
© 2011 V.Sarasvathi , Dr.A.Santhakumaran. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Volume 11 Issue 5 Version 1.0 April 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
ISSN:

Abstract-

: Medical diagnosis can be viewed as a pattern classification problem: based a set of

input features the goal is to classify a patient as having a particular disorder or as not having it.
Thyroid hormone problems are the most prevalent problems nowadays. In this paper an artificial
neural network approach is developed using a back propagation algorithm in order to diagnose
thyroid problems. It gets a number of factors as input and produces an output which gives the
result of whether a person has the problem or is healthy. It is found that back propagation
algorithm is proved to be having high sensitivity and specificity.

Classification: GJCST Classification: FOR Code: 080102,080108,080110

Towards Artificial Neural Network Model To Diagnose Thyroid Problems

 Strictly as per the compliance and regulations of:

©2011 Global Journals Inc. (US)

Towards Artificial Neural Network Model To
Diagnose Thyroid Problems

V.Sarasvathi , Dr.A.Santhakumaran

Abstract: Medical diagnosis can be viewed as a pattern
classification problem: based a set of input features the goal
is to classify a patient as having a particular disorder or as not
having it. Thyroid hormone problems are the most prevalent
problems nowadays. In this paper an artificial neural network
approach is developed using a back propagation algorithm in
order to diagnose thyroid problems. It gets a number of
factors as input and produces an output which gives the
result of whether a person has the problem or is healthy. It is
found that back propagation algorithm is proved to be having
high sensitivity and specificity.

I. INTRODUCTION
edical decision making has become very
essential nowadays because of the awareness
of various health problems. It can be viewed as

a pattern recognition problem whereby various patterns
are recognized in order to arrive at a conclusion[1]. A
group of causing factors of a particular disease or
problem is given as inputs. Based on the given input
values a decision will be arrived. The decision making
can be done using an artificial neural network approach.
In this paper thyroid hormonal problems are diagnosed
using an artificial neural network approach. The back
propagation learning algorithm is used to train the
neural network. The efficiency of the network is
analyzed. It is concluded to enhance the algorithm for
still better results. This paper is organized as sections
as follows: Section II discusses about medical decision
making and it’s advantages. Section III introduces
about thyroid problems due to hormonal activities.
Section IV gives brief explanation about neural
networks. Section V gives the steps to construct a
neural network for thyroid diseases diagnosis. Section
VI analyses the given back propagation algorithm.
Section VII concludes the article giving future directions.

II. MEDICAL DECISION MAKING
Medical decision making includes diagnosis

,prognosis ,classification and treatment of various

diseases which can be acute or chronic. When the
disease are diagnosed by the physician, sometimes
there may be slight variations due to the inaccuracy of
data or ‘noise’ in the data. when the data are fed
through an information system, it can produce excellent
results. Now a days, due to advance in information
technology, computer based medical decision making
systems have become essential in the health care
industry. In most of the African countries like Rwanda,
and Mozambique the physician people ratio is found to
be 1 :25 000. Countries like these will be benefitted by
implementing the computer based medical decision
making.[4] .Medical decision making has the following
advantages.(i) The data collection can be either fed
through an operator or the patients themselves. (ii)
images, X-rays also can be fed to the system (iii)
Getting result is faster (iv) they are more accurate than
done by physicians. It involves pattern recognition
techniques. Decision making can be done through
artificial intelligence techniques. Using these we can
diagnose diseases like diabetes, thyroid, heart
problems, hypertension, cancer ,HIV etc effectively. The
advances in information technology has made every
thing possible in today’s medical field. [5]

III.

THYROID

DISEASES

Thyroid is a butterfly shaped gland found just
below the Adam’s apple of our neck. It is responsible
for the metabolism activities of our body. When it
functions properly it produces two hormones called
triiodiothrinine (T3) and thyroxin(T4). A hormone called
Thyroid Stimulating Hormone (TSH) which is secreted
by pituitary gland is also responsible for T3 and T4
hormones. TSH,T3 and T4 decides the health of a
person. Over activity of thyroid hormones results in
hyperthyroidism where us the under activity of the same
results in hypothyroidism. Thyroid disease can be
diagnosed using the following tests (i)
Radioimmunoassay test for TSH,T3 and T4. (ii)
scanning for goiter

or nodules etc. thyroid diseases are
found in KERALA based people because the iodine
content problem. More than 20% of the Americans are
said to have thyroid problems [9]. People in the age
group of 20 to 40 are mostly affected by thyroid
disorders. Women

are having more risk than men in
developing thyroid disorders. They can develop thyroid
disorders during their pregnancy also.[10]

M

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

53

About α- Assistant Professor in Computer science, Cms college,
Coimbatore,Tamilnadu, India.

About - Reader in Statistics,Salem Sowdeswari College,Salem,
Tamilnadu India.

Ω
E-mail- vsarasvathi@gmail.com

α Ω

©2011 Global Journals Inc. (US)

6.

Pregnancy

7.

Iodine intake

8.

Medication for thyroid problems.

9.

thyroid cancer

10.

Thyroid supplement

The T3,T4 and TSH tests are done using radio
immuno chem. Assay test.[11]

IV.

NEURAL

NETWORKS

Neural networks called as Artificial Neural
Networks, connectionist networks, neuroid, are
massively parallel processors which get more number
of inputs at a time and produces output based on some
processing algorithms. They are constructed using
neurons. Neurons are the processing elements
consisting of a set of inputs , uses some activation
functions and produce output(s).They resemble like
biological neurons. A neuron can be represented by the
following figure

Inputs

Output

PE-Processing element

When such neurons are connected together,
the result is called neural network. Each layer is
connected by the weights from previous layer neurons
except for the input layer. The processing is done using
special functions called activation functions. The one
which is used in our research is multilayer feed forward
network (MLF). It has one input layer, one output and
one or more processing layers. A feed forward neural
network is trained using back propagation, radial basis
function, gradient descent method etc. the method
selected in this paper is back propagation method. If
the layer has got n neurons having index x1

to xn,

a
hidden layer having m neurons ,and an output layer
having k neurons, the weight of each neuron in hidden
layer is calculated using activation functions applied to
the input layers.

The activation functions can be sigmoidal
function,tanh function etc.the hidden layer and output
layer are also mapped using some activation functions.

A neural network can be represented by the
following diagram.

Figure I –structure of a back propagation neural network

In the above diagram , rectangles represent
input layer neurons, circles represent hidden layer
neurons and the oval represents the output layer
neuron.the neurons in each layer don’t have intra
neuron associations where as inter layer association is
there for any two consecutive layers.[6]

Neural networks learn by examples.Once they
learn propaerly,they can be used to recognize any
pattern.[12]

The neural networks have to be trained using
training set for error convergence and tested for
checking performance. They have to be validated also.

Neural network performance can be accessed
using two factors

called specificity and sensitivity.

Sensitivity is the ratio of patients with disease whose
test are positive. Specificity is the proportion of patients
with out disease whose tests are negative. They are
calculated as

Sensitivity = T/(T+a) (1)

Specificity = F/ (F+b) (2)

 where T=number of true positives
 F=number of true negatives
 a= number of true positives +number of false
negatives where
 b= number of true negatives +number of false
positives

where #true positives and #false negatives are
the number of thyroid correctively classified and in
correctively classified as normal case respectively.
Likewise, #true negatives and #false positives are the
number of correctly and incorrectly classified as thyroid
problems respectively.[5]

Neural networks can be trained using various
learning algorithms classified as supervised and
unsupervised learning algorithms. Gradient descent,
Radial Basis Function(RBF),Learning vector
quantization, back propagation are some of the learning
algorithms. Gradient descent is one of the supervised
learning algorithms.[7][8]

Back propagation is one of the gradient
descent learning algorithm applied in feed forward
neural networks. The output may be a binary result or
classification having multiple results. BPN assigns

PE

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

54

Towards Artificial Neural Network Model To Diagnose Thyroid Problems

1. Age
2. Sex
3. T3
4. T4
5. TSH

Thyroid disease is caused by the following factors
which can be classified as controllable and contributing
factors.

©2011 Global Journals Inc. (US)

weights to the input layer neurons, Calculates the
weight of hidden layer neurons and from hidden layer
neurons the output values are calculated[2][7]. The
errors from the output are to be adjusted and again the
process is repeated for another set of weights.
Therefore BPN can otherwise be called as Error Back
Propagation neural networks(EBP).

V. NEURAL NETWORKS AND THYROID
DIAGNOSIS

A neural network having 6 nodes in the input
layer , 4 nodes in the hidden layer and one node in the
output layer[13]. For the input layer , the controllable
and contributing factors have been used. In order to
have the hidden layer , 1>m<= 2n number of
neurons have been used where m is the number of
neuron in hidden layer and n is the number of neurons
in the input layer.

From the available data, training set, test set
and validation set can be selected using some criterion.
Data values have to be normalized between 0 and 1 or
as discrete values -1 and 1. The normalization is done
by the following formula

(4)

The so constructed neural network has been

trained and tested using 80 samples.

VI. FUTURE WORK
When the network was trained using back

propagation, error convergence takes a long time.
When the number of samples become large, Back
propagation algorithm is slow in performance. Therefore
as the future research, a suitable modification has to be
performed so as to improve the performance. The
modification can be the structure network, selection of
appropriate factors, increase in hidden nodes, number
of hidden node neurons etc. Efficiency of the algorithm
can be improved by providing various training sets and
test sets.

References Références Referencias
1. [1] ‘Weighted fuzzy classification with

integrated learning method for medical
diagnosis’Tomoharu Nakashima, Gerald
Schaefer, Yasuyuki Yokota, Shao Ying Zhu and
Hisao Ishibuchi,Proceedings of the 2005
IEEE,Engineering in Medicine and Biology 27th
Annual Conference,Shanghai, China,
September 1-4, 2005

2. Diagnosing Appendicitis Using
Backpropagation Neural Network and Bayesian
Based Classifier ,E.Sivasankar, Dr.R.S.Rajesh
and Dr.S.R.Venkateswaran International Journal

of Computer Theory and Engineering, Vol. 1,
No. 4, October, 2009, 1793-8201

3. http:\\www.buzzle.com –thyroid problems-
symptoms of hyperthyroidism and
hypothyroidism

4. EDWARD A. FRIEDMAN ,Computer-Assisted

Medical Diagnosis for Rural Sub-Saharan
Africa,

5. V.Sarasvathi,Dr.A.Santhakumaran ,AN
ARTIFICIAL NEURAL NETWORK APPROACH
IN THE DIAGNOSIS OF THYROID DISEASES
DUE TO HORMONES,International conference
on Computer Applications and Information
technology,Coimbatore,sep 3, 2010

6. Neural networks and machine learning, Simon
Haykin,PHI,Third edition- 2010.

7. S.Rajasekaran,G.A.Vijayalakshmi Pai,Neural
networks,Fuzzy Logic and Genetic
Algorithms,Prentice Hall 2005.

8. N.K.Bose, P.Liang, Neural Network
Fundamentals, with Graphs,algorithms and
Applications –Tata McGraw hill edition

9. Anitha Thakur,surekha Bhanot, S.N.Mishra,
Early diagnosis of Ishemia Stroke using Neural
network, Proceedings of International
Conference on Man Machine
systems(IcoMMS),11-13 october 2009,Batu
Ferringh,Penang,Malsiya ,2B10-1 -2B10-5.

10. http:\\www.buzzle.com –thyroid problems-
symptoms of hyperthyroidism and
hypothyroidism

11. Canan SENOL,Tulay YILDRIM,’Thyroid and
breast cancer diagnosis using fuzzy neural
networks-II 390-393

12. Guoqiang (Peter) Zhang,Victor L.Berardi, An
investigation of neural networks in thyroid
function diagnosis, Health care management
science 1 (1998) 29-37

13. Rudiger W.Brause, J.W.Goethe university,
Computer science department,Frankfurt a
M.Germany, Medical analysis and diagnosis by
neural networks.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

55

Towards Artificial Neural Network Model To Diagnose Thyroid Problems

X=(X-X (X -X)min)/ max min

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

56

Towards Artificial Neural Network Model To Diagnose Thyroid Problems

This page is intentionally left blank

©2011 Global Journals Inc. (US)

© 2011 Wasim Ahmad Bhat , S. M. K. Quadri. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Volume 11 Issue 5 Version 1.0 April 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
ISSN:

Abstract- : File systems have been mostly benchmarked as per the application perspective. This
approach hides all the underlying complexities of the system including the actual I/O being done
with the secondary storage device like magnetic disk. The IO bound property of a file system is
necessarily to be evaluated because the most dominant performance limiting factor of a file
system is its I/O operation with secondary storage device. This IO bound property of file system
dictates the quantity and frequency of IO that a file system does with secondary storage device.
In this paper, we argue system perspective of file system benchmarks and develop a benchmark
to evaluate some common disk file systems for IO bound property. The goal of this paper is to
better understand the behavior of file systems and unveil the low level complexities faced by file
systems.

Keywords: File System, IO Bound, Evaluation, Trace.

Classification: GJCST Classification: FOR Code: 080610,080402,080501

IO Bound Property A System Perspective Evaluation and Behavior Trace of File System

Strictly as per the compliance and regulations of:

©2011 Global Journals Inc. (US)

IO Bound Property: A System Perspective
Evaluation & Behavior Trace of File System

Wasim Ahmad Bhatα, S. M. K. Quadri

Abstract- File systems have been mostly benchmarked as per
the application perspective. This approach hides all the
underlying complexities of the system including the actual I/O
being done with the secondary storage device like magnetic
disk. The IO bound property of a file system is necessarily to
be evaluated because the most dominant performance
limiting factor of a file system is its I/O operation with
secondary storage device. This IO bound property of file
system dictates the quantity and frequency of IO that a file
system does with secondary storage device. In this paper, we
argue system perspective of file system benchmarks and
develop a benchmark to evaluate some common disk file
systems for IO bound property. The goal of this paper is to
better understand the behavior of file systems and unveil the
low level complexities faced by file systems.
Keywords- File System, IO Bound, Evaluation, Trace.

I. INTRODUCTION
ile system is an essential part of an operating
system which dictates overall system
performance and application specific

performance. Thus, evaluating and analyzing file
systems is necessary. There are many factors that
affect the file system performance. Those factors
include disk block organization, file name mapping,
meta-data structure, reliability, concurrency control and
data searching algorithms. Besides the above data
storage related factors, the cache and memory buffer
management scheme in the operating system plays a
very important role in system I/O performance. Because
the file system mitigates access to data on a mass
storage subsystem, it has certain behavioral and
functional characteristics that affect I/O performance
from an application and/or system point of view.
Measuring file system performance is significantly more
complicated than that of the underlying disk subsystem
because of the many types of higher-level operations
that can be performed (allocations, deletions, directory
searches, etc.)

About α- Research scholar in P. G. Department of Computer Sciences,
Kashmir University, India. He did his Bachelor’s degree in Computer
Applications from Islamia College of Science & Commerce and
Master’s degree in Computer Applications from Kashmir University.
E-mail- wasim.ahmed.bhat@gmail.com
About - Head, P. G. Department of Computer Sciences, Kashmir
University, India. He did his M. Tech. in Computer Applications from
Indian School of Mines and Ph. D. in Computer Sciences from
Kashmir University.
E-mail- quadrismk@hotmail.com

Benchmarking file systems is a process of
gathering some performance data by running a specific
workload on a specific system. This technique clearly
provides an accurate evaluation of performance of that
system for that workload. Although file system design
has advanced a lot, benchmarks for file system still lag
far behind. The benchmarks used in file system
research papers suffer from several problems. First,
there is no standard benchmark. The closest to a
standard is Andrew benchmark [1], but even then,
some researchers use the original version while others
use modified version [2][3]. Comparing results from
different papers becomes difficult due to lack of
standardization. Secondly, existing benchmarks are
inadequate to measure file systems as they do not
scale with technology [4], measure only part of file
system [4][5][6] and do not yield results that would help
a user to determine how a system might perform or
would point designer towards possible areas for
improvement. In addition to mentioned problems, file
system benchmarks stress mainly on application
perspective to evaluate and analyze the performance of
a file system. Thus, this approach hides all the
underlying complexities of system including the actual
I/O being done with the secondary storage device like
disk. This IO bound property of a file system dictates
the quantity and frequency of I/O that a file system does
with the secondary storage device to complete a
particular operation. Hence, this property of file system
is necessarily to be evaluated because the most
dominant performance limiting factor of a file system is
its I/O operation with secondary storage device.
Although certain optimizations have been included in
operating system like disk cache, read-ahead, delay-
write, etc. to minimize the frequency of I/O being done
by the file system, but the quantity of I/O is operation
and design dependent. As such we need to evaluate
and analyze file systems for the quantity of I/O being
done with the secondary storage device for a set of
different operations to look into the design efficiency of
a file system. In other words, we need to analyze file
system from system perspective and evaluate them for
IO bound property.

In this paper, we evaluate and analyze 4
common file systems across WINDOWS and LINUX
platforms for their IO bound property keeping all the
system parameters for all operations constant across all
the file systems under evaluation. The results so

F

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

57

Ω

Ω

©2011 Global Journals Inc. (US)

obtained show that NTFS file system does lot of I/O with
the disk. Also, LINUX file systems did least I/O with disk.
Further, we observed 3 general patterns of disk
accesses done by these file systems as far as our tests
are concerned.

II. Background And Related Work
We now review the basics of benchmarking file

systems and present the work that is somehow related
or point towards our concept.

Lucas [7] stated three reasons to obtain
performance data: to know which system is better, how
to improve its performance and how well will it perform.
Thus, benchmarking assists customers looking to buy a
better system and system designers looking for
possible areas for improvement. Benchmarks may be
categorized in two ways. One way is to categorize a
benchmark as being either a synthetic or an application
benchmark; the other way is as a macro- or micro-
benchmark.

Application benchmarks consist of programs
and utilities that a user can actually use like SPECint92
[8].

Synthetic benchmarks, on the other hand,
model a workload by executing various operations in a
mix consistent with the target workload like Bonnie [5].

Macro-benchmarks measure the entire system,
and usually model some workload; they can be either
synthetic or application benchmarks like IOStone [4].

Micro-benchmarks measure a specific part of a
system. They can be thought of as a subset of synthetic
benchmarks in that they are artificial; however, they do
not try to model any real workload whatsoever. An
example of a micro-benchmark is the create micro-
benchmark from the original LFS paper: It timed how
long the system took to create 10,000 files [9]. Micro-
benchmarks are excellent for pointing out potential
areas for improvement within the system as few
operations are tested to isolate their specific overheads
within the system. Thus, they measure specific part of
file system. Generally, four parameters are the most
common targets of file system micro-benchmarks:

1. The time to create a file,
2. The time to delete a file,
3. The throughput for reading files, and
4. The throughput for writing files.

Occasionally researchers use micro-
benchmarks to measure other quantities, such as the
time to create a symbolic link or read a directory. These
quantities are measured less often, because the
corresponding file system operations are perceived to
occur less often in real file system workloads.

When an application makes a request to open,
close, read, or write a file, the request is propagated
through the operating system consisting of several
levels of hierarchy before it reaches the actual storage

media. These levels of hierarchy add optimizations by
implementing a disk cache to cache the recently
accessed disk blocks for anticipated use, buffer
management scheme, merger read and write. This
hierarchy tries to minimize the frequency of disk I/O by
reading and then caching more blocks of disk than
requested to anticipate a sequential read. The delayed
write and caching of disk blocks tries to minimize the
frequency of disk I/O by anticipating future updation
and read of a disk block respectively whose write was
requested. This can have a significant impact on both
the meta-data and user data performance. This
performance is further increased if the design of file
system takes this optimization into consideration to
minimize the quantity of disk I/O done for a particular
operation.

Seltzer et al. [10] suggested that most
benchmarks do not provide useful information as they
are not designed to describe performance of a
particular application. They argued for an application-
directed approach to benchmarking, using performance
metrics that reflect the expected behavior of a particular
application across a range of hardware or software
platforms. They proposed three approaches to
application specific benchmarking: vector-based, trace-
driven, and hybrid. Each methodology addresses a
different set of benchmarking requirements and
constraints. The fundamental principle behind vector-
based performance analysis is the observation that in a
typical computer system, each different primitive
operation, whether at the application, operating system,
or hardware level, takes a different amount of time to
complete. Traditional benchmarking techniques ignore
this fact and attempt to represent the overall
performance of a computer system or subsystem as a
scalar quantity. Vector-based techniques address this
problem by representing the performance of underlying
system abstractions as a vector quantity. Each
component of this system characterization vector
represents the performance of one underlying primitive,
and is obtained by running an appropriate micro-
benchmark.
Chen [6] laid out criteria for evaluating I/O systems
which can be adapted for file systems as well. Chen
states that an I/O benchmark should be:

1. Prescriptive: It should point system designers
towards possible areas for improvement.

2. I/O bound: The benchmark should measure the
I/O system and not, for example, the CPU.

3. Scalable with advancing technology.
4. Comparable between different systems.
5. General: Applicable to a wide variety of

workloads.
6. Tightly specified: No loopholes; clarity in what

needs to be reported.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

58

IO Bound Property: A System Perspective Evaluation & Behavior Trace of File System

©2011 Global Journals Inc. (US)

Tang [11] argued that these criteria should be
applied to most benchmarking methodologies. He
introduced a benchmark called dtangbm. This
benchmark consisted of suite of micro-benchmarks
called fsbench and a workload characterizer. The Phase
I of fsbench measures disk performance so that it can
be known whether improvements are due to disk or file
system and can be compared to Phase III which
measures file system block allocation policy to
determine what overhead the file system imposes.

Traeger et al. [12] argued that some guidelines
be followed while designing a micro benchmark. The
two underlying themes of those guidelines are as
follows:

1. Explain What Was Done in as Much Detail as
Possible. This can help others understand and
validate the results.

2. In Addition to Saying What Was Done, Say Why
It Was Done That Way?
 Ruwart [13] argued that not only are

benchmarks ill-suited for testing but will fare even worse
in future because of systems complexities. He
presented the point of view from which the performance
is measured. Three of the more generally accepted
perspectives are:

1. Application
2. System
3. Storage Subsystem

The Application perspective is what most of the
file system benchmarks represents. From this
perspective all of the underlying system services and
hardware functions are hidden. This perspective
includes all the cumulative effects of other applications
running at the same time as the benchmark run. This is
also true for applications running on other machines
that may be simultaneously accessing the storage
subsystem under test. From this perspective the results
of a benchmark can be skewed due to undesirable
interactions from these other applications and other
machines. The Application perspective can also divide
I/O operations into the two distinct categories (Meta
data and User data) based on the type of higher-level
operation being performed. The Application interface to
the file system is generally through high-level system
calls such as open, close, read, write, and create. There
are also higher level system calls that perform such
operations as rename, create directory, remove, and
lookup a name. It is the performance of these
operations that ultimately determine the overall
performance that the application sees for both
metadata and user data operations.
 The System perspective is viewed by running
system-monitoring tools during a benchmark run. These
tools provide coarse-grained real-time monitoring of the
system I/O activity for such high-level operations as file
reads and writes as well as the number of operations
actually sent to the storage subsystem on a device-by-

device basis. From this perspective it is possible to see
and measure the effect of other applications that are
running concurrently with the benchmark program.
Furthermore, with some of the more sophisticated
system monitoring tools, it is possible to monitor the
activity on other systems that may be sharing access to
the storage subsystem under test. However, there is still
a problem with getting a complete view of all the
systems on a common reference clock in order to better
understand the interaction of all the systems with the
shared storage subsystem.
 The Storage Subsystem perspective is the
most difficult to monitor since there are not many tools
available to collect performance data from the storage
subsystem.

III. IO Bound Property
The smallest addressable read and write unit of

secondary storage like disk is Sector. Typically sector
size is 512 bytes. Although, disk drives allow random
read and write of individual sectors, for performance
reasons, file systems prefer to read and write a
sequence of consecutive sectors called Cluster. Thus,
the smallest addressable read and write unit of a file
system is cluster. Cluster sizes vary from one sector to
many in size. Clusters reduce the frequency of I/O
operations by reading and writing more than one sector
sequentially at a time which would have otherwise cost
many individual reads and writes. File systems vary
greatly in cluster sizes, allocation and layout policies, in
addition to other parameters.

Linux operating system maintains an in-
memory disk cache of recently accessed disk blocks in
a hope that these blocks will be accessed again [14].
The blocks correspond to individual sectors of disk.
When a process issues a file system syscall, the call
passes through a hierarchy of layers within operating
system and finally reaches the file system drives. The
file system converts the call into appropriate disk blocks
to be read or written as per the design of the file system
mounted. Instead of directly reading and writing the disk
block, it checks the disk cache for the block. If it is
found, the block is accessed from cache and hence
saving an I/O operation. If it is not found, the block is
read from disk and cached. Linux further optimizes the
I/O performance by asynchronously reading ahead few
blocks in anticipation of sequential access whenever a
block is to be read. It also delays write of updated
blocks in anticipation of further updation of same block
whenever a block is to be written or updated. All these
optimizations by Linux operating system are done to
reduce the number of I/O operations directly done with
disk because an I/O operation with disk is costlier in
time than with disk cache.

But due to design diversities in file systems,
varying size of clusters, different allocation and layout

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

59

IO Bound Property: A System Perspective Evaluation & Behavior Trace of File System

©2011 Global Journals Inc. (US)

policies these optimizations are exploited by different
file systems up to different levels. The file system
benchmarks stress mainly on application perspective to
evaluate and analyze a file system. This way they
analyze the amount of data read and written by an
application at higher level without being concerned
about whether the data was read or written from cache
only, disk only or partly from cache and partly from disk.
Further, they ignore the data other than user data read
or written by the application like when an application
tries to open a file for reading they ignore the number of
disk blocks that might have been read to locate the file
on the mounted volume. Hence, this perspective does
not give the actual measure of the IO bound property of
a file system.

An IO bound property of a file system means
the quantity and frequency of I/O operations that a file
system does with the secondary storage device to
complete a particular operation. Hence, this property of
file system is necessarily to be evaluated because the
most dominant performance limiting factor of a file
system is its I/O operation with secondary storage
device.

IV. Performance Monitoring Tools
Two issues are to be considered when

collecting performance data; the type of data to be
collected and when to collect it. Concerning the first
issue, there is essentially one type of data to collect:
Number of disk block read and written from disk. The
second issue of when to collect the data is obviously to
be done after the completion of every individual
workload generator.

Linux operating system provides many utilities
to gather statistics about system resources used by the
benchmark tests. Many utilities come along the default
Linux package while others can be downloaded for free
and recompiled for the distribution. We will review the
most common, popular and useful utilities for system
resource monitoring in Linux.

VMSTAT [15] reports information about
processes, memory, paging, block I/O, traps, and cpu
activity. The first report produced gives averages since
the last reboot. Additional reports give information on a
sampling period of length delay. The process and
memory reports are instantaneous in either case. For
Disk Mode, it reports total reads completed
successfully, grouped reads (resulting in one I/O),
sectors read successfully, milliseconds spent reading,
total writes completed successfully, grouped writes
(resulting in one I/O), sectors written successfully,
milliseconds spent writing. For Disk Partition Mode it
reports total number of reads issued to this partition,
total read sectors for partition, total number of writes
issued to this partition, total number of write requests
made for partition.

IOSTAT [16] reports Central Processing Unit
(CPU) statistics and input/output statistics for devices
and partitions. The iostat command is used for
monitoring system input/output device loading by
observing the time the devices are active in relation to
their average transfer rates. The iostat command
generates reports that can be used to change system
configuration to better balance the input/output load
between physical disks. The first report generated by
the iostat command provides statistics concerning the
time since the system was booted. Each subsequent
report covers the time since the previous report. All
statistics are reported each time the iostat command is
run. The report consists of a CPU header row followed
by a row of CPU statistics. The second report generated
by the iostat command is the Device Utilization Report.
The device report provides statistics on a per physical
device or partition basis. The device report generated
constitutes of fields that indicate:

1. The number of transfers per second that were
issued to the device. A transfer is an I/O
request to the device. Multiple logical requests
can be combined into a single I/O request to
the device. A transfer is of indeterminate size.

2. The amount of data read from the device
expressed in a number of blocks per second.
Blocks are equivalent to sectors with 2.4
kernels and newer, and therefore have a size of
512 bytes. With older kernels, a block is of
indeterminate size.

3. The amount of data written to the device
expressed in a number of blocks per second.

4. The total number of blocks read.
5. The total number of blocks written.
6. The amount of data read from the device

expressed in kilobytes per second.
7. The amount of data written to the device

expressed in kilobytes per second.
8. The total number of kilobytes read.
9. The total number of kilobytes written.

[17] is used to collect, report or save
system activity information. The sar command writes to
standard output the contents of selected cumulative
activity counters in the operating system. The
accounting system, based on the values in the count
and interval parameters, writes information the specified
number of times spaced at the specified intervals in
seconds. The device report generated constitutes of
fields that indicate:

1. The number of transfers per second that were
issued to the device. Multiple logical requests
can be combined into a single I/O request to
the device. A transfer is of indeterminate size.

2. Number of sectors read from the device. The
size of a sector is 512 bytes.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

60

IO Bound Property: A System Perspective Evaluation & Behavior Trace of File System

SAR

©2011 Global Journals Inc. (US)

3. Number of sectors written to the device. The
size of a sector is 512 bytes.
IOTOP [18] watches I/O usage information

output by the Linux kernel (requires 2.6.20 or later) and
displays a table of current I/O usage by processes or
threads on the system. At least the
CONFIG_TASK_DELAY_ACCT and
CONFIG_TASK_IO_ACCOUNTING options need to be
enabled in Linux kernel build configuration, these
options depend on CONFIG_TASKSTATS. iotop
displays columns for the I/O bandwidth read and written
by each process/thread during the sampling period. It
also displays the percentage of time the thread/process
spent while swapping in and while waiting on I/O. For
each process, its I/O priority (class/level) is shown. In
addition, the total I/O bandwidth read and written during
the sampling period is displayed at the top of the
interface.

PIDSTAT [19] command is used for monitoring
individual tasks currently being managed by the Linux
kernel. It writes to standard output activities for every
task selected with option -p or for every task managed
by the Linux kernel if option -p ALL has been used. Not
selecting any tasks is equivalent to specifying -p ALL
but only active tasks (tasks with non-zero statistics
values) will appear in the report. The pidstat command
can also be used for monitoring the child processes of
selected tasks. The interval parameter specifies the
amount of time in seconds between each report. A
value of 0 (or no parameters at all) indicates that tasks
statistics are to be reported for the time since system
startup. The count parameter can be specified in
conjunction with the interval parameter if this one is not
set to zero. The value of count determines the number
of reports generated at interval seconds apart. If the
interval parameter is specified without the count
parameter, the pidstat command generates reports
continuously.

COLLECTL [20] utility is a system monitoring
tool that records or displays specific operating system
data for one or more sets of subsystems. Any set of the
subsystems, such as CPU, Disks, Memory or Sockets
can be included in or excluded from data collection.
Data can either be displayed back to the terminal, or
stored in either a compressed or uncompressed data
file. The data files themselves can either be in raw
format or in a space separated plottable format such
that it can be easily plotted using tools such as gnuplot
[21] or excel [22]. Data files can be read and
manipulated from the command line, or through use of
command scripts.

BLKTRACE [23] is a block layer I/O tracing
mechanism which provides detailed information about
request queue operations up to user space. There are
three major components: a kernel component, a utility
to record the I/O trace information for the kernel to user
space, and utilities to analyze and view the trace

information. blktrace receives data from the kernel in
buffers passed up through the debug file system. Each
device being traced has a file created in the mounted
directory for the debugfs [24], which defaults to
/sys/kernel/debug.

PROC [25] file system is a pseudo-file system
which is used as an interface to kernel data structures.
It is commonly mounted at /proc. Most of it is read-only,
but some files allow kernel variables to be changed.
/proc/sys/vm/ directory facilitates the configuration of
the Linux kernel's virtual memory (VM) subsystem. The
kernel makes extensive and intelligent use of virtual
memory, which is commonly referred to as swap space.
The /proc/sys/vm/block_dump file configures block I/O
debugging when enabled. All read/write and block
dirtying operations done to files are logged accordingly.
This can be useful if diagnosing disk spin up and spin
downs for laptop battery conservation. All output, when
block_dump is enabled, can be retrieved via dmesg
[26]. The default value is 0 and can be enabled by
setting its value to 1.

V. The Benchmark
The most crucial part for evaluating and

analyzing file systems for their IO bound property is to
choose the set of tests that are to be executed which
will give us some insight of the IO bound property. To
make the choice simple and logical, we tried to find out
the types of file system operations that vary in the
quantity of I/O being done with the disk for different file
systems due to their design variations. The ruled out
option is, thus, a large file where the user data
dominates the disk I/O and this dominance is constant
throughout the file systems under evaluation. This
makes one criterion clear; we are going to test large
number of empty or small sized files.

We identified following file systems operations
in which the quantity of disk I/O varies greatly for
different file systems due to their design.

Test
Number

 Description

Corresponding
Figure Set

Test 1
 Create 10,000 files with

‘touch’ utility
 Figure 1

Test 2
 Run ‘find’ utility on that

directory
 Figure 2

Test 3
 Remove these 10,000

files using ‘rm’ utility
 Figure 3

Test 4
 Create 10,000

directories with ‘mkdir’
utility

 Figure 4

Test 5
 Run ‘find’ utility on that

directory
 Figure 5

Test 6
 Remove these 10,000

directories using ‘rm’
utility

 Figure 6

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

61

IO Bound Property: A System Perspective Evaluation & Behavior Trace of File System

©2011 Global Journals Inc. (US)

The tests to be performed are listed as per the
sequence they are executed along necessary Linux
utility used and figure set that depicts their sector
traces. The test code is organized as a shell script. All
file systems are to be created using default options and
each file system is tested on a cleanly made file system.
All tests are to be run 3 times and the average is to be
taken. Between every test; cache is flushed. The test
measures quantity of I/O in terms of sectors read or
written from the disk for every individual test ignoring
the requests fulfilled by the cache and the time
consumed to complete the operation.

Before the file system under evaluation is
mounted we enable block dumping in kernel by setting
/proc/sys/vm/block_dump to 1. After this, if any read or
write request has to do disk I/O and as such is not
fulfilled by cache, the corresponding operation, device
file and block is dumped. The interested data can be
collected by using ‘dmesg –c’ which gets the dumped
operations and clears the log. The collection can be
further refined by piping the output of ‘dmesg –c’ to
‘grep sda1’ (say) to get all the operations pertaining to
some mounted file system corresponding to device file
sda1.

VI. File Systems To Be Evaluated
We evaluate the performance of four file

systems, two viz. FAT32 and NTFS being Windows
native and two viz. Ext2, and Ext3 being Linux native.
We test them under Fedora Core Release 7
(Moonshine) Kernel 2.6.21. To make the paper self-
contained, we briefly describe the tested file systems as
follows:

a) FAT32
 The FAT (File Allocation Table) file system was

developed in the late 1970s and early 1980s and was
the file system supported by the Microsoft® MS-DOS®
operating system [27]. FAT was originally developed for
floppy disk drives less than 500K in size. As storage
capacity increased, FAT was enhanced to support large
storage media. As such we have three fully documented
FAT file system types: FAT12, FAT16 and FAT32.
FAT32, which can address large storage media and is
supported by all major desktop operating systems, is
still the most widely used file system

in portable digital

devices [28].

As compared to other file systems, the

performance of FAT is poor as it uses simple data
structures, making file operations time-consuming and
inefficient disk space utilization in situations where many
small files are present. But for same simple design and
legacy it is supported by almost all existing operating
systems for personal computers. This makes it a useful
format for solid-state memory cards and a convenient
way to share data between different operating systems.

exFAT [29] is the recent compilation of Microsoft® while
KFAT [30], TFAT [31] and FATTY [32] are the reliability
enhancements to the actual design by the same and
other researchers.

b) NTFS
The New Technology File System [33] was

originally developed for Windows NT and now is used in
Windows NT, 2000, XP, Vista and 7. NTFS provides
performance, reliability, and functionality not found in
FAT design. NTFS includes security and access
controls, encryption support, and has reliability control
built in, in the form of a journaling file system. In NTFS,
all file data—file name, creation date, access
permissions, and contents—are stored as metadata in
the Master File Table. NTFS allows any sequence of 16-
bit values for name encoding (file names, stream
names, index names, etc.). NTFS contains several files
which define and organize the file system. In all
respects, most of these files are structured like any
other user file ($Volume being the most peculiar), but
are not of direct interest to file system clients. These
metafiles define files, back up critical file system data,
buffer file system changes, manage free space
allocation, satisfy BIOS expectations, track bad
allocation units, and store security and disk space
usage information. NTFS includes several new features
over its predecessors: sparse file support, disk usage
quotas, reparse points, distributed link tracking, and
file-level encryption, also known as the Encrypting File
System (EFS).

c) Ext2
The Second Extended File System was

designed and implemented to fix some problems
present in the first Extended File System. The goal was
to provide a powerful file system, which implements
UNIX file semantics and offers advanced features. The
Second Extended file system is the default file system in
most Linux distributions [34] and is the most popular file
system for Linux. In addition to the standard UNIX
features, Ext2fs supports some extensions which are
not usually present in UNIX file systems. File attributes
allow the users to modify the kernel behavior when
acting on a set of files. One can set attributes on a file
or on a directory. In the latter case, new files created in
the directory inherit these attributes. Ext2fs implements
fast symbolic links. A fast symbolic link does not use
any data block on the files system. The target name is
not stored in a data block but in the I-node itself. This
policy can save some disk space (no data block needs
to be allocated) and speeds up link operations (there is
no need to read a data block when accessing such a
link). Ext2 borrows ideas from previous UNIX file
systems using I-nodes to represent files and objects. It
was designed to be extensible to make it possible to
add features like journaling on at a later time.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

62

IO Bound Property: A System Perspective Evaluation & Behavior Trace of File System

©2011 Global Journals Inc. (US)

d) Ext3
The Third Extended file system is a journaling

file system developed by Stephen Tweedie [35] as an
extension to Ext2. It is mount compatible to Ext2 file
system, but includes a journaling file to provide recovery
capability. Ext3 can use all of the existing applications
that have already been developed to manipulate the
Ext2 file system. Journaling increases the file system
reliability, and reduces recovery time by eliminating the
need for some consistency checks. The ext3 file system
adds, over its predecessor: A Journaling file system,
Online file system growth, Htree [36] indexing for larger
directories (An HTree is a specialized version of a B-
tree). Without these, any ext3 file system is also a valid
ext2 file system. This has allowed well-tested and
mature file system maintenance utilities for maintaining
and repairing ext2 file systems to also be used with ext3
without major changes. Since ext3 aims to be backward
compatible with the earlier ext2, many of the on-disk
structures are similar to those of ext2. Because of that,
ext3 lacks a number of features of more recent designs,
such as extents, dynamic allocation of I-nodes, and
block sub-allocation. There is no support of deleted file
recovery in file system design. Ext3 driver actively
deletes files by wiping file I-nodes [37] for crash safety
reasons. That is why an accidental ‘rm -rf *’ may cause
permanent data loss. An enhanced version of the file
system was announced by Theodore Ts'o [38] on June
28, 2006 under the name of ext4.

VII. Experiment
The tests are performed on a clean 5GB file

system containing nothing. The same partition is
formatted to support all the file systems under
evaluation in order to approximate disk latency. The
computer used for testing is a PC with Intel Pentium 4
2.4 GHz CPU and 512MB DDR2 333MHz RAM. The
hard drive is a 5400RPM 80GB ATA Device. The hard
drive is partitioned into a 5GB partition to house the file
system under evaluation and a 10GB partition for
Fedora Core Release 7 (Moonshine) Kernel 2.6.21 [39]
on an i386.

VIII. Result & Discussion
Table 1 lists the result of all tests conducted

and the quantity of I/O in terms of sectors read from
disk by each individual test for each file system under
evaluation. It can be observed from the table that NTFS
file system did lot of I/O with disk by reading lot of
sectors in total for all tests while ext3 did least I/O with
disk reading least sectors in total for all tests. Also,
there is comparatively a consistency in NTFS regarding
the number of sectors read for each individual test.

Table1. Result of tests (Sectors Read)

File
System

FAT32 NTFS Ext2 Ext3

Test 1 19 1541 319 10
Test 2 643 1566 35 9
Test 3 643 4522 359 375
Test 4 721 4128 559 214
Test 5 643 1566 35 9
Test 6 160721 4522 10569 10592

Table 2

lists the result of all tests conducted

and the quantity of I/O in terms of sectors written

to

disk

by each individual test for each file system under
evaluation.

It can be observed from the table that

in tests where files where created and deleted, NTFS

file

system did lot of I/O with disk by writing lot of sectors
while ext2 did least; whereas in test where directories
where created FAT32 file system did lot of I/O with disk
by writing a lot of sectors while NTFS file system did
least I/O. In contrast in test where directories where
deleted ext3 file system did lot of I/O with disk by writing
lot of sectors while FAT32 did least I/O with disk. Again,
it can be clearly observed that there is comparatively a
consistency in NTFS file system regarding the number
of sectors written for each individual test.

Table2. Result of tests (Sectors Written)

File
System

 FAT32

NTFS

Ext2

Ext3

Test 1

1210

2982

356

1171

Test 2

0

0

2

2

Test 3

627

3218

341

1403

Test 4

34707

2980

11574

24980

Test 5

0

0

2

2

Test 6

790

2964

1244

9507

Further, the trace of all file systems under
evaluation depicting the order in which the sectors on a
track are accessed is shown in figure 1 to figure 6. The
figures only show the position/location of sector on
track that is being accessed (read/written) and thus can
be used to interpret only rotational delay incurred in the
tests and as such ignores the seek time.

The figure 1 depicts the trace of test 1
conducted on all file systems which creates 10,000
empty files. It is clear from the figure 1.1 that

NTFS does
a consistent sequential read while ext2 read every 8th

sector of the track. Also, a consistent sequential write as
depicted by figure 1.2 is done by FAT32 while NTFS,
ext2 & ext3 did write every 8th

sector of the track. From
this figure, it can be comprehended that the trace of the
file system in which every 8th

sector of track is read or

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

63

IO Bound Property: A System Perspective Evaluation & Behavior Trace of File System

©2011 Global Journals Inc. (US)

written may efficiently utilizing the cache as LINUX does
a sequential block read/write of 8 sectors [34].

The figure 2 depicts the trace of test 2
conducted on all file systems which finds a fugitive
filename among the files created after flushing the
cache. It is clear from the figure that both FAT32 &
NTFS did a consistent sequential read.

The figure 3 depicts the trace of test 3
conducted on all file systems which deletes the 10,000
files created in test 1 after flushing the cache. It is clear
from the figure 3.1 that both FAT32 & NTFS does a
consistent sequential read while ext2 & ext3 read every
8th sector of track. Also, this pattern is repeated by
FAT32 while writing sector whereas NTFS, ext2 and ext3
read every 8th sector of the track as shown in figure 3.2.

The figure 4 depicts the trace of test 4
conducted on all file systems which creates 10,000
empty directories after flushing the cache. It is clear
from the figure 4.1 that both FAT32 & NTFS did a
sequential read while ext2 & ext3 did a random read.
Also, FAT32 repeated it pattern of sequential write and
ext2 repeated its random write while writing sectors
whereas NTFS & ext3 wrote every 8th sector of track as
depicted by figure 4.2.

The figure 5 depicts the trace of test 5
conducted on all file systems which finds a fugitive
directory name among the directories created after
flushing the cache. It is clear from the figure that a
sequential read is done by FAT32 & NTFS.

The figure 6 depicts the trace of test 6
conducted on all file systems which deletes the 10,000
directories created in test 4. It is clear from the figure 6.1
that both FAT32 & NTFS did a consistent sequential
read while ext3 did a random read. Also, ext2 did a
sequential read in different bands. Further, it is clear
from figure 6.2 that FAT32 did a consistent sequential
write while ext2 did a random write whereas both NTFS
& ext3 did wrote every 8th sector of track.

From the discussion, we can conclude that
NTFS is highly I/O bound so far as these tests are
concerned. Also, LINUX file systems are less I/O bound.
One important thing worth noting is the pattern in which
the sectors are accessed on a track because this
pattern will dictate the rotational delay incurred by these
file systems to complete these operations. Generally,
we observed only 3 types of patterns; Sequential,
Random & every 8th sector. Among the observed
patterns, LINUX file systems mostly exhibit a pattern in
which every 8th sector is read or written and
occasionally exhibited random and sequential behavior.
Also, WINDOWS file systems exhibited both sequential
and every 8th sector behavior with NTFS being highly I/O
bound.

IX. Conclusion
In this paper, we argued that current file system

benchmarks mostly concentrate on application
perspective and generally ignore the system
perspective of benchmarking. We stressed on system
perspective in addition to application perspective and
presented IO bound property of file system. Then, we
developed certain tests that will evaluate file systems for
IO bound property and discussed various mechanisms
to monitor the performance. Finally, we evaluated some
common disk file systems across WINDOWS and
LINUX platforms for this IO bound property. From the
results we gathered, it can be summed up that NTFS
does lot of I/O with disk and thus is highly IO Bound. At
the same time, "LINUX file systems did least I/O with
the and thus are least IO Bound Further, we observed
3 general disk access patterns;Random, Sequential and
every 8th sector read/write. Among these patterns, we
found that random pattern is occasionally exhibited by
any file system while LINUX file systems mostly exhibit
every 8th sector read/write while WINDOWS file systems
either exhibit sequential or every 8th sector read/write
behavior.

X. Future Work
The traces gathered from the tests conducted are

interesting. The traces although take into consideration
only the rotational delay incurred, can tell us lot about
the design efficiency of the file system. Thus, more
investigations need to be done to understand the traces
and correlate them with the design evaluation of file
system. Further, the tests conducted here need to be
broadened both in terms of number of tests and types
of tests in addition to the platform on which the tests are
conducted.

References Références Referencias
1. Howard, J.H., Kazar, M.L., Menees, S.G.,

Nichols, D.A., Satyanarayanan, M.,
Sidebotham, R.N. and West, M.J. (1988),
“Scale and Performance in a Distributed File
System”, ACM Transactions on Computer
Systems, February 1988, 51-81.

2. Ousterhout, J.K. (1990), “Why Aren’t Operating
Systems Getting Faster As Fast As Hardware?”,
Proceedings of the 1990 USENIX Summer
Technical Conference, June 1990, 247-256.

3. Seltzer, M.I., Smith, K., Balakrishnan, H.,
Chang, J., McMains S. and Padmanabhan, V.
(1995), “File System Logging versus Clustering:
A Performance Evaluation”, Proceeding of the
1995 USENIX Technical Conference, 249-264.

4. Park, A. and Becker, J.C. (1990), “IOStone: A
Synthetic File System Benchmark”, Computer
Architecture News 18, 2, 45-52.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

64

IO Bound Property: A System Perspective Evaluation & Behavior Trace of File System

©2011 Global Journals Inc. (US)

5. Bray, T. (1990), Bonnie source code, netnews
posting.

6. Chen, P.M. and Patterson, D.A. (1992), “A New
Approach to I/O Benchmarks Adaptive
Evaluation, Predicted Performance”,
UCB/Computer Science Dept. 92/679,
University of California at Berkeley.

7. Lucas, H.C. (1972), “Performance Evaluation
and Monitoring”, Computing Surveys,
September 1972, 79-91.

8. Standard Performance Evaluation Corporation.
http://www.spec.org

9. Rosenblum, M. and Ousterhout, J.K. (1992),
“The Design and Implementation of a Log-
Structured File System”, ACM Transactions on
Computer Systems, February 1992.

10. Seltzer, M.I., Krinsky, D., Smith, A.K. and
Zhang, A. (1999), “The Case for Application-
Specific Benchmarking”, In Proceedings of the
IEEE Workshop on Hot Topics in Operating
Systems (HOTOS). ACM, Rio Rica, AZ, 102–
107.

11. Tang, D. (1995), “Benchmarking Filesystems”,
Techinal Report. TR-19-95, Harvard University.

12. Traeger, A., Zadok, E., Joukov, N. and Wright,
C.P. (2008), “A Nine Year Study of File System
and Storage Benchmarking”, ACM
Transactions on Storage.

13. Ruwart, T.M. (2001), “File system performance
benchmarks, then, now, and tomorrow”, In
Proceedings of the 14th IEEE Symposium on
Mass Storage Systems. IEEE, San Diego, CA.

14. Bovet, D.P. and Cesati, M., “Understanding the
Linux Kernel”, O'Reilly

15. Vmstat, http://linux.die.net/man/8/vmstat
16. Iostat, http://linux.die.net/man/1/iostat
17. Sar, http://linux.die.net/man/1/sar
18. Iotop, http://guichaz.free.fr/iotop/
19. Pidstat, http://man.he.net/man1/pidstat
20. Collect, http://collectl.sourceforge.net/
21. Gnuplot, http://www.gnuplot.info
22. Excel, http://office.microsoft.com/en-us/excel/
23. Blktrace, http://linux.die.net/man/8/blktrace
24. Debugfs, http://linux.die.net/man/8/debugfs
25. Proc, http://linux.die.net/man/5/proc
26. Dmesg,

http://linuxgazette.net/issue59/nazario.html
27. Microsoft Corporation, (2000), “FAT32 File

System Specification”,
http://microsoft.com/whdc/system/platform/firm
ware/fatgen.mspx

28. Bhat, W.A. and Quadri, S.M.K. (2009), “Review
of FAT Data Structure of FAT32 file system”,
Oriental Journal of Computer Science &
Technology, Volume 3, No 1

29. Microsoft Corporation, (2007), “Extended FAT
File System”, http://msdn2.microsoft.com/en-
us/library/aa914353.aspx

30. Kwon, M.S., Bae, S.H., Jung, S.S., Seo, D.Y.
and Kim, C.K. (2005), “KFAT: Log-based
Transactional FAT File system for Embedded
Mobile Systems”, In Proceedings of 2005 US-
Korea Conference, ZCTS-142.

31. Microsoft Corporation, (2007), “Transaction-
Safe FAT File System”,
http://msdn2.microsoft.c0m/en-
us/library/aa911939.aspx

32. Alei, L., Kejia, L. and Xiaoyong, L. (2007),
“FATTY: A reliable FAT File System”,
Proceedings of the 10th Euromicro Conference
on Digital System Design Architectures,
Methods and Tools, Pages: 390-395.

33. Duncan, R. (1989), “Design goals and
implementation of the new High Performance
File System”, Microsoft Systems Journal.

34. Bovet, D.P. and Cesati, M. “Understanding the
Linux Kernel”, O'Reilly, ISBN 0-596-00565-2

35. Tweedie, S. (1998), “Journaling the Linux Ext2fs
Filesystem”, LinuxExpo ‘98.

36. Saynez, A. S., Somodevilla, M. J., Ortiz, M. M.,
Pineda, I. H. (2007), “H-Tree: A data structure
for fast path-retrieval in rooted trees”, Eighth
Mexican International Conference on Current
Trends in Computer Science (ENC 2007),
pp.25-32.

37. Linux ext3 FAQ, http://batleth.sapienti-
sat.org/projects/FAQs/ext3-faq.html

38. Ts’o, T. (2006), “Proposal and plan for ext2/3
future development work”. Linux kernel mailing
list. http://lkml.org/lkml/2006/6/28/454

39. http://fedoraproject.org/wiki/Releases/7

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

65

IO Bound Property: A System Perspective Evaluation & Behavior Trace of File System

http://collectl.sourceforge.net/�
http://linux.die.net/man/8/blktrace�

Figure 1. Sector Read/Write Trace for Test 1.

Figure 1.1 Read Trace for Test 1.

Figure 1.2 Write Trace for Test 1.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

66

Figure 2. Sector Read Trace for Test 2.

Figure 5. Sector Read Trace for Test 5.

Figure 3. Sector Read/Write Trace for Test 3.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

67

Figure 3.1 Read Trace for Test 3.

Figure 3.2 Write Trace for Test 3.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

68

Figure 4. Sector Read/Write Trace for Test 4.

Figure 4.1 Read Trace for Test 4.

Figure 4.2 Write Trace for Test 4.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

69

Figure 6. Sector Read/Write Trace for Test 6.

Figure 6.1 Read Trace for Test 6.

Figure 6.2 Write Trace for Test 6.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
I
Is
su

e
V
 V

er
si
on

 I

A
pr

il
20

11

70

	Towards Artificial Neural Network Model To Diagnose Thyroid Problems
	Authors
	I. INTRODUCTION
	II. MEDICAL DECISION MAKING
	III. THYROID DISEASES
	IV. NEURAL NETWORKS
	V. NEURAL NETWORKS AND THYROID

DIAGNOSIS
	VI. FUTURE WORK
	References Références Referencias

