoded Domain Compression algorithm in Column Oriented Databases”

 After compressing the attribute, pairing or
coupling of attributes is done. All the columns are
coupled in pair of two in a similar manner. If the
database contains even number of columns it is
straightforward. If the columns are odd, we can
intelligently choose any of the columns to be
uncompressed.

 Table 4.7

:

Representing Stage 2 compression coupling

Age-

Problem

00

 01
 10
 11

After this compression technique is applied we
can easily calculate the space required i.e.

Before compression: 5*(4) +4*(4) = 36 bytes

After Compression and coupling: 4*2 = 8 bits.

VII.

CONCLUSION

In this study we discuss two different

compression techniques embedded with each other to
form a “Globally Recorded binary encoded Domain
Compression”.

 The first study defines generalization and
discuss its different type in anonymization the attributes.
It discusses how to handle a major problem in global
recoding generalization, inconsistent domains in a field
of a generalized table, and propose a method to
approach the problem. The tables in the examples
proposed global recoding method based on n-
anonymity, and consistency.

 The second technique focuses on the extension
of existing compression by encoding the domain in
binary form and further encoding pairs of column values.
It shows how coupling of columns can be effective if
attributes are properly rearranged. In particular I found
that in most cases it is beneficial to couple the primary
key with the column having the maximum number of
distinct values. Also, columns with very few distinct
values should be paired with columns with a large
number of dissimilar values. Functional dependencies
should be determined to achieve better compression of
related attributes. Overall, a better knowledge of the
data distribution leads to better compression. Based on
the database and the application environment being
targeted, the optimum stage up to which compression is
feasible and worthy also needs to be determined, i.e. we
need to decide the point at which the extra compression
achieved is not worth the performance overhead
involved.

REFERENCES

REFERENCES

REFERENCIAS

 1.

http://www.tpc.org/tpch/spec/tpch2.1.0.pdf

2.

Goldstein, J., Ramakrishna, R., Shaft, U.: Squeezing
the most out of relational database Systems, In
Proc. of ICDE (2000) page 81.

3.

Software AG. ADABAS im Uberblick. Technical
Report ADA5000D006IB, Software AG,Munich,
Germany, January 1994.

4.

A Deeper Look at Compression in Analytic
Database Systems

5.

Integrating Compression and Execution in Column-
Oriented Database Systems

6.

Jorge Vieira1, Jorge Bernardino2, Henrique
Madeira3 Efficient compression of text attributes of
data warehouse dimensions.

7.

Till Westmann1∗

Donald Kossmann2 Sven Helmer1
Guido Moerkotte1 efficient compression of text
attributes of data warehouse dimensions

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
X
II
I
 V

er
si
on

 I

30

20
11

D
ec

em
be

r
“Globally Recorded binary encoded Domain Compression algorithm in Column Oriented Databases”

	“Globally Recorded binary encoded Domain Compressionalgorithm in Column Oriented Databases”
	Authors

	Keywords
	I. INTRODUCTION
	III.ANONYMIZATION
	IV.PROBLEMDEFINITIONANDCONTRIBUTION
	V. QUALITY MEASURES OFANONYMIZATION
	VI.DOMAINCOMPRESSIONTHROUGHBINARYCONVERSION
	a)Encoding of Distinct values
	b) Paired Encoding

	VII.CONCLUSION
	REFERENCESREFERENCESREFERENCIAS

