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Abstract - through this study, we propose two algorithms. The 
first algorithm describes the concept of compression of 
domains at attribute level and we call it as “Attribute Domain 
Compression”. This algorithm can be implemented on both 
row and columnar databases. The idea behind the algorithm is 
to reduce the size of large databases as to store them 
optimally. The second algorithm is also applicable for both 
concepts of databases but will optimally work for columnar 
databases. The idea behind the algorithm is to generalize the 
tuple domains by giving it a value say (n) such that all other n-
1 tuples or at least maximum can be identified. 
Keywords : Compression, Columnar database, tuples, 
tables. 

I. INTRODUCTION 

ill now we have studied that a database is a 
collection of inter-related data which is organized 
in a matrix with rows and columns. Each column 

represents the attribute of that particular entity which is 
converted into the database table, while each row of the 
matrix generally called a tuple represents the different 
values that an attribute can possess. Each row in a table 
represents a set of related data, and every row in the 
table has the same structure. 

For example, in a table that represents 
employee, each row would represent a single employee. 
Columns might represent things like employee name, 
employee street address, his SSN etc. In a table that 
represents the relationship of employees with 
departments, each row would relate one employee with 
one department. 

Table 2.1 : a Typical Row oriented Database 
 

Column 1
 

Column 2
 

Column 3
 

Row 1
 

Row1 & 
Column 1

 Row1 & 
Column 2

 Row1 & 
Column 3

 

Row 2
 

Row2 & 
Column 1

 Row2 & 
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 Row2 & 
Column 3
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II. RISE OF COLUMN DATABASE 

The relational databases present today are 
designed predominantly to handle online transactional 
processing (OLTP) applications. A transaction (e.g. an 
online purchasing a laptop through internet dealer) 
typically maps to one or more rows in a relational 
database, and all traditional RDBMS designs are based 
on a per row paradigm. For transactional-based 
systems, this architecture is well suited to handle the 
input of incoming data.  

Data warehouses are used in almost every large 
organizations and research states that their size doubles 
after every third year. Moreover the hourly workload of 
these warehouses is huge and approximately 20lakhs 
SQL statements are encountered hourly.  

Warehouses contain a lot of data and hence 
any leak or illegal publication of information risks the 
individuals’ privacy. However, for applications that are 
very read intensive and selective in the information being 
requested, the OLTP database design isn’t a model that 
typically holds up well. Business intelligence and 
analytical applications queries often analyze selected 
attributes in a database. The simplicity and performance 
characteristic of columnar approach provides a cost 
effective implementation. 

Column oriented database generally known as 
“columnar database” reinvents how data is stored in 
databases. Storing data in such a fashion increases the 
probability of storing adjacent records on disk and 
hence odds of compression. This architecture suggests 
a different model in which inserting and deleting 
transactional data are done by a row-based system, but 
selective queries that are only interested in a few 
columns of a table are handled by columnar approach. 

As we know that logical and critical queries 
requires more number of rows that that of physical I/O 
queries which are comparatively slower queries, the 
performance gap between row-oriented architectures 
and column-oriented architecture oftentimes widens as 
the database grows.  

Different methodologies such as indexing, 
materialistic views, horizontal partitioning etc. are 
provided by row oriented databases which are rather 
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better ways of query execution, but they also have some 

http://en.wikipedia.org/wiki/Value_added_tax_identification_number�


 
 disadvantages of their own. For example,  in business 
intelligence/analytic environments, the ad-hoc nature of 
such scenarios makes it nearly impossible to predict 
which columns will need indexing, so tables end up 
either being over-indexed (which causes load and 
maintenance issues) or not properly indexed and so 
many queries end up

 

running much slower than desired.

 
III.

 

ANONYMIZATION

 
Warehouses contain a lot of data and hence 

any leak or illegal publication of information risks the 
individuals’ privacy. N-Anonymity is a major technique to 
deidentify a data set. The idea behind the technique is 
to determine the value of a tuple, say n, such that other 
remaining n-1 tuples or at least maximum tuples can be 
identified by the value of n.

 

The intensity of protection increases with 
increase the number of n. One way to produce n 
identical tuples

 

within the identifiable attributes is to 
generalize values within the attributes, for example, 
removing city and street information in a address 
attribute.

 

There are many ways through which data 
unidentification can be done and one of the most 
appropriate

 

approaches is generalization. Various 
generalization techniques include global recoding 
generalization multidimensional recoding generalization, 
and local recoding generalization. Global recoding 
generalization maps the current domain of an attribute 
to a

 

more general domain. For example, ages are 
mapped from years to 10-year intervals. 

 

Multidimensional recoding generalization maps 
a set of values to another set of values, some or all of 
which are more general than the corresponding 
premapping values. For

 

example, {male, 32, divorce} is 
mapped to {male, [30, 40), unknown}.

 

Local recoding 
generalization modifies some values in one or more 
attributes to values in more general domains.

 
IV.

 

PROBLEM

 

DEFINITION

 

AND

 

CONTRIBUTION

 
From the very beginning we have cleared that 

our objective is to make every tuple of a published table 
identical to at least n-1 other tuples. Identity-related 
attributes are those which potentially identify individuals 
in a table. For example, the record of an old-aged male 
in the rural

 

area with the postcode of 302033 is unique in 
Table 4.1, and hence, his problem of asthma may be 
revealed if the table is published. To preserve his 
privacy, we may generalize Gender and Postcode 
attribute values such that each tuple in attribute set 
{Gender, Age, Postcode} has at least two occurrences.

 
 

Table 4.1 :

 

Published Table

 No.

 

Gender

 

Age

 

Postcode

 

Problem

 01

 

Male

 

Young

 

302020

 

Heart

 02

 

Male

 

Old

 

302033

 

Asthma

 03

 

Female

 

Young

 

302015

 

Obesity

 04

 

Female

 

Young

 

302015

 

Obesity

 

Table 4.2 : View of published table by Global recording 

No. Gender Age Postcode Problem 

01 * Young 3020* Heart 

02 * Old 3020* Asthma 

03 * Young 3020* Obesity 

04 * Young 3020* Obesity 

A view after this generalization is given in Table 
4.2. Since various countries use different postcode 
schemes, we adopt a simplified postcode scheme, 
where its hierarchy {302033, 3020*, 30**, 3***, *} 
corresponds to {rural, city, region, state, unknown}, 
respectively.  

a) Identifier attribute set 
A set of attributes that potentially identifies the 

individuals in a table is a set of identifier attribute. For 
example, attribute set {Gender, Age, Postcode} in Table 
1a is an identifier attribute set.  

b) Equivalent Set (€) 
An equivalent set of a table with respect to an 

attribute set is the set of all tuples in the table containing 
identical values for the attribute set. Table 4.1 forms a 
equivalent set with respect to attributes {Gender, Age, 
Postcode, Problem}. Therefore table 4.2 is the 2-
Anonymity view of the table 4.1 since two attribute are 
used to deidentify the published table.  

V. QUALITY MEASURES OF 

ANONYMIZATION 

After the study we can easily conclude that 
larger the size of equivalent set easier the compression 
and obviously cost of anonymization is a factor of 
equivalent set. On the basis of this theory, we can 
determine that: 

( )
∑

∑=
€

RECORDS
CAVG

 

 

©  2011 Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
T
ec

hn
ol
og

y 
 V

ol
um

e 
X
I 
Is
su

e 
X
X
II
I 
 V

er
si
on

 I
 

  
  
  
 

  
  
  

  

28

20
11

D
ec

em
be

r
“Globally Recorded binary encoded Domain Compression algorithm in Column Oriented Databases”



 
 VI.

 

DOMAIN

 

COMPRESSION

 

THROUGH

 BINARY

 

CONVERSION

 We integrate two key methods, namely binary 
encoding of distinct values and pair wise encoding of 
attributes, to build our compression technique.

 a)

 

Encoding of Distinct values

 
This compression technique is based on the 

assumption that the table we have published contains 
minimum distinct domain of attributes and these values 
repeat over the huge number of tuples present in the 
database. Therefore, binary encoding of the distinct 
values of each attribute, followed by representation of 
the tuple values in each column of the relation with the 
corresponding encoded values would transform the 
entire relation into bits and thus compress it.

 
We will find out the number of distinct values in 

each column and encode the data into bits accordingly. 
For example consider an instant given below which 
represents the two major attributes of a relation Patients. 

 Table 4.3 : an instance of relation Student
 

Age
 

Problem
 

10
 

Cough & Cold
 20

 
Cough & Cold

 30
 

Obesity
 50

 
Diabetes

 70
 

Asthma
 

Now if we adopt the concept of N-
Anonymization with global recording (refer 4.2), we can 
map the

 
current domain of attributes to more general 

domain. For example Age can be mapped into 10-Age 
interval as shown in the figure 4.4.

 To examine the compression benefits achieved 
by this method assume that Age is of integer type and 
has 5 distinct values as

 
in Table 4.3. Suppose if there 

are 50 patients then the total storage required by Age 
attribute will be 50*size of (int) = 50*4 = 200 bytes.

 With our compression technique, we find that 
there are 9 distinct values for age therefore we need the 
upper bound

 
of log (9) i.e. 4 bits to represent each data 

value in the Age field. It is easy to calculate that we 
would need 50*4 (bits) = 200 bits = 25 bytes

 
which are 

reasonably less.
 We call this as our stage 1

 
of our compression 

which just transforms one column into bits. If we apply 
this compression to all columns of the table, the result 
will be significant.

 
 

 

Table 4.4 : Representing Stage 1 of compression 
technique

 Age

 

Problem

 10-20

 

Cough & Cold

 30-40

 

Obesity

 50-60

 

Diabetes

 70-100

 

Asthma

 

Table 4.5 :
 
Representing Stage 1 with binary 

compression
 

Age
 

Problem
 

00
 

Cough & Cold
 

01
 

Obesity
 

10
 

Diabetes
 

11
 

Asthma
 

b) Paired Encoding 
It can be easily seen from the above example 

that besides optimizing the memory requirement of the 
relations, above encoding technique is also helpful in 
reducing redundancy (repetition values) from the 
relation. That is, it is likely that they are few distinct 
values of even (column1, column2) taken together, in 
addition to just column1’s distinct values or column2’s 
distinct values. We then represent the two columns 
together as a single column with pair values transformed 
according to the encoding. This constitutes Stage 2 of 
our compression in which we use the bit-encoded 
database from Stage 1 as input and further compress it 
by coupling columns in pairs of two, applying the 
distinct-pairs technique outlined. To examine the further 
compression advantage achieved, suppose that we 
couple ‘Age’ and ‘Problem’ columns. We can see in our 
table 4.3 that there are 5 distinct pairs (10, Cough & 
Cold), (20, cough & cold), (30, obesity), (50, Diabetes), 
(70, Asthma) and hence our upper bound is log (5) = 2 
bits approx. Table 4.6 shows the result of stage 2 
compression. 

Table 4.6 : Representing Stage 2 compression 

Age Problem 

00 00 

01 01 

10 10 

11 11 

 

© 2011 Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
T
ec

hn
ol
og

y 
 V

ol
um

e 
X
I 
Is
su

e 
X
X
II
I 
 V

er
si
on

 I
 

  
  
     

  

29

  
 

20
11

D
ec

em
be

r

“Globally Recorded binary encoded Domain Compression algorithm in Column Oriented Databases”



 
 After compressing the attribute, pairing or 
coupling of attributes is done. All the columns are 
coupled in pair of two in a similar manner. If the 
database contains even number of columns it is 
straightforward. If the columns are odd, we can 
intelligently choose any of the columns to be 
uncompressed.

 Table 4.7

 

:

 

Representing Stage 2 compression coupling

 
Age-

 
Problem

 
00

 01
 10
 11
 

After this compression technique is applied we 
can easily calculate the space required i.e. 

 
Before compression: 5*(4) +4*(4) = 36 bytes

 
After Compression and coupling: 4*2 = 8 bits.

 
VII.

 
CONCLUSION

 
In this study we discuss two different 

compression techniques embedded with each other to 
form a “Globally Recorded binary encoded Domain 
Compression”. 

 The first study defines generalization and 
discuss its different type in anonymization the attributes. 
It discusses how to handle a major problem in global 
recoding generalization, inconsistent domains in a field 
of a generalized table, and propose a method to 
approach the problem. The tables in the examples 
proposed global recoding method based on n-
anonymity, and consistency.

 The second technique focuses on the extension 
of existing compression by encoding the domain in 
binary form and further encoding pairs of column values. 
It shows how coupling of columns can be effective if 
attributes are properly rearranged. In particular I found 
that in most cases it is beneficial to couple the primary 
key with the column having the maximum number of 
distinct values. Also, columns with very few distinct 
values should be paired with columns with a large 
number of dissimilar values. Functional dependencies 
should be determined to achieve better compression of 
related attributes. Overall, a better knowledge of the 
data distribution leads to better compression. Based on 
the database and the application environment being 
targeted, the optimum stage up to which compression is 
feasible and worthy also needs to be determined, i.e. we 
need to decide the point at which the extra compression 
achieved is not worth the performance overhead 
involved. 
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