Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; Reg. Number: 0423089)
Sponsors: Global Association of Research
Open Scientific Standards

Publisher’s Headquarters office

Global Journals Inc., Headquarters Corporate Office, Cambridge Office Center, II Canal Park, Floor No. 5th, Cambridge (Massachusetts), Pin: MA 02141 United States
USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392

Offset Typesetting

Global Journals Inc., City Center Office, 25200 Carlos Bee Blvd. #495, Hayward Pin: CA 94542 United States

Packaging & Continental Dispatching

Global Journals, India

Find a correspondence nodal officer near you

To find nodal officer of your country, please email us at local@globaljournals.org

eContacts

Press Inquiries: press@globaljournals.org
Investor Inquiries: investors@globaljournals.org
Technical Support: technology@globaljournals.org
Media & Releases: media@globaljournals.org

Pricing (Including by Air Parcel Charges):

For Authors:
22 USD (B/W) & 50 USD (Color)

Yearly Subscription (Personal & Institutional):
200 USD (B/W) & 500 USD (Color)
EDITORIAL BOARD MEMBERS (HON.)

John A. Hamilton, "Drew" Jr.,
Ph.D., Professor, Management
Computer Science and Software Engineering
Director, Information Assurance Laboratory
Auburn University

Dr. Henry Hexmoor
IEEE senior member since 2004
Ph.D. Computer Science, University at Buffalo
Department of Computer Science
Southern Illinois University at Carbondale

Dr. Osman Balci, Professor
Department of Computer Science
Virginia Tech, Virginia University
Ph.D. and M.S. Syracuse University, Syracuse, New York
M.S. and B.S. Bogazici University, Istanbul, Turkey

Yogita Bajpai
M.Sc. (Computer Science), FICCT
U.S.A. Email: yogita@computerresearch.org

Dr. T. David A. Forbes
Associate Professor and Range Nutritionist
Ph.D. Edinburgh University - Animal Nutrition
M.S. Aberdeen University - Animal Nutrition
B.A. University of Dublin - Zoology

Dr. Wenying Feng
Professor, Department of Computing & Information Systems
Department of Mathematics
Trent University, Peterborough, ON Canada K9J 7B8

Dr. Thomas Wischgoll
Computer Science and Engineering,
Wright State University, Dayton, Ohio
B.S., M.S., Ph.D. (University of Kaiserslautern)

Dr. Abdurrahman Arslanyilmaz
Computer Science & Information Systems Department
Youngstown State University
Ph.D., Texas A&M University
University of Missouri, Columbia
Gazi University, Turkey

Dr. Xiaohong He
Professor of International Business
University of Quinnipiac
BS, Jilin Institute of Technology; MA, MS, PhD, (University of Texas-Dallas)

Burcin Becerik-Gerber
University of Southern California
Ph.D. in Civil Engineering
DDes from Harvard University
M.S. from University of California, Berkeley & Istanbul University
Dr. Bart Lambrecht
Director of Research in Accounting and Finance
Lancaster University Management School
BA (Antwerp); MPhil, MA, PhD (Cambridge)

Dr. Söhnke M. Bartram
Department of Accounting and Finance
Lancaster University Management School
Ph.D. (WHU Koblenz)
MBA/BBA (University of Saarbrücken)

Dr. Carlos García Pont
Associate Professor of Marketing
IESE Business School, University of Navarra
Doctor of Philosophy (Management), Massachusetts Institute of Technology (MIT)
Master in Business Administration, IESE, University of Navarra
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

Dr. Miguel Angel Ariño
Professor of Decision Sciences
IESE Business School
Barcelona, Spain (Universidad de Navarra)
CEIBS (China Europe International Business School).
Beijing, Shanghai and Shenzhen
Ph.D. in Mathematics
University of Barcelona
BA in Mathematics (Licenciatura)
University of Barcelona

Dr. Fotini Labropulu
Mathematics - Luther College
University of Regina
Ph.D., M.Sc. in Mathematics
B.A. (Honors) in Mathematics
University of Windso

Philip G. Moscoso
Technology and Operations Management
IESE Business School, University of Navarra
Ph.D in Industrial Engineering and Management, ETH Zurich
M.Sc. in Chemical Engineering, ETH Zurich

Dr. Lynn Lim
Reader in Business and Marketing
Roehampton University, London
BCom, PGDip, MBA (Distinction), PhD, FHEA

Dr. Sanjay Dixit, M.D.
Director, EP Laboratories, Philadelphia VA Medical Center
Cardiovascular Medicine - Cardiac Arrhythmia
Univ of Penn School of Medicine

Dr. Mihaly Mezei
ASSOCIATE PROFESSOR
Department of Structural and Chemical Biology, Mount Sinai School of Medical Center
Ph.D., Evtis Lornd University
Postdoctoral Training, New York University

Dr. Han-Xiang Deng
MD., Ph.D
Associate Professor and Research Department Division of Neuromuscular Medicine
Davee Department of Neurology and Clinical NeuroscienceNorthwestern University
Feinberg School of Medicine
Dr. Pina C. Sanelli
Associate Professor of Public Health
Weill Cornell Medical College
Associate Attending Radiologist
NewYork-Presbyterian Hospital
MRI, MRA, CT, and CTA
Neuroradiology and Diagnostic Radiology
M.D., State University of New York at Buffalo, School of Medicine and Biomedical Sciences

Dr. Roberto Sanchez
Associate Professor
Department of Structural and Chemical Biology
Mount Sinai School of Medicine
Ph.D., The Rockefeller University

Dr. Wen-Yih Sun
Professor of Earth and Atmospheric Sciences
Purdue University Director
National Center for Typhoon and Flooding Research, Taiwan
University Chair Professor
Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan
University Chair Professor
Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan
Ph.D., MS The University of Chicago, Geophysical Sciences
BS National Taiwan University, Atmospheric Sciences
Associate Professor of Radiology

Dr. Michael R. Rudnick
M.D., FACP
Associate Professor of Medicine
Chief, Renal Electrolyte and Hypertension Division (PMC)
Penn Medicine, University of Pennsylvania
Presbyterian Medical Center, Philadelphia
Nephrology and Internal Medicine
Certified by the American Board of Internal Medicine

Dr. Bassey Benjamin Esu
B.Sc. Marketing; MBA Marketing; Ph.D Marketing
Lecturer, Department of Marketing, University of Calabar
Tourism Consultant, Cross River State Tourism Development Department
Co-ordinator, Sustainable Tourism Initiative, Calabar, Nigeria

Dr. Aziz M. Barbar, Ph.D.
IEEE Senior Member
Chairperson, Department of Computer Science
AUST - American University of Science & Technology
Alfred Naccash Avenue – Ashrafieh
President Editor (HON.)

Dr. George Perry, (Neuroscientist)
Dean and Professor, College of Sciences
Denham Harman Research Award (American Aging Association)
ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization
AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences
University of Texas at San Antonio
Postdoctoral Fellow (Department of Cell Biology)
Baylor College of Medicine
Houston, Texas, United States

Chief Author (HON.)

Dr. R.K. Dixit
M.Sc., Ph.D., FICCT
Chief Author, India
Email: authorind@computerresearch.org

Dean & Editor-in-Chief (HON.)

Vivek Dubey (HON.)
MS (Industrial Engineering),
MS (Mechanical Engineering)
University of Wisconsin, FICCT
Editor-in-Chief, USA
editorusa@computerresearch.org

Er. Suyog Dixit
(M. Tech), BE (HONS. in CSE), FICCT
SAP Certified Consultant
CEO at IOSRD, GAOR & OSS
Technical Dean, Global Journals Inc. (US)
Website: www.suyogdixit.com
Email:suyog@suyogdixit.com

Sangita Dixit
M.Sc., FICCT
Dean & Chancellor (Asia Pacific)
deanind@computerresearch.org

Pritesh Rajvaidya
(MS) Computer Science Department
California State University
BE (Computer Science), FICCT
Technical Dean, USA
Email: pritesh@computerresearch.org

Luis Galárraga
JIResearch Project Leader
Saarbrücken, Germany
CONTENTS OF THE VOLUME

i. Copyright Notice
ii. Editorial Board Members
iii. Chief Author and Dean
iv. Table of Contents
v. From the Chief Editor’s Desk
vi. Research and Review Papers
vii. Auxiliary Memberships
viii. Process of Submission of Research Paper
ix. Preferred Author Guidelines
x. Index

1. Biomining:-An Efficient Data Retrieval Tool for Bioinformatics to Avoid Redundant And Irrelevant Data Retrieval from Biological Databases 1-6
2. ANIFSGA -Adaptive Neuro-Fuzzy Inference System Genetic Algorithm 7-16
4. Algorithm Design for Row-Column Multiplication of N-Dimensional Rhotrices 23-30
5. Evaluation of Improved Qos Routing Algorithm 31-34
7. Optimization of Handoff Method in Wireless Networks 43-49
9. An Approach For Grid Based Authentication Mechanism To Counter Cyber Frauds With Reference To Credit Card Payments. 59-61

9. An Approach For Grid Based Authentication Mechanism To Counter Cyber Frauds With Reference To Credit Card Payments. 59-61
Biomining:-An Efficient Data Retrieval Tool for Bioinformatics to Avoid Redundant and Irrelevant Data Retrieval from Biological Databases

By C.Sumithiradevi, Dr.M.Punithavalli, S.Suresh

Bharathiar University, Coimbatore, TamilNadu, INDIA

Abstracts - MINING biological data is an emerging area of intersection between data mining and bioinformatics. Bioinformaticians have been working on the research and development of computational methodologies and tools for expanding the use of biological, medical, behavioral, or health-related data. Data mining researchers have been making substantial contribution to the development of models and algorithms to meet challenges posed by the bioinformatics research. Mining these databases tend to develop data quality issues like data anomaly and duplication. For biological data to be corrected, methods and tools must be developed. This paper proposes one such tool, called BIOMINING that is designed to eliminate anomalous and redundancy in biological web content.

Keywords: Anomalies, Bio mining, redundancy, bioinformatics, Databases.

Classification: GJCST H.2.8, H.2.m
Biomining:- An Efficient Data Retrieval Tool for Bioinformatics to Avoid Redundant and Irrelevant Data Retrieval from Biological Databases

C.Sumithiradevi¹, Dr.M.Punithavalli², S.Suresh³

Abstract: MINING biological data is an emerging area of intersection between data mining and bioinformatics. Bioinformaticians have been working on the research and development of computational methodologies and tools for expanding the use of biological, medical, behavioral, or health-related data. Data mining researchers have been making substantial contribution to the development of models and algorithms to meet challenges posed by the bioinformatics research. Mining these databases tend to develop data quality issues like data anomaly and duplication. For biological data to be corrected, methods and tools must be developed. This paper proposes one such tool, called BIOMINING that is designed to eliminate anomalous and redundancy in biological web content.

Keywords: Anomalies, Bio mining, redundancy, bioinformatics, Databases.

I. INTRODUCTION

With the development of molecular biology in the last decades, both the Web mining [3] uses data mining techniques to automatically retrieve, extract, and evaluate information for knowledge discovery from the Web. Almost 99% of the data in the Web is useless for a particular user, and often it does not represent any relevant information that the user is looking for [4]. For example, if we are searching the information about Human insulin in the biological search engine Entrez, it will display the information about Human insulin as well as Musmusculus insulin. Taking into account the huge amount of data storage and manipulation needed for (say) a simple query, the processing essentially requires adequate tools suitable for extracting only the relevant, sometimes hidden, knowledge as the result of the problem under consideration.

II. DATABASE TECHNIQUES FOR BIOLOGICAL DATASETS

Indexing and mining technology on biological databases are essential to summarize the information of biological data. A database index is meant to improve the efficiency of data lookup at rows of a table by a key access indexed to meet performance requirements [5]. DNA sequence databases are normally as large as billions of bps (base pairs). Special indices [6, 7, 8, 9] are designed according to the characteristics of DNA sequences to address the efficiency and the effectiveness of the results. Since the biological data becomes tremendous with the growing research interests and the revolution of research approaches, it becomes more and more important and necessary to analyze and understand biological data and the relationships between various data sets using computational approaches. The research in Web mining aims to develop new techniques to effectively extract and mine useful knowledge or information from these databases[10]. Due to the heterogeneity and lack of structure of Web data, automated discovery of targeted or unexpected knowledge/information is a challenging task. Web content mining aims to extract/mine useful information from the biological database based on their contents [11], [12], [13], [14]. Two groups of web content mining are those that directly mine the content of documents and those that improve on the content search of other tools like search engine [15]. As many existing search methods are based on sequential scanning on databases, the growth in database size will adversely affect the efficiency of these search methods. Due to limited PC memory and the sequential-scan schema of the existing approaches, the query speed on large databases is not satisfied. This motivated us to either develop new and more efficient methods or enhance existing methods to be more scalable to the size of databases. Consequently, we designed the Biomining to speed up the query process on desktop PC.
III. COMPUTATION OF THE PROPOSED SYSTEM

BIOMINING is a toolkit for biological information retrieval systems that is designed to eliminate anomalous and redundancy in biological web content. This system consists two functions: (i). On-Topic Search (ii). Related search. On-Topic Search: returns far better results for “on topic” queries as compared with standard Web search engines. Related search: returns relevant results in response to user queries. In this system, the user supplies a organism and protein name as a query to the web. First key words are splitted into the terms. In the On topic search, web pages are mined for the terms and the appropriate information is retrieved. In the related search, web pages are mined for the terms and the relevant information is retrieved.

A. Algorithm for On-Topic and Related Search

```plaintext
FUNCTION

getdata ($stable, $arr, $connect, $query)

$stable = "select seq from stable where "$query";
$result = mysql_query ($query, $connect);
while ($row = mysql_fetch_array ($result))
    array_push ($arr, $row["seq"]);

// Eliminate the redundancy
$arr = array_unique ($arr);
return $arr;

// Split key word term1, term2...termn
$newarr = explode (" ", $search);

// If on topic search
// Match term1 and term2 and termn with DB
if $operation == "On Topic Search"
    print "On Topic Search:<br/>
    for ($i = 1; $i < $arr_count; $i++)
        $query = "$query", " and seq like ^%".$newarr[$i]."%";"

// If Related Search
// Match term1 or term2 or termn with DB
if $operation == "Related Search"
    print "Related Search:<br/>
    for ($i = 1; $i < $arr_count; $i++)
        $query = "$query", " or seq like ^%".$newarr[$i]."%";"

// Retrieve information in database1
$arr = getdata ("biotable", $arr, $connect, $query);

// Retrieve information in database2
$arr = getdata ("biotable2", $arr, $connect, $query);

// Display information
foreach ($arr as $value)
    echo "$value <br/>
```

February 2011
The BIOMINING is able to offer integrated information retrieval through the use of two types of connection between database entries: neighboring and hard links. The neighboring connects entries within a given database while the hard link is applied between entries in different databases and exists everywhere there is a logical connection between entries.

B. Flow chart for the proposed system

![Flow chart for the proposed system](image)

Fig 1: Flow chart for the proposed system

The figure 1 shows the flow chart for the proposed system. In that, user query is split into terms it is checked against database. In the “On-topic search”, exact match information are returned. In the “Related” search, relevant information is retrieved.

IV. Implementation

BIOMINING implemented using PHP, MYSQL and HTML. Figure2 shows the interface of the system.

![Interface of the BIOMINING](image)

Figure 2: Interface of the BIOMINING
The user can enter a query in the top frame. This query is then split into terms and it is checked against the database. In the “On-topic search,” exact match information is returned. In the “Related” search, relevant information is retrieved. The results are then formatted, with the exact matches listed first, and displayed to the user. When searching, if the user wants to search for the organism and protein names with exact match, he or she clicks on the “On-topic search” button. If the user wishes to search for any related matches to the organism, he or she would click on the button “Related.” Finally, redundancies are eliminated. The results of the search appear in the window.

V. EXPERIMENTS AND RESULT

To see how the proposed technique helps to gather a more complete set of sequences related to a protein name, we conducted the following experiments. In the Figure 3, when the query is “insulin Homo sapiens” and the “On-Topic” button is clicked, only sequences of insulin and Homo sapiens will be returned. Figure 4. However, if we click on the “Related” button when submitting the query “insulin Homosapiens”, all the sequences of insulin Homo sapiens, Insulin I Mus musculus, insulin Cavia porcellus, keratin Homo sapiens, Myosin Homo sapiens etc will be returned. Because the term “Insulin” present in Homo sapiens as well as Mus musculus, Cavia porcellus. Also the term “Homo sapiens” present in insulin as well as keratin and myosin.
Experimental results ensure that search time and run time gets reduced. As the efficiency of web content is increased, the quality of the search engines also gets increased. This tool is very simple to implement. The proposed algorithm is used by the bioinformaticians who have been working on the research and development of computational methodologies.

Table 1. FASTA FORMAT of the protein sequence, protein name and organism

<table>
<thead>
<tr>
<th>S.NO</th>
<th>FASTA format Protein Sequence (Protein name, Organism)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>gi</td>
</tr>
<tr>
<td>2</td>
<td>>gi</td>
</tr>
<tr>
<td>3</td>
<td>>gi</td>
</tr>
<tr>
<td>4</td>
<td>>gi</td>
</tr>
<tr>
<td>5</td>
<td>>gi</td>
</tr>
</tbody>
</table>

Table 2. FASTA FORMAT of the protein sequence, protein name and organism

<table>
<thead>
<tr>
<th>S.NO</th>
<th>FASTA format Protein Sequence (Protein name, Organism)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>gi</td>
</tr>
<tr>
<td>2</td>
<td>>gi</td>
</tr>
<tr>
<td>3</td>
<td>>gi</td>
</tr>
<tr>
<td>4</td>
<td>>gi</td>
</tr>
<tr>
<td>5</td>
<td>>gi</td>
</tr>
</tbody>
</table>

Table 3. On Topic Search Search for “insulin homo sapiens”

<table>
<thead>
<tr>
<th>S.NO</th>
<th>FASTA format Protein Sequence (Protein name, Organism)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>gi</td>
</tr>
<tr>
<td>2</td>
<td>>gi</td>
</tr>
<tr>
<td>3</td>
<td>>gi</td>
</tr>
<tr>
<td>4</td>
<td>>gi</td>
</tr>
<tr>
<td>5</td>
<td>>gi</td>
</tr>
</tbody>
</table>

Table 4. Related Search Search for “insulin homo sapiens”

<table>
<thead>
<tr>
<th>S.NO</th>
<th>FASTA format Protein Sequence (Protein name, Organism)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>gi</td>
</tr>
<tr>
<td>2</td>
<td>>gi</td>
</tr>
<tr>
<td>3</td>
<td>>gi</td>
</tr>
<tr>
<td>4</td>
<td>>gi</td>
</tr>
<tr>
<td>5</td>
<td>>gi</td>
</tr>
<tr>
<td>6</td>
<td>>gi</td>
</tr>
<tr>
<td>7</td>
<td>>gi</td>
</tr>
</tbody>
</table>

In the above tables, Table 1 shows. Fasta Format of the protein sequence, protein name and organism which are stored in the database. Table 2 describes the Fasta Format of the protein sequence, protein name and organism which are stored in the second database. Table 3 displays the information, which is retrieved during the “on topic” search. Table 4 shows the information which is retrieved during the “related” search. Many different measures for evaluating the performance of information retrieval systems have been proposed. The measures require a collection of documents and a query.

VI. Conclusion

Today, most biological databases combine user-friendly interfaces with powerful functionality, breadth of coverage and extensive linking to related databases. However, the results produced by most of the search engine do not necessarily produce result that is best possible catering to the user needs. This paper presents...
BIOMINING, a tool for improving the results of web content mining by detecting relevant web documents.

REFERENCES REFERENCES REFERENCIAS

ANFISGA - Adaptive Neuro-Fuzzy Inference System Genetic Algorithm

By Mohammad Jalali Varnamkhasti
University Putra Malaysia

Abstracts - In optimization, when the genetic algorithm fails to find the global optimum, the problem is often credited to premature convergence. Premature convergence is influenced by different parameters. One of the important parameters is diversity population. In this study, we use a novel method to keep diversity in population. A new technique for choosing the female chromosome during sexual selection in a genetic algorithm is proposed. A bi-linear allocation lifetime approach is used to label the chromosomes based on their fitness value. The label will then be used to characterize the diversity of the population. During the sexual selection, the male chromosome is selected randomly. The label of the selected male chromosome and the population diversity of the previous generation are then applied within a set of fuzzy rules and Adaptive Neuro-Fuzzy Inference System Genetic Algorithm to select a suitable female chromosome for recombination. Extensive computational experiments are conducted to assess the performance of the proposed technique with some commonly used sexual selection mechanisms found in a standard GA for solving some numerical functions from the literature. The computational results show that the proposed technique produces higher solutions quality compared to others.

Keywords: Adaptive Neuro-Fuzzy inference System, genetic algorithm, sexual selection, choice female.

Classification: GJCST J.3, I.2.3
ANFISGA - Adaptive Neuro-Fuzzy Inference System Genetic Algorithm

Mohammad Jalali Varnamkhasti

Abstract: In optimization, when the genetic algorithm fails to find the global optimum, the problem is often credited to premature convergence. Premature convergence is influenced by different parameters. One of the important parameters is diversity population. In this study, we use a novel method to keep diversity in population. A new technique for choosing the female chromosome during sexual selection in a genetic algorithm is proposed. A bi-linear allocation lifetime approach is used to label the chromosomes based on their fitness value. The label will then be used to characterize the diversity of the population. During the sexual selection, the male chromosome is selected randomly. The label of the selected male chromosome and the population diversity of the previous generation are then applied within a set of fuzzy rules and Adaptive Neuro-Fuzzy Inference System Genetic Algorithm to select a suitable female chromosome for recombination. Extensive computational experiments are conducted to test the performance of the proposed technique with some commonly used sexual selection mechanisms found in the literature. The computational results show that the proposed technique produces higher solutions quality compared to others.

1. INTRODUCTION

Genetic algorithm (GA) is an optimization algorithm that incorporates the process of evolution. Problems by inspiring an evolutionary process including selection, crossover and mutation are solved. GA uses a population of chromosomes, each representing a solution to the problem that has been solved. In a traditional (GA), chromosomes reproduce asexually: any two chromosomes may be parents in crossover. Gender division and sexual selection here inspire a model of gendered GA in which crossover takes place only between chromosomes of opposite sex. The Sex of chromosomes is not only accountable for preserving diversity in population and maintaining a victorious genetic pool by means of selection, crossover and mutation, but also are accountable for the optimization of the different tasks which are very important to survival. We know that female choice is an important factor in both species recognition and sexual selection. In this study, an obvious characteristic between the two gender groups, with the possibility of embedding different tasks for each one is considered such as the determination of what partners are suitable for mating and recombination. We suppose a relation between age, effectiveness and fitness as in biological systems affecting the selection procedure. A bi-linear allocation lifetime approach is used to label the chromosomes based on their fitness value. In this paper lifetime is utilized just to label the chromosomes, and here lifetime doesn’t mean, the number of iteration that chromosome is remained for generation. The obtained chromosomes labels are used to characterize the diversity of the population. Then the population is divided into two categories, male and female, so that male and female are selected in an alternate way. In each generation the layout of selection for male and female are changed. In optimization, when the genetic algorithm cannot to find the global optimum, the problem is often accredited to premature convergence. Premature convergence is influenced by different parameters. One of the significant parameters is diversity population. To sum up, the aim of this paper is keeping the diversity of population by female choice. Female selection is donethrough a set of fuzzy rules and a new Adaptive Neuro-Fuzzy Inference System (ANFIS) combined with genetic algorithm called Adaptive Neuro-Fuzzy Inference System Genetic Algorithm (ANFISGA). The paper is set up as follows: in section 2, literature review is given. In section 3 fuzzy rules system is considered, in section 4 is reviewed adaptive neuro-fuzzy inference system. Adaptive neuro-fuzzy inference systems genetic algorithm in section 5 is introduced. The experiments and test set are presented in section 6. Algorithms and numerical results are given in section 7 and the conclusion is drawn in section 8.

II. LITERATURE REVIEW

Genetic Algorithm was developed by J. Holland in 1975 [10]. The basic approaches for retarding premature convergence aim to maintain genetic diversity. Different publications are available presenting various ways to better maintain diversity population ([5], [7], [8]). Some researchers studying the occurrence of premature convergence ([10], [11]), or analyzing the interaction of
different forces inside GAs (e.g. [19]). Work has been performed using mate choice in GA, with encouraging results. Ref. [16] shows how the use of a seduction function based upon a visual measure, such as unitation in the case of the royal road problem [13], where it has been shown that selection of the second parent can improve GA performance. Work in [12] discussed the various ways of sexual selection that can be used in evolutionary computation, and indicate that speciation behaviours may occur when sexual selection is used [15]. Good genes models of sexual selection rely on the idea that fitness is genetic, which contrasts stridently with the non-additive form of genetic quality associated with compatible gene models of sexual selection, which is not generally considered heritable ([14], [15]). Theoretical developments have played a critical part in understanding the role of genetic ability in sexual selection by providing new hypotheses and predictions for empiricists to test. Several works in this issue explore new theoretical avenues with respect to genetic ability ([11], [15]). In another research showed that “incest prevention”, the exclusion of crossover between identical or very similar strings, can prevent premature convergence [11]. Cavicchio [5] has extended the idea of incest prevention fairly by introducing the concept, of ancestry in other words, solution are prohibited from mating with, say, their grandparents, siblings. Ratford et al. [6] have shown the sexual selection appears to be a robust technique for improving GA performance over wide range of test problems in the GA literature [15].

III. FUZZY RULES SYSTEMS

Fuzzy knowledge-based systems are rules that built on fuzzy logic and fuzzy set theory. A rule system consisting of a number of rules with a condition part and an action part: IF “condition,” THEN “action” The condition part is also known as the rule premise, or simply the IF part. The action part is also called the consequence or the THEN part. A fuzzy rule system is a rule system whose variables or part of its variables are linguistic variables. A linguistic variable is characterized by a quintuple \(\{x, T(x), G, M, U\} \) in which \(x \) is the name of the variable, \(T(x) \) is the term set of \(x \), that is, a set of linguistic values of \(x \), which are fuzzy sets on the universe \((U) \), \(G \) is the syntactic rule for generating the names of values of \(x \), and \(M \) is a semantic rule for associating each value with its meaning, that is, the membership function that defines the fuzzy set[18]. In this paper we use a linguistic variable, age, for chromosomes. Figure 1 describes a linguistic variable: Infant, Teenager, Adult and Elderly are the linguistic terms. The membership functions for the linguistic terms are called semantic rules.

In this study to find a membership function, we use fitness value of each chromosome and average of fitness functions in each generation. Each chromosome has its own label determined by membership function. Let

\[\varphi = \frac{f_i - f_{\text{min}}}{f_{\text{max}} - f_{\text{min}}}, \phi = \frac{f_i - f_{\text{avr}}}{f_{\text{max}} - f_{\text{avr}}} \quad \text{and} \quad \tau = f_{\text{avr}} - f_i \]

then membership function is:

\[\mu(c_i) = \begin{cases} \frac{L + \alpha \varphi}{n} & \tau \geq 0 \\ \frac{U - (L + \alpha \varphi)}{n} & \tau < 0 \end{cases} \]

Where \(i \) = chromosome \(i \), \(L = \text{minimum age} \), \(U = \text{maximum age} \), \(f = \text{fitness value of chromosome} \), \(\text{avr } f = \text{average fitness values} \), \(\text{min } f = \text{minimum fitness values} \), \(\text{max } f = \text{maximum fitness values} \) in \(k \)-th generation, \(n \) is population size, \(\alpha = (U - L)/2 \) and \(\beta(U + L)/2 \). Formula (1) is based on a better lifetime for higher fitness value and formula (2) is based on a better lifetime for lower fitness value. This idea is inspired by the idea of lifetime [14]. The fuzzification interface defines for each chromosome the possibilities of being
{Infant, Teenager, Adult, Elderly}. These values determine the degree of truth for each rule premise. This computation takes into account all chromosomes in each generation, and relies on the triangular membership functions shown in Figure 2 (Here we consider \(L = 2 \) and \(U = 10 \)).

![Figure 2: The membership function for Age of chromosomes](image)

On the other hand, we can consider linguistic rules and membership function for each rule as follow:

\[
\begin{align*}
\mu_1 &= \begin{cases}
1 & x < 0.25 \\
-5x + \frac{9}{4} & 0.25 \leq x < 0.45 \\
5x - \frac{5}{4} & 0.45 \leq x < 0.65 \\
-5x + \frac{13}{4} & 0.65 \leq x < 0.85 \\
1 & x \geq 0.85
\end{cases} \\
\mu_2 &= \begin{cases}
5x - \frac{9}{4} & 0.45 \leq x < 0.65 \\
-5x + \frac{17}{4} & 0.65 \leq x < 0.85 \\
1 & x \geq 0.85
\end{cases} \\
\mu_3 &= \begin{cases}
5x - \frac{13}{4} & 0.65 \leq x < 0.85 \\
1 & x \geq 0.85
\end{cases} \\
\mu_4 &= \begin{cases}
1 & x < 0.25 \\
-5x + \frac{9}{4} & 0.25 \leq x < 0.45 \\
5x - \frac{5}{4} & 0.45 \leq x < 0.65 \\
-5x + \frac{13}{4} & 0.65 \leq x < 0.85 \\
1 & x \geq 0.85
\end{cases}
\]

(3)

With these labels, population can be divided into four levels, Very Low, Low, Medium and High diversity, and relies on the triangular membership functions shown in Figure 3. Where \(\bar{\xi}_i \), \(i = 1, 2, 3, 4 \) is, average of lifetimes that calculated as follow:

\[
\text{lifetime}\ (c_i) = \begin{cases}
L + \theta \frac{f_i - f_{\min}}{f_{\text{avr}} - f_{\min}} & f_{\text{avr}} \geq f_i \\
\frac{1}{2} (U + L) + \theta \frac{f_i - f_{\text{avr}}}{f_{\text{max}} - f_{\text{avr}}} & f_{\text{avr}} < f_i
\end{cases}
\]

(4)
Where, $\theta = (U - L) / 2$, ψ is the label of half of the population,

$$
t = \left\lfloor \frac{\eta \times (L + U)}{n} \right\rfloor
$$

IV. ANFIS: ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

The Sugeno fuzzy model was proposed for a systematic approach to generating fuzzy rules from a given input-output data set. A typical Sugeno fuzzy rule can be expressed in the following form:

IF x_1 is A_1 AND x_2 is A_2 ...AND x_m is A_m **THEN** $y = f(x_1, x_2, ..., x_m)$

Where, x_1, x_2, ..., x_m are input variables; $A_1, A_2, ..., A_m$ are fuzzy sets; and y is either a constant or linear function of the input variables. When y is a constant or linear function of the input variables. When y is a constant, we obtain a zero-order Sugeno fuzzy model in which the consequent of a rule is specified by singleton. When y is first-order polynomial, i.e. $y = k_0 + k_1 x_1 + k_2 x_2 + k_m x_m$ we obtain a first order Sugeno fuzzy model. Figure 4 shows the ANFIS architecture that corresponds to the first order Sugeno fuzzy model. For simplicity, we assume that the ANFIS has two inputs x_1 and x_2 and one output y [17].

Linguistic rules and membership function for Diversity population

<table>
<thead>
<tr>
<th>Linguistic</th>
<th>Membership Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>$\mu_1 = \begin{cases} 1 & x < 2.5 \ -\frac{1}{2} x + \frac{9}{4} & 2.5 \leq x < 4.5 \end{cases}$</td>
</tr>
<tr>
<td>Medium</td>
<td>$\mu_2 = \begin{cases} -\frac{1}{2} x + \frac{9}{4} & 2.5 \leq x < 4.5 \ \frac{1}{2} x + \frac{13}{4} & 4.5 \leq x < 6.5 \end{cases}$</td>
</tr>
<tr>
<td>Low</td>
<td>$\mu_3 = \begin{cases} -\frac{1}{2} x + \frac{9}{4} & 4.5 \leq x < 6.5 \ \frac{1}{2} x + \frac{17}{4} & 6.5 \leq x < 8.5 \end{cases}$</td>
</tr>
<tr>
<td>Very Low</td>
<td>$\mu_4 = \begin{cases} -\frac{1}{2} x + \frac{9}{4} & 6.5 \leq x < 8.5 \ 1 & x \geq 8.5 \end{cases}$</td>
</tr>
</tbody>
</table>

………………. (6)
In this study we use Adaptive Neuro-Fuzzy Inference System Genetic Algorithm (ANFISGA). This method is based on Neuro-fuzzy inference system and genetic algorithm. In ANFISGA there are two inputs, x_1 Male’s age and x_2 Diversity of population, and one output $y =$Female’s age. In ANFISGA we have five layers. Layer 1 is the input layer. Neurons in this layer simply pass external crisp signal to Layer 2. Layer 2 is the fuzzification layer. Neurons in this layer perform fuzzification. Layer 3 is the rule layer. Each neuron in this layer corresponds to signal Sugeno-type fuzzy rule.

Layer 4 is the normalization layer. Each neuron in this layer receives inputs from all neurons in the rule layer, and calculates the normalized firing strength of given rule. Layer 5 is the defuzzification layer. Each neuron in this layer is connected to the respective normalization neuron, and also receives initial inputs s_1 and s_2. There are two important differences between ANFISGA and ANFIS; firstly, normalization and secondly, adaptation. For adaptation of Neuro-fuzzy is used weights, but in our method weights are constant and for adaptation we use sexual selection based on female choice and diversity population. Figure 5 shows the ANFISGA architecture that corresponds to the first order Sugeno fuzzy model with genetic algorithm. We introduce rules for ANFISGA in Table 1.

Figure 4: Adaptive neuro-fuzzy inference system
Figure 5: Adaptive Neuro-Fuzzy Inference System Genetic Algorithm (ANFISGA)
Where
\[w_i = 1, \quad \tilde{W}_t = \frac{W}{\sum |w_i|} \],
\[\alpha \text{ and } \beta \text{ are introduced in (1), } \mu_i \text{ is given in (2), } \mu_i \text{ is taken in (5) and output of Neuro-fuzzy inference system is } \]
\[D_i = F_{age} \text{ that is suggested for selection of female with at least this } F_{age} \text{ of category females. After the finding } F_{age} \text{, we may not find a chromosome that has this } F_{age} \text{ then we select a chromosome having the nearest fitness value to } F_{age}, \text{ or may be we can find more than one chromosome which satisfies having } F_{age} \text{ condition, therefore we choose a chromosome having the highest fitness value of them. This technique called complement method. In this paper we consider a weak method for crossover, two point crossovers, because we want to show that our selection technique is robust.}

VI. Experiments

Minimization experiments on the test set, described in Subsection 6.1, have been carried out in order to study the behavior of the proposed ANFISGA in the previous section, the algorithms built in order to do this are described, and finally, in section 7, the results are shown and analyzed.

1) **Test Set**

For the experiments, we have considered three frequently used test functions of Benchmark problems:
- Sphere model \(f_{sph} \) ((7)):
 \[f_{sph}(x) = \sum_{i=1}^{n} x_i^2, \text{ and } -5.12 \leq x_i \leq 5.12. \]

The fitness of the optimum is \(f_{sph}(x^*) = 0 \). This test function is continuous, strictly convex, and unimodal.
- Generalized Rosenbrock’s function \(f_{Ros} \) ((7)):
The fitness of the optimum is \(f_{Ros}(x^*) = 0 \). \(f_{Ros} \) is a continuous and unimodal function, with the optimum located in a steep parabolic valley with a flat bottom. This feature will probably cause slow progress in many algorithms since they must continually change their search direction to reach the optimum.

- Generalized Rastling's function (\(f_{Ras} \)) ([4]):
 \[
 f_{Ras}(x) = 10n + \sum_{i=1}^{n} (x_i^2 - 10 \cos(2\pi x_i)) \text{ and } -5 \leq x_i \leq 5.
 \]

This function is a scalable, continuous, separable, and multimodal, which is produced from by \(f_{Sph} \) modulating it with \(k \cdot \cos(wx_i) \).

VII. Algorithms

We compare ANFISGA with some methods in GA that Herrera et al. used in [9]. They had been considered a generational GA model that applied a simple crossover operator and a mutation timewpiece operator and selection probability calculation followed linear ranking (\(p_{MIN} = 0.5 \)). The sampling algorithm was the stochastic universal sampling, and elitist strategy was considered. Also the overall qualities of the fuzzy logic control that they had been considered was the following: the minimum operator was used for conjunction of clauses in the IF part of a rule, the minimum operator was used to fire each rule and the center of gravity weighted by matching strategy as the defuzzification operator was considered. Table 2 shows these algorithms.

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA1</td>
<td>(p_m = 0.001) and (p_c = 0.6) fixed during the run.</td>
</tr>
<tr>
<td>GA2</td>
<td>(p_m = 0.005) and (p_c = 0.6) fixed during the run.</td>
</tr>
<tr>
<td>GA3</td>
<td>(p_m = 0.01) and (p_c = 0.6) fixed during the run.</td>
</tr>
<tr>
<td>GA-RAN</td>
<td>(p_m) in ([0.001, 0.01]) for each generation. (p_c = 0.6).</td>
</tr>
<tr>
<td>GA-DET</td>
<td>Deterministic Control of the Mut. Prob. (p_c = 0.6).</td>
</tr>
<tr>
<td>GA-AIL</td>
<td>Adaptive Control at Individual-level of the Mut. Prob (p_c = 0.6).</td>
</tr>
<tr>
<td>GA-SELF</td>
<td>Self-Adaptive Control of the Mut. Prob ((\delta = 0.001)) (p_c = 0.6).</td>
</tr>
<tr>
<td>GA-FLC</td>
<td>Adaptive Control of the Mut. Prob by FLC ((G = 50)) (p_c = 0.6).</td>
</tr>
<tr>
<td>ANFISGA</td>
<td>(p_m) in ([0.001, 0.2]) for each generation and (p_c = 0.6).</td>
</tr>
</tbody>
</table>

Table 2: Algorithms

Table 3: Population size is 60, and probability crossover is \(p_c = 0.60 \).

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(f_{Sph})</th>
<th>(f_{Ros})</th>
<th>(f_{Ras})</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA1</td>
<td>2.4e-10</td>
<td>1.1e-01</td>
<td>5.9e+00</td>
</tr>
<tr>
<td>GA2</td>
<td>7.7e-08</td>
<td>8.5e-03</td>
<td>5.1e-05</td>
</tr>
<tr>
<td>GA3</td>
<td>8.0e-06</td>
<td>1.2e-05</td>
<td>6.0e-02</td>
</tr>
<tr>
<td>GA-RAN</td>
<td>2.2e-07</td>
<td>6.9e-04</td>
<td>8.4e-05</td>
</tr>
<tr>
<td>GA-DET</td>
<td>2.8e-10</td>
<td>5.6e-05</td>
<td>3.3e-02</td>
</tr>
<tr>
<td>GA-AIL</td>
<td>2.4e-10</td>
<td>4.3e-02</td>
<td>1.2e+00</td>
</tr>
<tr>
<td>GA-SELF</td>
<td>2.4e-10</td>
<td>4.5e-02</td>
<td>1.7e+00</td>
</tr>
<tr>
<td>GA-FLC</td>
<td>2.4e-10</td>
<td>6.4e-04</td>
<td>6.1e-08</td>
</tr>
<tr>
<td>ANFISGA</td>
<td>2.4e-10</td>
<td>1.3e-07</td>
<td>9.5e-09</td>
</tr>
</tbody>
</table>

With regards to the GA versions that we compared in Table 3, we can say that:

- For the easy test function, \(f_{Sph} \) result of ANFISGA technique is the same of the best result of other methods.
● For the function with intermediate complexity, \(f_{\text{ras}} \) and for the most complex function, \(f_{\text{Ros}} \), the consequence derived from the results of experiments is that ANFISGA system is better of other methods.

Then ANFISGA technique, has the most robust behaviours, since for each function, it returns results that are very similar to the ones of the most successful GAs with intermediate complexity, or better than all them results for the function with intermediate complexity and for the most complex function.

VIII. Conclusions

We have proposed a method for controlling the diversity of population using fuzzy logic techniques and Adaptive Neuro-Fuzzy Inference System (ANFIS). However, Weights in ANFIS is constant in our method we used sexual selection for adaptation. The principle conclusions derived from the results of experiments carried out are the following:

● The procedure presented is the most successful one for controlling diversity as compared with other methods proposed in the GA literature that have been considered for the experiments.

● The adaptation capability of this procedure allows suitable parent to be used for producing a robust operation for test function with different difficulties.

Therefore, we may conclude that the female choice by ANFISGA is a suitable way for improvement the results of GAs, and keep the diversity of the population.

References

Simulation Based Performance Analysis of Routing Protocols Using Random Waypoint Mobility Model in Mobile Ad Hoc Network

By Santosh Kumar, S C Sharma, Bhupendra Suman

IIT Roorkee (India)

Abstracts - A mobile ad hoc network is collection of self-configuring and adaption of wireless link between communicating devices (mobile devices) to form an arbitrary topology without the use of existing infrastructure. In wireless network technology, simulative analysis is a significant method to understand the performance of routing protocol. In this paper an attempt has been made to compare the performance of two prominent on-demand reactive routing protocols for mobile ad hoc networks: DSR and AODV, along with the traditional proactive DSDV protocol. The On-demand protocols, AODV and DSR perform better under high mobility simulations than the table-driven DSDV protocol. Although DSDV perform well with respect to all included performance matrices in the paper if it has no constraints of bandwidth. The performance differentials are analyzed using varying network load, mobility, and network size.

Keywords: MANET, Routing Protocols – AODV, DSDV, DSR, RWMM.

Classification: GJCST C.2.2, I.6.m
Simulation Based Performance Analysis of Routing Protocols Using Random Waypoint Mobility Model in Mobile Ad Hoc Network

Santosh Kumar¹, SC Sharma², Bhupendra Suman³

Abstract: A mobile ad hoc network is collection of self-configuring and adaption of wireless link between communicating devices (mobile devices) to form an arbitrary topology without the use of existing infrastructure. In wireless network technology, simulative analysis is a significant method to understand the performance of routing protocol. In this paper an attempt has been made to compare the performance of two prominent on-demand reactive routing protocols for mobile ad hoc networks: DSR and AODV, along with the traditional proactive DSDV protocol. The On-demand protocols, AODV and DSR perform better under high mobility simulations than the table-driven DSDV protocol. Although DSDV perform well with respect to all included performance matrices in the paper if it has no constraints of bandwidth. The performance differentials are analyzed using varying network load, mobility, and network size.

Keywords: MANET, Routing Protocols – AODV, DSDV, DSR, RWMM.

1. INTRODUCTION

Mobile ad hoc network (MANET), sometimes called a mobile mesh network, is a self-configuring network of mobile devices connected by wireless links. Each device in a MANET is free to move independently in any direction, and will therefore change its links to other devices frequently [1, 2]. Each must forward traffic unrelated to its own use, and therefore be a router. MANET nodes are equipped with wireless transmitters and receivers using antennas, which may be Omni directional (broadcast), highly directional (point-to-point), possibly steerable, or some combination thereof. Routing protocols occupied to determine the routes subsequent to a set of rules that enables two or more devices to communicate with each other. In the mobile ad-hoc networks routes are enabled in between the nodes in multi-hop fashion, as the propagation range of the wireless radio is limited. A good routing protocol should minimize the computing load on the host as well as the traffic overhead on the Network. This paper has an outline of protocol evaluation that highlight performance metrics that can help promote meaningful comparisons and assessments of protocol performance.

Routing protocols in mobile networks are subdivided into two basic classes:

- **Proactive routing protocols**
- **Reactive routing protocols**

The proactive routing protocols are also called table-driven protocols it maintains the routing information of the all participant nodes and update their routing information frequently irrespective of the routing request. This makes it bandwidth scarce though the routing is simple with prior updated routing information. They usually use link-state routing algorithms flooding the link information [3, 4]. Link-state algorithms maintain a full or partial copy of the network topology and costs for all known links. Examples include the Destination-Sequenced Distance Vector (DSDV) protocol [5, 6]. The reactive routing protocols create and maintain routes only if these are needed, on demand. It uses connection establishment process for communication. These protocols usually use distance-vector routing algorithms that keep only information about next hops to adjacent neighbours and costs for paths to all known destinations. Some pitfalls of reactive protocols are high latency in searching the network and also in finding the routes if there is excessive flooding over the network with route request it may cause network clogging. Examples include the Ad hoc On Demand Distance Vector (AODV) protocol and Dynamic Source Routing (DSR) protocol [7, 8, 9]. Section 2 describes on-demand routing protocols, section 3 describes table-driven protocol, section 4 describes simulation model, section 5 describes performance evaluation & simulation results and section 6 describes conclusion of the paper.

II. THE ON-DEMAND ROUTING PROTOCOLS

In this section, paper investigates the on demand routing protocols. The basic idea of these algorithms is
to find and maintain a route only when it is used for communication.

1) **AODV (AD-HOC On-Demand Distance Vector)**

AODV is a routing protocol for mobile ad hoc networks and other wireless ad-hoc networks. This protocol is capable of both unicast and multicast routing [4, 10]. In AODV, the network is silent until a connection is needed. At that point the network node that needs a connection broadcasts a request for connection. Other AODV nodes forward this message, and record the node that they heard it from, creating an explosion of temporary routes back to the needy node. When a node receives such a message and already has a route to the desired node, it sends a message backwards through a temporary route to the requesting node. The needy node then begins using the route that has the least number of hops through other nodes. Unused entries in the routing tables are recycled after a time. When a link fails, a routing error is passed back to a transmitting node, and the process repeats. Each request for a route has a sequence number. Nodes use this sequence number so that they do not repeat route requests that they have already passed on. AODV requires more time to establish a connection, and the initial communication to establish a route is heavier than some other approaches.

2) **DSR (Dynamic Source Routing)**

DSR is a simple and efficient routing protocol designed specifically for use in multi-hop wireless ad hoc networks of mobile nodes. The sender knows the complete hop by hop route to the destination. These routes are stored in a route cache [8, 9]. This protocol is composed of the two main mechanisms of "Route Discovery" and "Route Maintenance", which work together to allow nodes to discover and maintain routes to arbitrary destinations in the ad hoc network. Other advantages of the DSR protocol include easily guaranteed loop-free routing, support for use in networks containing unidirectional links, use of only "soft state" in routing, and very rapid recovery when routes in the network change. The DSR protocol is designed mainly to work well with very high rates of mobility.

III. Table-driven Protocol

There are few routing table-driven protocols discussed in the literature [4, 5, 6]. In a table-driven type of protocols, one needs periodically to determine the network topology. If any changes happen to the network, this information should be broadcasted, and all of the host in this network will run the route discovery again and store new routing information in the table. In general, when compared to on-demand protocols, table-drive protocols allocate one entry for each host of the whole network, instead of only the destinations of the packets. However, in table-driven protocols, any time when a route is needed, a route is already available in the table, therefore, table-driven can reduce the average delay per packet. This paper describes a destination sequenced distance vector (DSDV) protocol.

1) **DSDV (Destination Sequenced Distance Vector)**

DSDV is a table-driven routing scheme for ad hoc mobile networks based on the Bellman-Ford algorithm [5, 6]. The main contribution of the algorithm was to solve the routing loop problem. Each entry in the routing table contains a sequence number, the sequence numbers are generally even if a link is present; else, an odd number is used. The number is generated by the destination, and the emitter needs to send out the next update with this number. Routing information is distributed between nodes by sending full dumps infrequently and smaller incremental updates more frequently. If a router receives new information, then it uses the latest sequence number. If the sequence number is the same as the one already in the table, the route with the better metric is used. Stale entries are those entries that have not been updated for a while. Such entries as well as the routes using those nodes as next hops are deleted. DSDV requires a regular update of its routing tables, which uses up battery power and a small amount of bandwidth even when the network is idle. Whenever the topology of the network changes, a new sequence number is necessary before the network re-converges; thus, DSDV is not suitable for highly dynamic networks.

IV. Simulation Model

A detailed simulation model based on ns-2 is used in the evaluation. The Distributed Coordination Function (DCF) of IEEE 802.11 for wireless LANs is used as the MAC layer protocol.
1) **The Traffic and Mobility Models**

Constant bit rate (CBR) traffic sources are used. The sourcedestination pairs are spread randomly over the network. Only 512-byte data packets are used. The number of sourcedestination pairs and the packet-sending rate in each pair is varied to change the offered load in the network. The mobility model uses the random waypoint model in a rectangular field. The field configurations used is: 500 m x 500 m field with 10, 30 and 50 nodes. Here, each packet starts its journey from a random location to a random destination with a randomly chosen speed (uniformly distributed 20 m/s). The pause time, which affects the relative speeds of the mobiles, is varied. Simulations are run for 100 simulated seconds. Identical mobility and traffic scenarios are used across protocols to gather fair results.

2) **Performance Metrics**

This paper analyzed the following important performance metrics:

a) **Packet delivery fraction**

the ratio of the data packets delivered to the destinations to those generated by the CBR sources. It reflects the reliability of routing. Figure 3, 7 & 11 demonstrate pd-fraction among the protocols.

b) **Average end-to-end delay of data packets**

This includes all possible delays caused by buffering during route discovery latency, queuing at the interface queue, retransmission delays at the MAC, and propagation and transfer times. Figure 4, 8 and 12 depicts end-to-end delay among protocols.

c) **Normalized routing load**

The number of routing packets transmitted per data packet delivered at the destination. Each hop-wise transmission of a routing packet is counted as one Transmission. Figure 2, 6, & 10 explore normalized routing load among the protocols.

The first two metrics are the most important for best effort traffic. The routing load metric evaluates the efficiency of the routing protocol. However, that these metrics are not completely independent. For example, lower packet delivery fraction means that the delay metric is evaluated with fewer samples. In the conventional wisdom, the longer the path lengths, the higher the probability of a packet drops. Thus, with a lower delivery fraction, samples are usually biased in favour of smaller path lengths and thus have less delay.

I. **Generating Traffic and Mobility Models**

a) **Traffic model**

Random traffic connections of CBR have been established between mobile nodes using a traffic scenario generator script. The simulations carried out, traffic models were generated for 10, 30 and 50 nodes with CBR traffic sources, with maximum connections of 8, 25, 40 at a rate of 8kbps.

b) **Mobility models**

Mobility models were created for the simulations using 10, 30 and 50 nodes, with pause times of 0, 10, 20, 30, 40, 50, 60, 70 and 100 seconds, maximum speed of 20m/s, topology boundary of 500x500 and simulation time of 100secs
V. PERFORMANCE EVALUATION & SIMULATION RESULTS

In this paper, an attempt was made to compare all the three protocols under the random way mobility scenario. For all the simulations, the same movement models were used, the number of traffic sources was fixed at 10, 30 and 50, the maximum speed of the nodes was set to 20m/s, the pause time was varied as 0, 10, 20, 30, 40, 50, 60, 70, 100s, and a fixed topology boundary of 500x500. The On-demand protocols, DSR and AODV performed particularly well, delivering over 85% of the data packets regardless of mobility rate. The average end-to-end delay of packet delivery was higher in both DSR and AODV as compared to DSDV. Routing overhead of DSDV is approximately constant at varying pause time from beginning and end of the simulation as compared to the AODV and DSR. As no. of sources increases at certain limit, it results that the DSDV perform well with respect to all included performance matrices as compared to AODV and DSR.

Fig.1 Pause Time vs routing overhead (packets)-Fixed 10 nodes

Fig.2 Pause Time vs Normalized routing load (Fixed 10 nodes)

Fig.3 Pause Time vs packet loss (Fixed 10 nodes)

Fig.4 Pause Time vs Avg End-End delay(Fixed 10 nodes)
SIMULATION BASED PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS USING RANDOM WAYPOINT MOBILITY MODEL IN MOBILE AD HOC NETWORK

Fig. 5 Pause Time vs routing overhead (packets) - fixed 30 nodes

Fig. 6 Pause Time vs Normalized routing load (Fixed 30 nodes)

Fig. 7 Pause Time vs pd fraction (Fixed 30 nodes)

Fig. 8 Pause Time vs Avg end-to-end delay, fixed 30 nodes

Fig. 9 Pause Time vs Routing overhead (Fixed 50 nodes)

Fig. 10 Pause Time vs Normalized routing load (Fixed 50 nodes)
Once the route is established, the performance of the AODV protocol for different load condition shows better results throughout the simulation time except the beginning and ending time. The average end-to-end delay of packet delivery was higher in both DSR and AODV as compared to DSDV, when number of nodes increased. Routing overhead of DSDV is approximately constant at varying pause time from beginning and end of the simulation as compared to the AODV and DSR. As number of sources increases at certain limit and no big constraint of bandwidth, it results that the DSDV perform well with respect to all included performance matrices as compared to AODV and DSR. Both AODV and DSR perform better under high mobility simulations than DSDV. In lower mobility scenario generally DSR perform better than AODV due to caching strategy used by DSR but it could be possible only at low offered load. Although AODV, outperforms DSR in more “stressful” case of increasing more load and higher mobility. High mobility results in frequent link failures and the overhead involved in updating all the nodes with the new routing information as in DSDV is much more than that involved AODV and DSR, where the routes are created as and when required.

VI. CONCLUSIONS

REFERENCES

Algorithm Design for Row-Column Multiplication of N-Dimensional Rhotrices

By Ezugwu E. Absalom, Abiodun O. Ajibade, Junaidu B. Sahalu

Ahmadu Bello University, Samru Zaria-Nigeria

Abstracts - In this paper, a generalized formula for an alternative row-column multiplication method for rhotrices is presented. The concept established in this paper follows the basic rudiment of mathematical axioms that prove the existing relationships between rhotrices and matrices. This is an extension of the same work presented on rhotrices of order three.

Keywords: Rhotrices, rhotrix, row-column multiplication.

Classification: GJCST F.2.1
Algorithm Design for Row-Column Multiplication of N-Dimensional Rhotrices

Ezugwu E. Absalom, Abiodun O. Ajibade, Junaidu B. Sahalu

Abstract: In this paper, a generalized formula for an alternative row-column multiplication method for rhotrices is presented. The concept established in this paper follows the basic rudiment of mathematical axioms that prove the existing relationships between rhotrices and matrices. This is an extension of the same work presented on rhotrices of order three.

Keywords: Rhotrices, rhotrix, row-column multiplication,

1. INTRODUCTION

An alternative row-column multiplication method for rhotrices was suggested by B. Sani [3]. His work considered a comparative relationship on some common properties that relate and link rhotrices multiplication to that of the well-known row-column matrices multiplication. The purpose of this extract is to present a formalized equation representing the row column multiplication of some objects, which are in some ways between n x n dimensional matrices and (2n-1) x (2n-1) dimensional matrices for further mathematical enrichment. The name rhotrix came up as a result of the rhomboid nature of the arrangement of some mathematical arrays, which can simply be seen as the combination of matrices [1]. A rhotrix R is called a real rhotrix or an integer rhotrix if all its entries belong to the set of real numbers or set of integer numbers respectively [2]. Rows and column definition of a rhotrix:

A set of rhotrices of dimension three was defined in [2] and extension in the dimension was considered possible. For instance, a set of rhotrices of dimension five can be defined as

\[R = \begin{bmatrix} \ a & b & c & d \\ e & f & g & h & i \\ j & k & l & m \end{bmatrix} : a, b, c, \ldots, m \in \mathbb{R} \]

And similarly its rows and columns defined in the following order of arrangements

\[\begin{array}{c} a \\ b \\ c \\ d \\ e \\ f \\ g \\ h \\ i \\ j \\ k \\ l \\ m \end{array} \]

Respectively.

About 1: MSc Research Student, Computer Science
About 2: PhD, Mathematics Department of Mathematic Ahmadu Bello University, Samru Zaria-Nigeria
About 3: Professor, Computer Science: research supervisor
In an attempt to answer the question of “devising a suitable method of solving rhotrices multiplication without having to first perform any form of transformation to coupled matrix and visa-versa” posed in [3][4], an alternative method for multiplication of n-dimensional rhotrices is therefore presented, and thus recorded as follows:

\[
R_n \circ Q_n = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1t} \\
 a_{21} & a_{22} & \cdots & a_{2t} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{nt} & a_{nt+1} & \cdots & a_{nt+t} \\
\end{bmatrix} \begin{bmatrix}
 b_{11} & b_{12} & \cdots & b_{1t} \\
 b_{21} & b_{22} & \cdots & b_{2t} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{nt} & b_{nt+1} & \cdots & b_{nt+t} \\
\end{bmatrix}
\]

The subscript \(n \) in equation (1.1) denotes the dimension of the rhotrix, where \(t = \frac{(n+1)}{2} \) and \(t \) is the column order of rhotrix \(R_n \) and \(Q_n \) respectively, so that if \(n=3 \), then \(t=(3+1)/2 = 2 \). If \(n=5 \), \(t=3 \) and if \(n=9 \), \(t=5 \). If we view a rhotrix as having odd rows as the main entries and even rows as the heart entries all positioned side by side each other, then we can generalize, by defining the rows and columns of rhotrix main entries as:

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1t} \\
 a_{21} & a_{22} & \cdots & a_{2t} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{nt} & a_{nt+1} & \cdots & a_{nt+t} \\
\end{bmatrix}
\]

And

\[
\begin{bmatrix}
 b_{11} & b_{12} & \cdots & b_{1t} \\
 b_{21} & b_{22} & \cdots & b_{2t} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{nt} & b_{nt+1} & \cdots & b_{nt+t} \\
\end{bmatrix}
\]

Respectively and similarly for the hearts entries. Suppose we now represent the n-dimensional rhotrices in equation (1.1) by \(R = a \) and \(Q = b \) where \(a_{ik} \) and \(b_{kj} \) represent the \(a_{ik} \) and \(b_{kj} \) elements respectively. The multiplication will then be as follows:

\[
R_n \circ Q_n = \left(a_{ij} \circ b_{lj} \right) = \lambda \sum_{k=1}^{t} (a_{ik} b_{2k-1j}) + (1 - \lambda) \sum_{k=1}^{t} (a_{ik} b_{2kj})
\]

odd rows of \(a_{ij} \) multiply odd columns of \(b_{lj} \) while even rows of \(a_{ij} \) will then multiply even columns of \(b_{lj} \).

\[
n \in 2Z^+ + 1
\]

\[
t = \frac{(n+1)}{2}
\]

\[
i, j = 1, 2, 3, \ldots, n \text{ and } t
\]

\[
k = 1, 2, 3, \ldots, t \text{ for } i \mod 2 = 1; \lambda = 1
\]

\[
k = 2, 4, 6, \ldots, t - 1 \text{ for } i \mod 2 = 0; \lambda = 0
\]

Hence, the row-column rhotrix multiplication method is similar to matrix multiplication. However, in this case...
Algorithm 1: Rhotrix multiplication algorithm

For

i: 1 to n

if i mod 2 ≠ 0

{ col: upperbound = (n+1) / 2

β = 1

}

Else

{ col: upperbound = (n-1) / 2

β = 0

}

For j: 1 to upperbound

For k: 1 to upperbound

Endfor

Endfor

Endfor

III. Row-Column Multiplication Process

Consider any two rhotrices say R₉ and Q₉:

\[R_9 \odot Q_9 = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix} \odot \begin{bmatrix}
 b_{11} & b_{12} & b_{13} \\
 b_{21} & b_{22} & b_{23} \\
 b_{31} & b_{32} & b_{33}
\end{bmatrix} \]

We then define multiplication of any two rhotrices using the row-column multiplication method similar to that of the matrices without any special consideration of the rhotrix hearts as separate entities on their own. Similar to the addresses used in identifying the row-column entries in a matrix, we associate the entries in a rhotrix by specific symbols (indexes) which run through all the entries as in the rhotrices R₉ and Q₉ above respectively. Thus, the multiplication will then be as follows:

\[R_9 \odot Q_9 = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix} \odot \begin{bmatrix}
 b_{11} & b_{12} & b_{13} \\
 b_{21} & b_{22} & b_{23} \\
 b_{31} & b_{32} & b_{33}
\end{bmatrix} \]
\(R_{11} = a_{11}b_{11} + a_{12}b_{31} + a_{13}b_{51} + a_{14}b_{71} + a_{15}b_{91}\)
\(R_{12} = a_{11}b_{12} + a_{12}b_{32} + a_{13}b_{52} + a_{14}b_{72} + a_{15}b_{92}\)
\(R_{13} = a_{11}b_{13} + a_{12}b_{33} + a_{13}b_{53} + a_{14}b_{73} + a_{15}b_{93}\)
\(R_{14} = a_{11}b_{14} + a_{12}b_{34} + a_{13}b_{54} + a_{14}b_{74} + a_{15}b_{94}\)
\(R_{15} = a_{11}b_{15} + a_{12}b_{35} + a_{13}b_{55} + a_{14}b_{75} + a_{15}b_{95}\)
\(\begin{align*}
R_{31} &= a_{31}b_{11} + a_{32}b_{31} + a_{33}b_{51} + a_{34}b_{71} + a_{35}b_{91} \\
R_{32} &= a_{31}b_{12} + a_{32}b_{32} + a_{33}b_{52} + a_{34}b_{72} + a_{35}b_{92} \\
R_{33} &= a_{31}b_{13} + a_{32}b_{33} + a_{33}b_{53} + a_{34}b_{73} + a_{35}b_{93} \\
R_{34} &= a_{31}b_{14} + a_{32}b_{34} + a_{33}b_{54} + a_{34}b_{74} + a_{35}b_{94} \\
R_{35} &= a_{31}b_{15} + a_{32}b_{35} + a_{33}b_{55} + a_{34}b_{75} + a_{35}b_{95} \\
R_{51} &= a_{51}b_{11} + a_{52}b_{31} + a_{53}b_{51} + a_{54}b_{71} + a_{55}b_{91} \\
R_{52} &= a_{51}b_{12} + a_{52}b_{32} + a_{53}b_{52} + a_{54}b_{72} + a_{55}b_{92} \\
R_{53} &= a_{51}b_{13} + a_{52}b_{33} + a_{53}b_{53} + a_{54}b_{73} + a_{55}b_{93} \\
R_{54} &= a_{51}b_{14} + a_{52}b_{34} + a_{53}b_{54} + a_{54}b_{74} + a_{55}b_{94} \\
R_{55} &= a_{51}b_{15} + a_{52}b_{35} + a_{53}b_{55} + a_{54}b_{75} + a_{55}b_{95} \\
\end{align*}\)

\(\begin{align*}
R_{71} &= a_{71}b_{11} + a_{72}b_{31} + a_{73}b_{51} + a_{74}b_{71} + a_{75}b_{91} \\
R_{72} &= a_{71}b_{12} + a_{72}b_{32} + a_{73}b_{52} + a_{74}b_{72} + a_{75}b_{92} \\
R_{73} &= a_{71}b_{13} + a_{72}b_{33} + a_{73}b_{53} + a_{74}b_{73} + a_{75}b_{93} \\
R_{74} &= a_{71}b_{14} + a_{72}b_{34} + a_{73}b_{54} + a_{74}b_{74} + a_{75}b_{94} \\
R_{75} &= a_{71}b_{15} + a_{72}b_{35} + a_{73}b_{55} + a_{74}b_{75} + a_{75}b_{95}\
\end{align*}\)

\(i = 1, j, k = 1, 2, 3, 4, \text{ where } i \text{ is odd}\)

\(i = 3, j, k = 1, 2, 3, 4, \text{ where } i \text{ is odd}\)

\(i = 5, j, k = 1, 2, 3, 4, \text{ where } i \text{ is odd}\)

\(i = 7, j, k = 1, 2, 3, 4, \text{ where } i \text{ is odd}\)
\begin{align*}
R_{91} &= a_{91}b_{11} + a_{92}b_{31} + a_{93}b_{51} + a_{94}b_{71} + a_{95}b_{91} \\
R_{92} &= a_{91}b_{12} + a_{92}b_{32} + a_{93}b_{52} + a_{94}b_{72} + a_{95}b_{92} \\
R_{93} &= a_{91}b_{13} + a_{92}b_{33} + a_{93}b_{53} + a_{94}b_{73} + a_{95}b_{93} \\
R_{94} &= a_{91}b_{14} + a_{92}b_{34} + a_{93}b_{54} + a_{94}b_{74} + a_{95}b_{94} \\
R_{95} &= a_{91}b_{15} + a_{92}b_{35} + a_{93}b_{55} + a_{94}b_{75} + a_{95}b_{95}
\end{align*}
\begin{align*}
\{ & i = 9, j, k = 1, 2, 3, 4, \text{ where } i \text{ is odd} \\
R_{21} &= a_{21}b_{21} + a_{22}b_{41} + a_{23}b_{61} + a_{24}b_{81} \\
R_{22} &= a_{21}b_{22} + a_{22}b_{42} + a_{23}b_{62} + a_{24}b_{82} \\
R_{23} &= a_{21}b_{23} + a_{22}b_{43} + a_{23}b_{63} + a_{24}b_{83} \\
R_{24} &= a_{21}b_{24} + a_{22}b_{44} + a_{23}b_{64} + a_{24}b_{84}
\end{align*}
\begin{align*}
\{ & i = 2, j, k = 1, 2, 3, 4, \text{ where } i \text{ is even} \\
R_{41} &= a_{41}b_{21} + a_{42}b_{41} + a_{43}b_{61} + a_{44}b_{81} \\
R_{42} &= a_{41}b_{22} + a_{42}b_{42} + a_{43}b_{62} + a_{44}b_{82} \\
R_{43} &= a_{41}b_{23} + a_{42}b_{43} + a_{43}b_{63} + a_{44}b_{83} \\
R_{44} &= a_{41}b_{24} + a_{42}b_{44} + a_{43}b_{64} + a_{44}b_{84}
\end{align*}
\begin{align*}
\{ & i = 4, j, k = 1, 2, 3, 4, \text{ where } i \text{ is even} \\
R_{61} &= a_{61}b_{21} + a_{62}b_{41} + a_{63}b_{61} + a_{64}b_{81} \\
R_{62} &= a_{61}b_{22} + a_{62}b_{42} + a_{63}b_{62} + a_{64}b_{82} \\
R_{63} &= a_{61}b_{23} + a_{62}b_{43} + a_{63}b_{63} + a_{64}b_{83} \\
R_{64} &= a_{61}b_{24} + a_{62}b_{44} + a_{63}b_{64} + a_{64}b_{84}
\end{align*}
\begin{align*}
\{ & i = 6, j, k = 1, 2, 3, 4, \text{ where } i \text{ is even} \\
R_{81} &= a_{81}b_{21} + a_{82}b_{41} + a_{83}b_{61} + a_{84}b_{81} \\
R_{82} &= a_{81}b_{22} + a_{82}b_{42} + a_{83}b_{62} + a_{84}b_{82} \\
R_{83} &= a_{81}b_{23} + a_{82}b_{43} + a_{83}b_{63} + a_{84}b_{83} \\
R_{84} &= a_{81}b_{24} + a_{82}b_{44} + a_{83}b_{64} + a_{84}b_{84}
\end{align*}
\begin{align*}
\{ & i = 8, j, k = 1, 2, 3, 4, \text{ where } i \text{ is even}
The resulting multiplicand of the two rhotrices, \(R \circ Q \) is also given in the form shown below:

Let \(R \circ Q = R = \begin{bmatrix}
R_{11} & R_{12} & R_{13} & \cdots & R_{1r} \\
R_{r1} & R_{r2} & R_{r3} & \cdots & R_{rr}
\end{bmatrix} \)

By comparing entries, we have the following resultant equations: Those entries for which \(i \) assumes odd values are calculated as:

\[
R_{11} = \sum_{k=1}^{5} a_{1k} b_{2k-1}, \quad R_{12} = \sum_{k=1}^{5} a_{1k} b_{2k-12}, \quad R_{13} = \sum_{k=1}^{5} a_{1k} b_{2k-13}, \quad R_{14} = \sum_{k=1}^{5} a_{1k} b_{2k-14}, \quad R_{15} = \sum_{k=1}^{5} a_{1k} b_{2k-15}
\]

\[
R_{31} = \sum_{k=1}^{5} a_{3k} b_{2k-1}, \quad R_{32} = \sum_{k=1}^{5} a_{3k} b_{2k-12}, \quad R_{33} = \sum_{k=1}^{5} a_{3k} b_{2k-13}, \quad R_{34} = \sum_{k=1}^{5} a_{3k} b_{2k-14}, \quad R_{35} = \sum_{k=1}^{5} a_{3k} b_{2k-15}
\]

While those entries for which \(i \) takes an even values are similarly calculated as:

\[
R_{21} = \sum_{k=1}^{4} a_{2k} b_{2k-1}, \quad R_{22} = \sum_{k=1}^{4} a_{2k} b_{2k-4}, \quad R_{23} = \sum_{k=1}^{4} a_{2k} b_{2k-12}, \quad R_{24} = \sum_{k=1}^{4} a_{2k} b_{2k-2}
\]

\[
R_{41} = \sum_{k=1}^{4} a_{4k} b_{2k-1}, \quad R_{42} = \sum_{k=1}^{4} a_{4k} b_{2k-2}, \quad R_{43} = \sum_{k=1}^{4} a_{4k} b_{2k-12}, \quad R_{44} = \sum_{k=1}^{4} a_{4k} b_{2k-4}
\]

IV. **Generalized Form of Row-Column Multiplication**

Splitting equation (1.2), the summations are as follows:

\[
R_{i,j} = \sum_{k=1}^{r} a_{ik} b_{2k-1-j} \quad \text{Entries for the odd rhotrix of } R. \quad \ldots \ldots \quad (1.4)
\]

\[
R_{i,j} = \sum_{k=1}^{r} a_{ik} b_{2k-j} \quad \text{Entries for the even rhotrix of } R. \quad \ldots \ldots \quad (1.5)
\]

The differences between these two summations are reflected in the two upper bounds (i.e. \(t \), and \(t-1 \)), and for index \(b \) (i.e. \(2k-1 \) and \(2k-0 \)). We want to devise a generalized formula to handle these two sets of entries. Consider the function:

\[
f(x) = \begin{cases}
1, & \text{if } x \text{ is odd} \\
0, & \text{if } x \text{ is even}
\end{cases} \quad \text{defined by } f(x) = \frac{1}{2}\{(-1)^{x+1} + 1\}, \quad x = 1, 2, \ldots
\]

Replacing 1 and 0 with \(f(x) \) in the index of \(b \) in equations (1.4) and (1.5) respectively, we have:
Similarly consider these two functions:

\[
(x) = \begin{cases}
3, & \text{if } x \text{ is odd} \\
2, & \text{if } x \text{ is even}
\end{cases}
\]

\[
g(x) = \begin{cases}
5, & \text{if } x \text{ is odd} \\
4, & \text{if } x \text{ is even}
\end{cases}
\]

defined by

\[
g(x) = \frac{1}{2}[5 - (-1)^x], \quad x = 1, 2, \ldots n
\]

Replacing only the differences in equations (1.6) and (1.7), for the upper bounds 3 and 2, and 5 and 4 respectively we obtain the equations:

For \(n = 5 \)

\[
\frac{1}{2}[5 - (-1)^i]
\]

\[
(R_{ij}) = \sum_{k=1}^{i} a_{ik} b_{2k-\frac{1}{2}[-1]^{i+1}+1} i = 1, 2, \ldots 5 \quad j, k = 1, 2, \ldots \frac{1}{2}[5 - (-1)^i] \quad \ldots (1.8)
\]

For \(n = 9 \)

\[
\frac{1}{2}[9 - (-1)^i]
\]

\[
(R_{ij}) = \sum_{k=1}^{i} a_{ik} b_{2k-\frac{1}{2}[-1]^{i+1}+1} i = 1, 2, \ldots 9 \quad j, k = 1, 2, \ldots \frac{1}{2}[9 - (-1)^i] \quad \ldots (1.9)
\]

This approach can further be extended to \(n \)-dimensional rhotrices, finally let us consider the function

\[
h(x) = \begin{cases}
t, & \text{if } x \text{ is odd} \\
t - 1, & \text{if } x \text{ is even}
\end{cases}
\]

defined by

\[
h(x) = \frac{1}{2}[2t - 1 - (-1)^x], \quad x = 1, 2, 3, \ldots n
\]

Hence from equation (1.1), we know that \(t = \frac{n+1}{2} \), therefore, \(n = 2t - 1 \), by substituting \(t \) and \(t - 1 \) for the function \(h(i) \), we obtain this equation.

\[
(R_{ij}) = \sum_{k=1}^{i} a_{ik} b_{2k-\frac{1}{2}[-1]^{i+1}+1} i = 1, 2, \ldots n \quad j, k = 1, 2, \ldots \frac{1}{2}[n - (-1)^i] \quad \ldots (1.10)
\]

Equation (1.10) can further be expressed as:

Let \(p = \frac{1}{2}[n - (-1)^i] \) and by substituting the value of \(p \) into equation (1.10), we have

\[
(R_{ij}) = \sum_{k=1}^{p} a_{ik} b_{2k-\frac{1}{2}[-1]^{i+1}+1} i = 1, 2, \ldots, n \quad j, k = 1, 2, \ldots, \frac{1}{2}[n - (-1)^i] \quad \ldots (1.11)
\]

AlGORITHM 2: Extended row-column multiplication

For \(i = 1 \) to \(n \)

\[
P = \frac{1}{2}((-1)i+1+1)
\]

For \(j = 1 \) to \(t \)

For \(k = 1 \) to \(t \)

\[
R_{[i,j]} = R_{[i,j]} + A_{[i,k]} \times B_{[2k-p,j]}
\]

Endfor

Endfor

Endfor

V. Conclusion

In this paper, we have shown a more simplified method of rhotrix row-column multiplication by taking a holistic approach in deriving a new form of a generalized equation, the approach used in this paper does not require any form of rhotrix transformation to either matrix or coupled matrix before any possible multiplication could be achieved. The approach and results analyzed shows that the equations (1.2) and (1.13) can be used to solve rhotrices of any dimension and yet gives the same result equivalent to the initial method proposed [3].

REFERENCES

Evaluation of Improved QoS Routing Algorithm

By Mr.R.Senthil Kumar
Singhania University, Rajasthan, India

Abstracts - Need for Quality of Service (QoS) on the Internet and QoS routing is an important component of the overall QoS framework. The role of a QoS routing strategy is to compute paths that are suitable for the different types of traffic generated by the various applications, while maximizing the utilization of network resources. The fulfillment of these objectives requires the development of algorithms that find multi-constrained paths taking into consideration the state of the network and the traffic requirements, namely, considering its needs in terms of delay, jitter, loss rate and available bandwidth. However, the problem of finding multi-constrained paths has high computational complexity, and thus there is the need to use algorithms that address this difficulty. The path computation algorithm is at the core of QoS routing strategies. Instead of using a shortest path algorithm based on statically configured metrics, as in traditional routing protocols, the algorithm must select several alternative paths that are able to satisfy a set of constraints regarding, end-to-end delay bounds and bandwidth requirements. This proposal presents and discusses the main approaches used to reduce QoS routing algorithm complexity and to improve the overall network performance. An improved QoS multi-constrained delay and bandwidth (MDBCP) routing algorithm is proposed to solve the QoS routing, when the number of independent routing constraints is more than one.

Keywords: Quality of service, Path computation algorithm, MDBCP.

Classification: GJCST D.2.9, G.2.2
Evaluation of Improved QoS Routing Algorithm

Mr. R. Senthil Kumar

Abstract: Need for Quality of Service (QoS) on the Internet and QoS routing is an important component of the overall QoS framework. The role of a QoS routing strategy is to compute paths that are suitable for the different types of traffic generated by the various applications, while maximizing the utilization of network resources. The fulfillment of these objectives requires the development of algorithms that find multi-constrained paths taking into consideration the state of the network and the traffic requirements, namely, considering its needs in terms of delay, jitter, loss rate and available bandwidth. However, the problem of finding multi-constrained paths has high computational complexity, and thus there is the need to use algorithms that address this difficulty. The path computation algorithm is at the core of QoS routing strategies. Instead of using a shortest path algorithm based on statically configured metrics, as in traditional routing protocols, the algorithm must select several alternative paths that are able to satisfy a set of constraints regarding, end-to-end delay bounds and bandwidth requirements. This proposal presents and discusses the main approaches used to reduce QoS routing algorithm complexity and to improve the overall network performance. An improved QoS multi-constrained delay and bandwidth (MDBCP) routing algorithm is proposed to solve the QoS routing, when the number of independent routing constraints is more than one.

Keywords: Quality of service, Path computation algorithm, MDBCP.

I. INTRODUCTION

Fundamental problem of routing in a network that provides quality-of-service (QoS) guarantees is to find a path between a specified source destination node pair that simultaneously satisfies multiple QoS constraints, such as cost, delay, and reliability. Such an environment is commonly modeled by a graph with vertices and edges where the vertices represent computers or routers and the edges represent links. Each edge has weights associated with it, representing cost, delay, and reliability, etc. Weights on edges extend to weights on paths in a natural way. If the edge weights represent cost, delay, and reliability, then the corresponding path weight is obtained by adding (multiplying, in the case of reliability) the weights of the edges on the path. For this reason, such QoS parameters are said to be additive. QoS parameters such as bandwidth are known as bottleneck parameters where the corresponding weight of a path is the smallest of the weights of the edges on the path. Problems involving bottleneck constraints can be easily solved by ignoring all edges whose weights are smaller than a chosen value. Therefore, restrict the attention of this thesis to additive parameters only. Recognizing the need for an efficient solution to this fundamental problem, many researchers have studied this problem in the last few years. Most of the existing works concentrate on the problem with two additive constraints. This special case is known as the delay constrained least cost path problem where the two edge weights are cost and delay, and one seeks a minimum cost path subject to a given delay constraint. The basic system is described one where based on the predicted value of the aggregate traffic at the bottleneck node, a control vector is generated for the non-real-time traffic sources. Note that these sources could all be at different points in the network and hence the propagation delay to each of them from the bottleneck queue is different. Control systems should seek to minimize this delay, since switches will need to buffer any data that arrives after they signal the congestion status but before the end of the delay. A variety of technical goals, some of them conflicting, are desirable for any flow control mechanism. Data should rarely, if ever, be discarded due to exhaustion of switch buffer memory. Such data may have to be retransmitted after a possibly lengthy time-out period, further contributing to network congestion and the delay seen by the user.

II. LITERATURE REVIEW

The existing method, use a linear combination of the two weights and presented a simple algorithm for finding a good linear combination of the two weights. It proved near optimality properties of the two paths found. These heuristics can find a good solution quickly, but do not provide any performance guarantee. Another literature presented a polynomial time heuristic algorithm based on scaling and rounding of the delay parameter so that the delay parameter of each edge is approximated by a bounded integer. The existing method developed a fully polynomial time approximation scheme for the problem on an acyclic graph. This method presented two improvements, one with a time complexity of approximation parameter, and the other with a time complexity of upper bound on the optimal solution value which is no more than times the maximum edge-cost.
constrained least cost path. The path computed by this algorithm does not necessarily satisfy the delay constraint, its delay is at most times the delay constraint, and its cost is at most that of the delay constrained least cost path. Another existing scheme presented a case of acyclic graphs with a time complexity. [6, 7] It presented a pre-computation scheme for QoS routing with two additive parameters. It presented efficient approximation algorithms for QoS routing with inaccurate information. Applications of QoS in multiservice IP networks and their practical significance were provided by the system. The problem with three or more constraints has also been studied. Using simulations they showed that their heuristic provides better performance than other algorithms with comparable computational complexity. It provide a limited granularity heuristic and a limited path heuristic. The proposed method, analyze the problem with additive QoS constraints with a fixed constant. This method developed a novel time approximation algorithm, which uses a single auxiliary edge weight to compute a shortest path. Because of this property, the algorithm is easily implementable in a hop-by-hop environment.

III. System Model

1) Source and Destination Nodes
Any data network has bottlenecks, points where more data can arrive than the network can carry. These points are often in switches with multiple ports. Congestion arises when data, destined for a single output port, arrives at many inputs. Each network switch collects information about congestion, and informs, directly or indirectly, the sources of data. This feedback is usually based on the amount of buffer space available or in use in the switch. The sources act to control how much data they send. This control loop has a delay of at least twice the propagation delay between the switch and control point. Control systems should seek to minimize this delay, since switches will need to buffer any data that arrives after they signal the congestion status but before the end of the delay.

2) Intermediary Links and Nodes Of Interest
Links between switches should be used at full capacity whenever possible. For instance, if one connection sharing a link reduces the rate at which it sends, the others should increase as soon as possible. All the connections, which are constrained by a bottleneck link, should get fair shares of that link. The flow control mechanism should be robust, loss or delay of control messages, for instance, should not cause increased congestion. The network administrator should not have to adjust any complex parameters to achieve high performance. Finally, the flow control mechanism should have a cost commensurate with the benefits it provides.

3) Qos Constraint Flow Control
Any prediction of how well a flow control scheme will work requires a model for the behavior of network traffic. A full-blown model might involve characteristics of applications and higher-level protocols. For our purposes it is enough to distinguish between smooth and bursty traffic. A smooth traffic source offers a constant and predictable load, or only changes in time scales that are large compared to the amount of time the flow control mechanism takes to respond. Such traffic is easy to handle well; the sources can be assigned rates corresponding to fair shares of the bottleneck bandwidth with little risk that some of them will stop sending and lead to underutilized links. Switches can use a small amount of memory, since bursts in traffic intensity are rare. Sources of smooth traffic include voice and video with fixed-rate compression. The aggregate effect of a large number of bursty sources may also be smooth, particularly in a wide-area network where the individual sources are relatively low-bandwidth and uncorrelated. Rate-based flow control works well with smooth traffic. Bursty traffic lacks any of the predictability of smooth traffic, as observed in some computer communications traffic. Some kinds of bursts stem from users and applications. These bursts are sporadic, and typically do not last long enough on a high-speed link to reach steady state over the link round-trip time.

4) Mp- Bdcp Algorithm
(Most-Probable Bandwidth-Delay Constrained Path)
1) Using Heuristic most probable Delay constrain path model evaluate delay rate r*D
2) Using modified Dijkstra’s algorithm for most probable Bandwidth constran path, evaluate bandwidth rate r*B
3) If r*D and r*B are the same, then return r*D
4) Set N = {r*D, r*B}
5) Set r* = r*D
6) Using modified Dijkstra’s algorithm for MP-BCP in the reverse direction, find the maximum probability satisfying B, from every node u to node t.
7) While πB(r*D) > πB(r*) + C
8) Using Heuristic MDPDCP with some modifications find tmp such that πB(tmp) >πB(r*) + C
9) Set r* = tmp
10) Set R = R u {r*}
11) end
12) return N

Given a bandwidth constraint B and a delay constraint D, the problem is to find a path that is most likely to satisfy both constraints. Specifically, the problem is to find a path r* such that for any other path p from s to t.
\[
\pi_H(r^*) \geq \pi_H(p), \quad \text{and} \quad \pi_B(r^*) \geq \pi_B(p),
\]

where \(\pi_H(p) \equiv \Pr\{b(p) \geq B\} \) and \(\pi_B(p) \equiv \Pr\{d(p) \leq D\} \).

If the \(b(i, j) \)'s and \(d(i, j) \)'s are constants, the MP-BDCP problem reduces to the familiar bandwidth-delay constrained path problem, which can be easily solved in two steps.

i. prune every link \((i, j) \) for which \(b(i, j) < B \), and
ii. find the shortest path with respect to the delay parameter in the pruned graph.

Using the central limit theorem and Lagrange relaxation techniques, two complementary solutions for the delay case have been provided. These solutions are found to be highly efficient, requiring, on average, a few iterations of Dijkstra’s shortest path algorithm. The bandwidth case is rather simple, and is dealt with by transforming it into a variant of the shortest path problem. The solutions for the MP-BCP and MP-DCP problems are then combined to address the MP-BDCP problem. MP-BDCP belongs to the class of multi-objective optimization problems, for which a solution may not even exist. To eliminate the potential conflict between the two-optimization objectives, an approach is proposed in which a subset of nearly non-dominated paths is computed for the given bandwidth and delay constraints.

IV. Experimental Evaluation

Extensive simulations are conducted to evaluate the performance and computational complexity of the aforementioned algorithmic solutions. The interest is not only to assess the betterment of these solutions, but to also demonstrate the potential benefits of the probabilistic approach, as a means of reducing the protocol overhead at no loss in the routing performance. In the probabilistic approach, routers are expected to maintain and advertise two parameters for each QoS measure (e.g., mean and variance for delay, minimum and maximum for available bandwidth). These parameters vary at a much slower pace than the instantaneous delay and bandwidth values. In our simulations, an assumption is made that these statistical parameters are computed and advertised once at the beginning of each simulation run is made. Source nodes then use the one-time advertised information to determine the most-probable path with respect to the delay constraint, the bandwidth constraint, or both. Once this path is computed, its feasibility according to the actual (instantaneous) link values (which are not available to the path selection algorithm) is checked. If the path is feasible according to the actual values, the attempt is called a 'success'. The performance of a path selection algorithm is expressed in terms of the success rate (SR), which is the fraction of returned paths that are feasible.

To demonstrate the robustness of the probabilistic approach, contrast it with the standard threshold-based triggered approach. In the triggered approach, the instantaneous bandwidth and delay values are advertised once they exceed certain thresholds, indicated by \(\text{THB} \) and \(\text{THD} \), respectively (for simplicity, express these thresholds in absolute terms). The proposed experiment, evaluate the available bandwidth over a given link. If this bandwidth changes (e.g., following the addition of a new flow or the termination of an existing one) such that the absolute difference between the new value and the most recently advertised one exceeds \(\text{THB} \), then a new link state advertisement (LSA) is generated and advertised throughout the domain. The smaller the values of \(\text{THB} \) and \(\text{THD} \), the higher are the SR of the triggered approach. But this performance gain comes at the expense of increased advertisement overhead. The algorithm treats the available state values as if they were exact. Compare the probabilistic and triggered approaches in terms of the normalized SR’s and the communications overhead. To measure the communications overhead of the triggered approach, it is computed the percentage of links whose bandwidth and delay values changed to the extent of triggering a state update within a given period. In the simulations the probabilistic approach uses the one-time advertised statistical information.

V. Conclusion

The developed system focused on the problem of controlling the traffic in such way as to minimize the asymptotic tail of the buffer occupancy distribution for a given constraint on the nodal utilization. The system, have developed a heuristic scheme that satisfies the necessary condition for optimality. The interesting fact in this scheme is, since it explicitly takes into account the queuing behavior at the node, decreases the probability of overflow in the network by several orders of magnitude. The overall contributions of the system are

- Present a simple time – approximation algorithm which can be easily used in hop-by-hop routing protocols.
- Present an for one optimization version of the problem with a time complexity.
- Present an for another optimization version of the problem with a time complexity of when there exists a hop path satisfying all QoS constraints. When reduced to the special case, the time complexities of our algorithms compare favorably with existing algorithms.
REFERENCES

A Model of Product Performance Forecasting: A Hybrid

By I.D. Widodo, Alva E. Tontowi, Subagyo
University of Gadjah Mada, Indonesia.

Abstract - To reduce the risks associated with new product, forecasting becomes very important to estimate success rate of the product. A new model of product performance forecasting is developed by combining Principle Component Analysis and Artificial Neural Network (PCA-ANN). The principle component analysis is used to improve forecasting performance by redefining the correlated dependent variable into new uncorrelated variable. ANN is used to build up forecasting model based on the variable. Comparative study is performed to examine the result. Linear regression and artificial neural network are applied and compared to the proposed model. The result shows that PCA-ANN gives the best measure performance for every segment.

Keywords: Product performance, success factors, regression, artificial neural network.

Classification: GJCST I.2.6
A Model of Product Performance Forecasting: A Hybrid

I.D. Widodo¹, Alva E. Tontowi², Subagyo³

Abstracts: To reduce the risks associated with new product, forecasting becomes very important to estimate success rate of the product. A new model of product performance forecasting is developed by combining Principle Component Analysis and Artificial Neural Network (PCA-ANN). The principle component analysis is used to improve forecasting performance by redefining the correlated dependent variable into new uncorrelated variable. ANN is used to build up forecasting model based on the variable. Comparative study is performed to examine the result. Linear regression and artificial neural network are applied and compared to the proposed model. The result shows that PCA-ANN gives the best measure performance for every segment.

Keywords: product performance, success factors, regression, artificial neural network

I. INTRODUCTION

Successful new product development (NPD) is an essential element for the renewal and survival of many manufacturing companies. Both of scientists and managers stated that product design was one major tool to gain competitive advantages (Kotler & Rath, 1984). Some researches showed that the development and introduction of a new product is an inherently risky venture. Crawford (1987) identified that 35 % to 45 % of new products failed to compete in market. Stevens and Burley (2003) even identified that the failure rate of new products was somewhere between 40 % and 75%. To reduce the risks associated with new products, forecasting becomes very important to estimate success rate of the product. Some sales forecasting has become an established practice within the marketing research industry. Despite many claims of high precision, sales forecasting of new products is risky and estimates can often be off the mark. Some forecasting techniques are available. Three broad categories of forecasting methods are Qualitative, Time Series, and Causal. However, qualitative and time series are not quite appropriate to forecast new product Performance because of limited historical data. Causal forecasting methods is the most commonly used because they can find the correlation between demands and environmental factors and use them to develop forecasting model. Several studies have focused on forecasting new-to-the-market product by incorporating market information, market research data, and subjective assessments. Morrison (1996) studied the implementation of diffusion models to forecast sales of a completely new-to-the-market product. He applied a non-linear symmetric logistic curve, using three parameters: the long-run saturation level, the inflection point of the diffusion curve, and the delay factor. Goldfisher et al. (1994) proposed a method for determining the success or failure of a new product, which allowed weekly forecasts to be performed. They defined a Sales Index (SI) as a percentage of the difference in sales between two consecutive periods. Their study used Sales Forecast Ratios to predict future sales using SI. Geurts and Whitlark (1993) suggested logistic regression and conjoint analysis for market share forecasting methods besides time series and linear regression the autor emphasizes on identifying and developing forecasting tools to evaluate product performance based on success factors. The model will be developed based on some needs and assumptions, namely, (1) Product success factors tend to be different among different type/level product so estimation model must be developed for each product segment. (2) This model can also be used to evaluate the existing product in market whether it is successful or not so the model is generated based on successful product data. (3) The model is developed based on regression and neural network.

II. LITERATURE STUDY

I. Product Success Factors

Many researchers identified some factors of success (Cooper and Kleinschmidt 1995; Henard & Szymanski, 2001; and Montoya-Weiss & Calentone, 1994), to develop product performance measures (Hopskin, 1981; Barezak, 1995; Calantone et al. 1995, and Griffin
and Page, 1993, 1996). However, only few researchers develop product performance estimation model. Montoya-Weiss & Calentone (1994) underlined that many researches done have wide variation in result and they are non-convergent. Based on multivariate analysis, Cooper (1979) identified 11 dimensions (from 77 observed independent variables) of product success. They were product uniqueness/ superiority, market knowledge and marketing proficiency, technical synergy/proficiency, market dynamics, market need (growth and size), price, marketing and managerial synergy, marketing competitiveness and customer satisfaction, newest to firm, strength of marketing communication and launch effort and source of idea/investment magnitude. Henard & Szymanski (2001) developed taxonomy of product success factors that consisted of 4 main factors. They were product characteristics, firm strategies, firm process characteristics, and market characteristics. By using meta-analysis of 60 empirical studies, Henard & Szymanski (2001) also showed 8 important variables of product performance. They were product advantage, product innovativeness, marketing strategy, technological strategy, structured effort, market orientation, cross-functional integration and competitive response intensity. Cooper & Kleinschmidt (2007), based on effect on profitability and impact, identified some critical factors which drive product success. Top four of them were high quality product process, new product strategy, adequate resources, R & D spending.

II. Artificial Neural Network

An Artificial Neural Networks (ANN) are information-processing systems that have certain performance characteristics in common with biological neural network (Faussett, 1994). They have been developed as generalization of mathematical models of human cognition or neural biology based on the assumptions that (1) information processing occurs at many simple element called neurons (2) signal are passed between neurons over connection links (3) each connection link has an associated weight, which, in typical neural net, multiplies the signal transmitted. (4) Each neuron applies activation function to its input (sum of weight input signal to determine output signal. Some important activation functions are:

1. Pure Linear, \[y = x \]
2. Binary Sigmoid, \[y = \frac{1}{1 + e^{-ax}} \]
3. Bipolar Sigmoid \[y = \frac{1 - e^{-x}}{1 + e^{-x}} \]

The neural network architecture is importance in modeling data sets because it can represent any continuous functional mapping between the input and output variables (Figure 1). Learning in ANN is defined to be any change in the memory (weight matrix) and can be categorized as supervised and unsupervised. Unsupervised learning or self-organization is a process that does not incorporate an external teacher and relies only upon local information and external control strategies. Some examples of unsupervised learning are Hopfield network, bidirectional associative memory, and adaptive resonance theory. Examples of supervised learning are adeline, perceptron back propagation and madaline.

Figure 1. The architecture of a three-layer neural network

Back-Propagation Neural Network (BPN) is one kind of popular neural network as the black box that can set up the nonlinear map between the inputs and outputs for the prediction. Standard back propagation (feed forward) is a gradient descent algorithm, in which the network weights are moved along the negative of the gradient of the performance function (Das and Chaudhury, 2007). The term back propagation refers to the manner in which the gradient is computed for non-linear multi layer networks. It applies supervised learning to monitor the difference between the true data and the prediction, and then do a sequent revision on the weighting along the branches of BPN so that the difference between true data and the prediction \((e^2)\) will converge gradually within finite steps. This method require the inputs and outputs of a neural network were limited within the ranges from 0 to 1. Properly trained back propagation networks tend to give reasonable answers when presented with inputs that they have never seen. Typically, a new input leads to an output similar to the correct outputs for input vectors used in training. This generalization property makes it possible to train a network on a representative set of input/target pairs and get good results without training the network on all possible input/output pairs (Demuth and Baele, 1994). The training of a BPN includes three stages: (1) feed-forwarding of the input training pattern, (2)
associated error calculation and back-propagation, and (3) weight and bias adjustments. ANN has been successfully applied in some areas of forecasting. Binner et al. (2002) applied ANN to model Taiwan’s inflation rate resulting in particularly accurate forecasts when divisia monetary measures were used. Thirunavukarasu (2009) successfully applied ANN for Return on Investment in Share Market. ANN successfully has also been applied in some intelligent manufacturing cases (Dagli, 1994) and design (Kuo and Wu, 2006; and Xu, and Yan, 2006). Moshiri and Foroutan (2006) applied ANN to forecast crude oil price. In the hydrological forecasting context, recent experiments have reported that ANNs may offer a promising stream flow prediction (Sivakumaretal, 2002; and Kisi, 2004) and reservoir inflow forecasting (Saad et al. 1996 and Jain, et al.1999).

III. Conceptual Framework

The conceptual framework of the model is developed based four important factors of product success, namely, price, product advance, innovation, launch timing, and company superiority (Figure 2).

![Figure 2. Forecast model](image)

Price is an important factor for customer to buy a product because it can limit someone to buy a product (Kalyanaram dan Winer, 1995; and Foxall and James, 2003). Besides, there are two other significant product characteristic of success, namely product technical superiority and innovation (Kleinschmidt & Cooper, 1991; Henard & Szymanski, 2001; Montoya-Weiss & Calentone 1994, and Goldenberg et al. 2001). Launching timing is a very important variable to product success (Hultink and Griffin, 1997; Lee and O’Connor, 2003). Launching new products to market quickly is a pre requisite for acquiring a competitive advantage. The product launch decisions, based on a mix of strategic and tactical decisions, must be reinforcing to produce new product development success. A brand is intended to represent a unique identity that extends beyond the product itself. It can have aesthetic and symbolic value for consumers. A brand can communicate functional characteristics, give a quality impression (functional value), communicate ease of use to customer and as a value added purchase (Creusen and Schoormans, 2005, Foxall and James, 2003 and Page and Herr, 2003).

IV. Methodology

Two steps of research are performed namely success variables identification and product success forecasting model development. Success variables identification is applied by analyzing variables correlation. Regression and ANN are applied to develop the model. The sample consists of more than 200 mobile phone shops in Yogyakarta Indonesia in the period of January until September 2008. The mobile phones are classified into Three class namely low-end, medium-end and high-end product based on their price. The product is classified as low end product if its price is less than $ 150, meanwhile the high product has price more than $ 300. The medium product price is in between of the two classes. The successful mobile phone models/series are selected based on their performance of sales. Pareto chart analysis was applied to select the successful product. The analysis identified 38 successful products series (from 148 product series) that consist of 17 low-end products, 10 medium-end products and 11 high-end products. Some data are involved in this analysis, they are launching date, technical specification and innovation value, price, and brand value. Launching dates are used to determine both launching duration and innovation (with technical specification). Technical superiority values are determined by calculating the average of some technical specifications namely screen resolution, data transfer speed, and features. Likert scoring is used to quantify the features rate based on a technical superiority norm for the technical specifications. Innovation variable is generated based on modification of Booz-Allen & Hamilton norm (Cooper & Kleinschmidt, 1991) to the four product technical specification used in technical superiority analysis. The norm of innovation of all features is in Table 2. This paper uses mobile phone brand value analysis done by SWA and MARS 2008. Brand values are determined based on...
brand share, brand awareness, advertisement awareness, customer satisfaction, and gain index. They are analyzed from survey that involved 2648 respondents collected from 7 big cities of Indonesia (Suharjo, 2008).

Based on the variables identified, a model is developed for each product segment. Linear Regression and Back Propagation of ANN are applied. Besides, this paper also involves principle component analysis to generate new variable to replace existing correlated variable. The result of the regression, ANN and PCA-ANN are compared to get the best estimation.

V. Result and Discussion

From 80% mobile phone sales share that can be identified, Nokia has highest % sales by 73 %, followed by Sony-Ericsson (10%), and Motorola (4%). The rest is for LG, Samsung, and other brand. The low-end product has highest market by 58 %. The medium and high products have 16% and 2%. The phenomenon that low-end product has very high shared correlates to the Indonesian income that is still low (less than $3000 per annum). Correlation analysis indicates several finding related to critical variables of each segment and the relation among variables, they are:

1) The variables have different effect to product performance for each segment. Brand is the only variable that positively significant correlates to product performance in all segments. In high-end segment, only one brand dominates the top ranks of products so the correlation cannot be calculated. It indicates that brand is very important to product performance though it cannot be explicitly adjusted.

2) Price negatively correlates to product performance in low and medium end segments. In contrast, price correlates positively to product performance for high-end product.

3) Technical superiority has significantly negative correlation to product performance for low product. In medium and high-end segment, technical superiority indirectly positively correlates to product performance. Technical superiority indirectly correlates to product performance through brand in medium end and through innovation in high end.

4) Launching timing has different effect to product performance for different segment. In low-end segment, time has significantly negative correlation to product performance. Products launched sooner have lower product performance. This is different to medium and high end product that tend to neutral (correlation coefficient is close to 0). These indicate that life cycle of low-end product tends to be shorter than life cycle medium and high end product.

5) Innovation is correlated to product performance for high-end product segment. In low and medium end segment, it cannot be measured because of same innovation value.

Estimation model will be developed based on the factor analysis that involves some significant variables. In low-end segment model is developed based on brand value, launching, technology superiority, and price. Price does not significantly correlate sales but it significantly correlates to technical superiority. Estimation model for medium segment involves price, brand and technical superiority. Meanwhile, price, innovation and technological superiority are used in high end segment. Estimation models are developed based on two estimation techniques for each product segment. Linear regression and back propagation ANN are run to estimate product performance. Data satisfy all assumption of regression for low and medium end, such as collinearity, linearity, and normality, for low-end and medium-end data. The regression model are not fit for high end product because some assumptions are not satisfied especially normality. To reduce loose of dependent variable that correlates to each other, principle component analysis (PCA) is performed. The correlated variables are technological superiority and price in low-end product segment, technological superiority and brand in medium-end product segment, and technological superiority. Two regression based models are developed for each segment, namely are pure regression model and PCA-regression model. The latest is developed by redefining new variables that correlated each other’s. New variables are called as “a” and “b”. The two models for low end segment are:

\[y = 5.796 - x_1 - 1.341 x_2 - 0.066 x_3 \] \hspace{1cm} (1)
\[y = 3.435 - .103 x_1 + 1.657 a + .003 b + .064 x_2 \] \hspace{1cm} (2)

Where: \(x_1 = \) time from launching, \(x_2 = \) tech. superiority, \(x_3 = \) brand, \(x_4 = \) price, \(a, b = \) new variables

Both (1) and (2) are fit model because \(R \) of the equations are 0.908, and value \(R^2 \) are 0.824 for (1) and 0.825 for (2). The two models for medium end segment are:

Table 2. Innovation Norm

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>New to the World Product</td>
</tr>
<tr>
<td>4</td>
<td>New Product line to the firm</td>
</tr>
<tr>
<td>3</td>
<td>Add to existing line</td>
</tr>
<tr>
<td>2</td>
<td>Improvement</td>
</tr>
<tr>
<td>1</td>
<td>Reposition</td>
</tr>
</tbody>
</table>
Both (3) and (4) are fit model because R and R^2 of the equations are 0.863 and 0.745 for equation (3) and value are 0.874 for (1) and 0.863 for equation (4). The correlation between price and technical superiority in low-end product can be minimized by redefining the two variables into new variable `a` and `b`. By doing so, PCA-ANN is performed the result. In the same way, two variables of medium-end products - technical superiority and brand value - are redefined, meanwhile, for high-end products; variable price, innovation, and technical superiority are redefined. After simulating some architecture, three layers back propagation ANN with the number neurons are 5, 10, and 1 are applied. Activation function of first, second and third layers are pure linear, binary sigmoid and pure linear. The best value for learning rate are 0.3 for low end and medium end and 0.2 for high end segment. PCA-ANN gives better result (based on t-test and smaller mean square error) compared to linear regression for all segments. The comparative study among the methods performed in Table 3.

Table 3. The performance comparative study among forecasting methods

<table>
<thead>
<tr>
<th></th>
<th>Perf. Charac</th>
<th>Regression</th>
<th>PCA Regression</th>
<th>ANN</th>
<th>PCAANN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-end (n=17)</td>
<td>R</td>
<td>0.908</td>
<td>0.908</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T test</td>
<td>0.0519</td>
<td>-0.0441</td>
<td>-0.2187</td>
<td>0.1434</td>
</tr>
<tr>
<td></td>
<td>MSE</td>
<td>1.4020</td>
<td>1.39999</td>
<td>0.5108</td>
<td>0.4752</td>
</tr>
<tr>
<td>Medium-end (n=10)</td>
<td>R</td>
<td>0.863</td>
<td>0.8740</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T test</td>
<td>0.0807</td>
<td>-1.168</td>
<td>0.2803</td>
<td>0.1374</td>
</tr>
<tr>
<td></td>
<td>MSE</td>
<td>2.1440</td>
<td>2.1885</td>
<td>1.1851</td>
<td>0.5282</td>
</tr>
<tr>
<td>High-end (n=11)</td>
<td>R</td>
<td>0.863</td>
<td>0.8740</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T test</td>
<td>-</td>
<td>-0.1322</td>
<td>0.2177</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSE</td>
<td>-</td>
<td>3.5387</td>
<td>2.8893</td>
<td></td>
</tr>
</tbody>
</table>

The deviation of forecasted PCA-ANN result and actual value is relative small. They are less than 3 sigma (Figure 3).
Model validation is run by analyzing training and testing errors for the architecture. Because of small number data, test error is done by using one leave out method. The complete result performs in Table 4. The testing errors shows that all model can perform well because there are no significant different between the forecasting results and the real value ($\alpha = 0.05$).
Table 4. Performance Analysis of The model

<table>
<thead>
<tr>
<th>No. obs.</th>
<th>Low-end</th>
<th>Medium-end</th>
<th>High-end</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training Error</td>
<td>Test Error</td>
<td>Training Error</td>
</tr>
<tr>
<td>1</td>
<td>0.3458</td>
<td>-1.3974</td>
<td>0.2425</td>
</tr>
<tr>
<td>2</td>
<td>-0.0497</td>
<td>0.2028</td>
<td>0.0829</td>
</tr>
<tr>
<td>3</td>
<td>0.3754</td>
<td>-1.0561</td>
<td>0.396</td>
</tr>
<tr>
<td>4</td>
<td>0.1959</td>
<td>-1.8978</td>
<td>-0.4288</td>
</tr>
<tr>
<td>5</td>
<td>0.8981</td>
<td>-1.9344</td>
<td>0.0143</td>
</tr>
<tr>
<td>6</td>
<td>-0.7596</td>
<td>1.8683</td>
<td>0.0365</td>
</tr>
<tr>
<td>7</td>
<td>0.1919</td>
<td>-0.438</td>
<td>0.8230</td>
</tr>
<tr>
<td>8</td>
<td>-1.0839</td>
<td>2.3504</td>
<td>-0.9640</td>
</tr>
<tr>
<td>9</td>
<td>-0.0409</td>
<td>0.7422</td>
<td>-0.0065</td>
</tr>
<tr>
<td>10</td>
<td>0.0844</td>
<td>0.3304</td>
<td>-0.0019</td>
</tr>
<tr>
<td>11</td>
<td>0.0893</td>
<td>0.1716</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.0140</td>
<td>-0.2807</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.3330</td>
<td>-0.5407</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.1138</td>
<td>-0.0832</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-0.1834</td>
<td>0.4404</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-0.1189</td>
<td>0.6345</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-0.1448</td>
<td>0.6156</td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>0.0153</td>
<td>-0.0554</td>
<td>0.0194</td>
</tr>
<tr>
<td>SD</td>
<td>0.4403</td>
<td>1.1645</td>
<td>0.4485</td>
</tr>
<tr>
<td>T-test</td>
<td>0.1434</td>
<td>-0.1964</td>
<td>0.1374</td>
</tr>
<tr>
<td>Concl.</td>
<td>Ho Accepted</td>
<td>Ho Accepted</td>
<td>Ho Accepted</td>
</tr>
</tbody>
</table>

Both average of training and test error is quite small, this indicate that the model can fit to the cases.

VI. CONCLUSION

1) The proposed model (PCA-ANN) gives better result compared to linear regression for all segments based smallest mean square error.
2) The best ANN architecture is three layers back propagation ANN with the number neurons are 5, 10, and 1. Activation function of first, second and third layers are pure linear, binary sigmoid and pure linear.
3) The variables mostly have different effect to product performance for each segment. Brand is the only variable that positively significant correlates to product performance in all segments.

REFERENCES

30) Page C. And Herr P. M. (2003), An investigation of the processes by which product design and brand strength interact to determine initial affect and quality judgments, *Journal Of Consumer Psychology*, 12(2), 133–147
Optimization of Handoff Method in Wireless Networks
By Venkata Koti Reddy G, Prof. V. Krishna

Abstracts - Nowadays many different types of networks communicate among themselves to form of heterogeneous wireless access technologies with diverse levels of performance has been envisioned to characterize the next-generation wireless networks. In heterogeneous wireless networks, handoff can be separated into two parts: horizontal handoff (HHO) and vertical handoff (VHO). VHO plays an important role in fulfilling seamless data transfer when mobile nodes cross wireless access networks with different link layer technologies. Current VHO algorithms mainly focus on when to trigger VHO to improve connection QoS but neglect the problem of how one can synthetically consider all currently available networks (homogeneous or heterogeneous) and choose the optimal network for HHO or VHO from all available candidates. In this paper, we present an analytical framework to evaluate VHO algorithms. This framework can be used to provide guidelines for the optimization of handoff in heterogeneous wireless networks. Subsequently, we extend the traditional hysteresis-based and dwelling-timer-based algorithms to support both VHO and HHO decisions and apply them to complex heterogeneous wireless environments. We refer to these enhanced algorithms as E-HY and E-DW, respectively. Based on the proposed analytical model, we provide a formalization definition of the handoff conditions in E-HY and E-DW and analyze their performance. Subsequently, we propose a novel general handoff decision algorithm GHO to trigger HHO and VHO in heterogeneous wireless networks at the appropriate time. Analysis shows that GHO can achieve better performance than E-HY and E-DW. Simulations validate the analytical results and verify that GHO outperforms traditional algorithms in terms of the matching ratio, TCP throughput, and UDP throughput.

Keywords: Heterogeneous wireless networks, vertical handoff, horizontal handoff, Wireless area networks

Classification: GJCST C.2.1

Strictly as per the compliance and regulations of:

© 2011 Venkata Koti Reddy G, Prof. V. Krishna. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Optimization of Handoff Method in Wireless Networks

Venkata Koti Reddy, G, Prof. V. Krishna

Abstract: Now-a-days many different types of networks communicate among themselves to form of heterogeneous wireless access technologies with diverse levels of performance has been envisioned to characterize the next-generation wireless networks. In heterogeneous wireless networks, handoff can be separated into two parts: horizontal handoff (H-HO) and vertical handoff (V-HO). V-HO plays an important role in fulfilling seamless data transfer when mobile nodes cross wireless access networks with different link layer technologies. Current V-HO algorithms mainly focus on when to trigger V-HO to improve connection QoS but neglect the problem of how one can synthetically consider all currently available networks (homogeneous or heterogeneous) and choose the optimal network for H-HO or V-HO from all available candidates. In this paper, we present an analytical framework to evaluate V-HO algorithms. This framework can be used to provide guidelines for the optimization of handoff in heterogeneous wireless networks. Subsequently, we extend the traditional hysteresis-based and dwelling-timer-based algorithms to support both V-HO and H-HO decisions and apply them to complex heterogeneous wireless environments. We refer to these enhanced algorithms as E-HY and E-DW, respectively. Based on the proposed analytical model, we provide a formalization definition of the handoff conditions in E-HY and E-DW and analyze their performance. Subsequently, we propose a novel general handoff decision algorithm GHO to trigger H-HO and V-HO in heterogeneous wireless networks at the appropriate time. Analysis shows that GHO can achieve better performance than E-HY and E-DW. Simulations validate the analytical results and verify that GHO outperforms traditional algorithms in terms of the matching ratio, TCP throughput, and UDP throughput.

Keywords: Heterogeneous wireless networks, vertical handoff, horizontal handoff, Wireless area networks

I. A literature review

The convergence of heterogeneous wireless access technologies with diverse levels of performance has been envisioned to characterize the next-generation wireless networks (4G). Recent trends indicate that Wireless Wide Area Networks (WWANs) and Wireless Local Area Networks (WLANs) can coexist to complement their different characteristics and provide both universal coverage and broadband access to users. Mobility management is a main challenge in the converged network. It addresses two main problems: location management and handoff management [1]. Location management tracks the mobile terminal for successful information delivery. Handoff management maintains the active connections for roaming mobile terminals as they change their point of attachment to the network. In this paper, we focus on handoff management. Handoff (HO) is the mechanism by which an ongoing connection between a mobile terminal or mobile host (MH) and a correspondent terminal or correspondent host (CH) is transferred from one point of access to the fixed network to another [2]. In cellular networks, such points of attachment are referred to as base stations (BSs), and in WLANs, they are called access points (APs). In heterogeneous wireless networks, handoff can be separated into two parts: horizontal handoff (H-HO) and vertical handoff (V-HO). A horizontal handoff is made between different access networks with different link-layer technologies, which will involve the transfer of a connection between a BS and an AP. Seamless and efficient V-HO between different access technologies is an essential and challenging problem in the development toward the next-generation wireless networks. In general, the V-HO process can be divided into three main steps: system discovery, handoff decision, and handoff execution [24]. During the system discovery phase.

II. RELATED WORKS

There are three strategies for handoff decision mechanisms: Mobile-controlled handoff (MCHO), network-controlled handoff (NCHO), and mobile-assisted handoff (MAHO) [2]. MCHO is used in IEEE 802.11 WLAN networks, where an MH continuously monitors the signal of an AP and initiates the handoff procedure. NCHO is used in cellular voice networks where the decision mechanism of handoff control is located in a network entity. MAHO has been widely adopted in the current WWANs such as GPRS, where the MH measures the signal of surrounding BSs and the network then employs this information and decides whether or not to trigger handoff. During V-HO, only MHs have the knowledge about what kind of interfaces they

About: vkotireddy@gmail.com, vempati.k@gmail.com

©2011 Global Journals Inc. (US)
are equipped with. Even if the network has this knowledge, there may be no way to control another network that the MH is about to hand off to. Therefore, MCHO and further assistance from the networks is more suitable for VHO [10]. Two main categories of handoff algorithms are proposed in the research literature [3] based on 1) the threshold comparison of one or more metrics and 2) dynamic programming (DP)/artificial intelligence techniques applied to improve the accuracy of the handoff procedure. The first category is the traditional algorithms widely used in radio cellular systems, which employs a threshold comparison of one or several specific metrics to make a handoff decision. The most common metrics are received signal strength (RSS), carrier-to-interference ratio (CIR), Signal-to-interference ratio (SIR), and bit error rate (BER) [2]. In heterogeneous wireless networks, even though the functionalities of access networks are different, all the networks use a specific signal (beacon, BCCH, or reference channel I) with a constant transmit power to enable RSS measurements. Thus, it is very natural and reasonable for VHO algorithms to use RSS as the basic criterion for handoff decisions. In order to avoid handoff trigger condition to decrease unnecessary handoffs. Marichamy et al. [5] proposes a handoff scheme based on RSS with the consideration of thresholds and hysteresis for mobile nodes to obtain better performance. However, in heterogeneous wireless networks, RSS from different networks can vary significantly due to different techniques used in the physical layers and cannot be easily compared with each other. Thus, the methods in [4] and [5] cannot be applied to VHO directly. Hatami et al. [6] use the dwelling timer as a handoff initiation criterion to increase the WLAN utilization. It was shown in [7] that the optimal value for the dwelling timer varies along with the used data rate or, to be more precise, with the effective throughput ratio. In [8], Ylianittila et al. extend the simulation framework in [6] by introducing a scenario for multiple radio network environments. Their main results show that the handoff delay caused by frequent handoff has a much bigger degrading effect for the throughput in the transition region. In addition, the benefit that can be achieved with the optimal value of the dwelling timer as in [7] may not be enough to compensate for the effect of handoff delay. In [9], Park et al. Propose a similar dwelling-timer-typed approach by performing the VHO if a specific number of continuous received beacons from the WLAN exceed or fall below a predefined threshold. Additionally, in the real-time service, the number of continuous beacon signals should be lower than that of the non-real-time service in order to reduce the handoff delay. More parameters may be employed to make more intelligent decisions. Lee et al. [10] propose a bandwidth aware VHO technique, which considers the residual bandwidth of a WLAN in addition to RSS as the criterion for handoff decisions. However, it relies on the QBSS load Defined in the IEEE 802.11e Standard to estimate the residual bandwidth in the WLAN. In [11], McNair et al. propose a method for defining the handoff cost as a function of the available bandwidth and monetary cost. In [12], actual RSS and bandwidth were chosen as two important parameters for the cost function. Chang et al. [13] propose an adaptive cost-based with predictive RSS approach to perform VHO in heterogeneous wireless networks. One main difficulty of the cost approach is its dependence on some parameters that are difficult to estimate, especially in large cellular networks. Mohanty and Akyildiz [14] developed a cross-layer (Layer 2 + 3) handoff management protocol CHMP, which calculates a dynamic value of the RSS threshold for handoff initiation by estimating MH’s speed and predicting the handoff signaling delay of possible handoffs. The second category of handoff algorithms use dynamic programming (DP) [15] or artificial intelligence techniques such as pattern recognition [16], [17], neural networks [2], or fuzzy logic [3], [18], [19] to improve the accuracy and effectiveness of the handoff procedure. Veeravalli and Kelly [15] pose the handoff problem as a finite-horizon DP problem and obtain the optimal solution through a set of recursive equations. The optimal solution is complicated and nonstationary, and it requires prior knowledge of the MH’s exact trajectory. Subsequently, Veeravalli and Kelly [15] derive a simple locally optimal algorithm from the DP solution, which can be designed to be independent of the location of the MH. In [16], pattern-recognition-based handoff algorithms train a system using available metrics (for example, RSS) and the locations where handoff should be made so that the system acquires knowledge of the RSS patterns at such locations. Pahlavan et al. [2] present a simple neural-network-based approach to detect signal decay and make handoff decisions. Guo et al. [19] propose an adaptive multicriteria VHO (AMVHO) decision algorithm. This algorithm uses a fuzzy inference system (FIS) and a modified Elman neural network (MENN). The FIS adopts crucial criteria of the VHO as the input variables and makes the handoff decision based on the defined rule base. The MENN helps in the prediction for the number of users in the after-handoff network, which is a pivotal variable of the FIS. It is important to mention that the complexity of such artificial-intelligence-based algorithms is very high, and its implementation in MHs with limited computing and
storage capability may not be possible. In addition, training of the neural network has to be done beforehand. To sum up, the application scenario of current VHO algorithms is relatively simple. For example, most VHO algorithms only consider the pure VHO scenario, where the algorithm only needs to decide when to use a 3G network and when to use a WLAN [1], [10], [19], [20], [21]. In fact, at any moment, there may be many available networks (homogeneous or heterogeneous), and the VHO algorithm has to select the optimal network for HHO or VHO from all the available candidates. For example, if the current access network of MH is a WLAN, the MH may sense many other WLANs and a 3G network at a particular moment, and it has to decide whether to trigger HHO or VHO. If the HHO trigger is selected, MH then needs to decide which WLAN is the optimal one. Consequently, an analytical framework to evaluate VHO algorithms is needed to provide guidelines for optimization of handoff in heterogeneous wireless networks. It is also necessary to build reasonable and typical simulation models to evaluate the performance of VHO algorithms. In addition to the MR, we also use TCP throughput.

III. Assumption and Evaluation Criteria

1) Assumption

As mentioned earlier, MCHO and further assistance from the networks is more suitable for VHO. Thus, we assume that the VHO algorithms take the MCHO strategy for handoff decisions, and the network environment satisfies the following conditions (note that we take 3G and IEEE 802.11b WLANs as representative examples of WWAN and WLAN, respectively; however, the proposed analytical framework and handoff algorithms are readily extendible to heterogeneous wireless networks formed by other WWANs and WLANs):

- Neither the WLAN nor the 3G network has network mobility. In other words, the entire network, as a unit, does not change its point of attachment to the Internet and its reachability in the topology.
- Neither the signal strength of the WLAN nor the signal strength of the 3G network will change as time passes. In other words, the signal coverage area is stable.
- We assume that there is no height difference between the AP in a WLAN and the BS in a 3G network. This means that the AP and BS are located in the same 2D space, and the MH only moves in this 2D space.
- There is no object that influences or shelters the wireless signal in the range of MH’s movement. There is no restriction on MH’s movement either, which means that the MH can move in any direction with any speed. In this paper, we do not consider the influence of the pricing model and user’s special preferences for handoff.

The purpose of handoff is to maintain the connection and achieve the best possible QoS.

2) Evaluation Criteria for Handoff Methods

In order to evaluate the performance of handoff algorithms, we have defined a new metric, matching ratio, in. Matching means that the decision of the algorithm is the optimum access network at the moment. For example, when the 3G network could provide better QoS, it is said to be matching if the algorithm chooses the 3G network. The matching ratio (MR) is the percentage of the matching period per time unit. Higher MR means that the handoff algorithm can provide better QoS. In addition to the MR, we also use TCP throughput and UDP throughput as evaluation criteria for handoff algorithms.

IV. Architecture of Handoff Management System

Phalavan made a summary of issues related to handoff [2]. These issues are divided into architectural issues and handoff decision algorithms. In this paper, we focus on the design and evaluation of handoff decision algorithms in heterogeneous wireless networks. The fundamental aim of handoff is to make good use of network bandwidth and improve the QoS of applications. In Fig. 1, we show the general modules and procedures of the modules of handoff management system. Our system. Some of these modules collect the link-layer and network-layer information useful for handoff management, and other modules use this information to decide on the appropriate time to initiate handoff and execute the handoff procedures.

V. Analytical Frameworks of Vertical Handoff Methods

During the handoff decision process, two factors should be considered. On one hand, the MH should try maximizing the utilization of a high bandwidth and low cost access network. On the other hand, the number of unnecessary handoffs should be minimized to avoid degrading the QoS of current communication and overloading the network with signaling traffic.
The hysteresis-based algorithm (HY) is a traditional HHO algorithm that is widely used in radio cellular systems. However, because RSSs measured from different networks display a significant variety due to different techniques in the physical layers and cannot be compared with each other, HY cannot be applied to VHO directly. In this paper, we extend the traditional HY to support both VHO and HHO decisions and apply it to complex heterogeneous Wireless environments. We name the enhanced algorithm as E-HY. Based on the definition of the handoff policy of E-HY can be described by the following (hy denotes hysteresis): $o(N) \neq \Phi(N) \leftrightarrow D \neq o(N-1)(N) < -h$. The relevant deductions for obtaining the above expression are provided in Appendix A.

Fig. 2. Traversing Scenario for performance analysis.

Thus, we can get the definition of $o(N)$ in E-HY as $o(N) \neq \Phi(N) \leftrightarrow D \neq o(N-1)(N) < -h$. The relevant deductions for obtaining the above expression are provided in Appendix A.

VII. A NOVEL GENERAL HANDOFF METHOD AND ITS PERFORMANCE

According to the analysis in the previous section, we can see that a simple method to improve the MR is to use the E-HY algorithm when $v > v_{HO}$ and use the E-DW algorithm when $v < v_{HO}$. However, it is difficult to obtain the velocity of the MH, especially VR. In a practical environment, we must get the position coordinates of the MH and periodically determine their changes to calculate.
Fig 3. MR of E_HY, E-Dw and GHO as v changes

Fig 3: Analysis of Influence factors in the handoff policy of GHO the velocity of the MH. Constantly monitoring the MH’s accurate position is expensive, power consuming, and subject to the influence of the environment. In order to improve the MR, let us examine the handoff conditions of E-HY and E-DW again: we can get the numerical solution of MRGHO. Compared with E-HY and E-DW, GHO can achieve better MR, as shown in Fig. 4. In Fig. 4, the x-axis adopts the logarithmic scale in order to show the instance when v is very large. In addition, the related computing requirement of GHO is very simple to be suitable for mobile devices with limited computing capacity.

VIII. PERFORMANCE EVALUATION

1) Simulation Scenario

We design and implement a simulation model, as shown in Fig. 4, to act as a benchmark for the performance evaluation of the VHO algorithms. Assume that MH takes a random rectilinear motion without pause in the square containing four APs, as shown in Fig. 3. The side length of the square is a = 600 m. This square is completely covered by a 3G network. The coverage area of each AP is a circle whose radius is R =150 m. The position coordinates of the four APs are (u,u),(-u,u),(-u,-u) and (u,-u). By setting u as different values, this model can simulate different handoff scenarios. When u = 150 m, as shown in Fig. 5, there is no overlapping between the coverage areas of the different APs. When u=100 m, as shown in Fig. 5 there is a significant overlap between the coverage areas of Product operator is defined as

2) Simulation Results

Figs. 6,7 MR v(m/s), and u(m) in in E-DW, E-HY, and GHO. We can see that as v increases, the MR of E-DW will decrease, whereas, as u increases, its MR increases. In contrast, v has little influence on MR in E-HY. When u increases, E-HY’s MR will increase, but the change range is small (between 86.8 percent and 92.1 percent). For GHO, when v is slow, the change trend of its MR is similar to E-DW, whereas, when v is fast, the change trend of its MR is similar to E-HY. When v is slow, the MR of E-DW is about 5 percent higher than E-HY, whereas, when v is fast, E-HY can get about 20 percent higher MR than E-DW. No matter what the value of v is, GHO can get better MR than E-DW and E-HY. This conclusion is consistent with the analytical results in the previous sections. In our simulations, we respectively set u = 150 m; 145 m; 140 m; . . . ; 100 m. Random rectilinear motion means that the MH randomly chooses the destination in the square area, moves straight to the destination with constant speed v, and then repeats the procedure. Choosing a destination and changing the direction will not consume time. Destination selection satisfies a uniform distribution in the square area. In order to get rid of random causes, each simulation includes more than 10,000 continuous random rectilinear motion procedures. In order to evaluate the performance of the algorithms under different moving speeds of the MH, for each value of u, we respectively
set v as 1, 2, 5, 10, and 20 m/s when performing the simulations. We can consider 1 and 2 m/s as the speed of pedestrians, whereas 5, 10, and 20 m/s reflect the speed of different vehicles in the city.

IX. Result

Comparison when $u = 150$ m

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$V = 1$ m/s</th>
<th>$V = 20$ m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-DW</td>
<td>97.20%</td>
<td>69.30%</td>
</tr>
<tr>
<td>E-HY</td>
<td>92.10%</td>
<td>92.10%</td>
</tr>
<tr>
<td>GHO</td>
<td>98.20%</td>
<td>95%</td>
</tr>
<tr>
<td>TCP throughput</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-DW</td>
<td>191kbps</td>
<td>48kbps</td>
</tr>
<tr>
<td>E-HY</td>
<td>182kbps</td>
<td>89kbps</td>
</tr>
<tr>
<td>GHO</td>
<td>193kbps</td>
<td>94kbps</td>
</tr>
<tr>
<td>UDP throughput</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-DW</td>
<td>140kbps</td>
<td>71kbps</td>
</tr>
<tr>
<td>E-HY</td>
<td>134kbps</td>
<td>105kbps</td>
</tr>
<tr>
<td>GHO</td>
<td>141kbps</td>
<td>109kbps</td>
</tr>
</tbody>
</table>

Comparison when $u = 100$ m

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$V = 1$ m/s</th>
<th>$V = 20$ m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-DW</td>
<td>91.00%</td>
<td>69.30%</td>
</tr>
<tr>
<td>E-HY</td>
<td>86.80%</td>
<td>92.10%</td>
</tr>
<tr>
<td>GHO</td>
<td>92.00%</td>
<td>95%</td>
</tr>
<tr>
<td>TCP throughput</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-DW</td>
<td>207kbps</td>
<td>48kbps</td>
</tr>
<tr>
<td>E-HY</td>
<td>207kbps</td>
<td>89kbps</td>
</tr>
<tr>
<td>GHO</td>
<td>193kbps</td>
<td>94kbps</td>
</tr>
<tr>
<td>UDP throughput</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-DW</td>
<td>140kbps</td>
<td>71kbps</td>
</tr>
<tr>
<td>E-HY</td>
<td>134kbps</td>
<td>105kbps</td>
</tr>
<tr>
<td>GHO</td>
<td>141kbps</td>
<td>109kbps</td>
</tr>
</tbody>
</table>

X. Conclusion and Future Work

In this paper, we first presented an analytical framework to evaluate VHO algorithms. This framework can be used to provide guidelines for the optimization of handoff in heterogeneous wireless networks. Subsequently, we extended the traditional hysteresis-based and dwelling-timer based algorithms to support both VHO and HHO decisions. We referred to these algorithms as E-HY and E-DW, respectively. Analysis showed that the MR of E-HY has no relation with the MH’s moving speed. Based on the analysis, we proposed a novel handoff decision algorithm GHO to trigger HHO and VHO at appropriate times in heterogeneous wireless networks. GHO synthetically of E-DW and E-HY. In addition, when the moving speed is slow, the handoff condition in GHO will be more similar to E-DW, and when the moving speed is high, its handoff condition will be more similar to E-HY. Analysis and simulations show that GHO can achieve better performance than E-DW, E-HY, and PreRSS-Cost. In our future work, we will explore the optimal weight values of the influence factors in and how we can determine them in different scenarios. In addition, we will investigate bandwidth-aware VHO techniques, which determine them in different scenarios.

XI. Future Enhancements

11.A. Scope of the Project:

1) A vertical handoff algorithm which enables a mobile node to intelligently select wireless access network among multiple access.

2) Secure Data Transmission through LAN

3) Establishing a call between the wireless communication device and the at least one serving base station.

XII. Bibliography

This page is intentionally left blank
An Energy Efficient Coverage Method for Clustered Wireless Sensor Networks

By J. Shanbehzadeh, M. Mehrani, A. Sarrafzadeh, Z. Razaghi

Islamic Azad University, Tehran

Abstracts - An important issue in WSN is the regional covering. A coverage algorithm should be able to solve this issue by considering the power consumption to improve the network lifetime. This requires employing the lowest number of sensors. A solution is just to turn on a subset of nodes. This subset should be chosen in such a way to cover the entire region. This can be achieved by partitioning the network nodes and considering a representative for each part in a time slice to perform the responsibilities of all the partition members for full coverage. This will lead to turn on some of the nodes in a time slice rather than all of them. This paper presents a novel algorithm that employs grouping and time scheduling sensor nodes to turn some of them on to cover the entire area. In this algorithm the sensing range of the nodes depends on their energy. The cluster head denotes the sensing range and also turn on time slice of each node by considering node’s remained energy and position.

Keywords: Sensor network; coverage; group; sensing range

Classification: GJCST C.2.1

An Energy Efficient Coverage Method for Clustered Wireless Sensor Networks
An Energy Efficient Coverage Method for Clustered Wireless Sensor Networks

J. Shanbehzadeh, M. Mehrani, A. Sarrafzadeh, Z. Razaghi

Abstract: An important issue in WSN is the regional covering. A coverage algorithm should be able to solve this issue by considering the power consumption to improve the network lifetime. This requires employing the lowest number of sensors. A solution is just to turn on a subset of nodes. This subset should be chosen in such a way to cover the entire region. This can be achieved by partitioning the network nodes and considering a representative for each part in a time slice to perform the responsibilities of all the partition members for full coverage. This will lead to turn on some of the nodes in a time slice rather than all of them. This paper presents a novel algorithm that employs grouping and time scheduling sensor nodes to turn some of them on to cover the entire area. In this algorithm the sensing range of the nodes depends on their energy. The cluster head denotes the sensing range and also turn on time slice of each node by considering node's remained energy and position.

Keywords: sensor network; coverage; group; sensing range

1. Introduction

Wireless Sensor Networks (WSN) consists of a huge number of sensors with energy resource limitation, dispersed in a region. The network nodes sense data from the region and send them to base station. We need a suitable coverage algorithm to get the entire region information. To achieve a suitable coverage scheme, we should select a sub set of nodes to cover the whole network. This action should be able to optimize the overhead. The selection of covering nodes directly affects the network, especially in region covering. Each node just knows about sensing region of its own. The overlap areas will have negative impact on the energy factor. It is because of the possibility of repeating messages. To avoid overlap areas clustering technique can be utilized. The clustering partitions nodes into non-overlapping groups and some of the nodes can act as the representatives of the members. In this way, the probability of creating overlapping message will be reduced and consequently energy consumption will be improved. Meanwhile, as any point of the region will be covered by using the minimum number of nodes, connectivity will also be satisfied. The rest of this paper is as follows. Section 2 reviews related works. Section 3 describes the new algorithm. Section 4 evaluates the performance of the proposed algorithm and, the final section is conclusion and a summary of the contributions of the proposed approach.

II. Related Works

The node-scheduling scheme proposed in [1] introduces "sponsored coverage" which is about covering the same regions by different nodes. This improves energy consumption and, consequently, network lifetime. The original sensing coverage will be maintained after turning off the redundant nodes. The algorithm mentioned in [2] is based on the probability theory and makes relations between the number of nodes' neighbors and the probability of its full coverage. The distributed k-fold pivot t-set algorithm [3] selects the smallest set among the network nodes as pivot nodes to cover the whole network to route the messages. This algorithm starts with an empty set D which contains suitable routing nodes in future. For doing this, at the beginning of algorithm each node selects 4 (for example) nearest nodes - in terms of distance - as a set called t-ball. So, for a typical network with n nodes there are n t-balls at the first round of algorithm. Then each node sends a value 1/(n-1) to the nodes that they are in its t-ball and a value 0 to other nodes that they are out of the t-ball. In this round many values are sent and received by all the network nodes. Each node sends n-1 values and also receives n-1 values. Then some node i adds all the values it has received and names this total number x. Each node, that its x-value is equal to (n-1/n-1)=1, introduces itself as a pivot node and broadcasts a message to other nodes to let them know about itself. So, this node adds itself to pivot set D. Then, each node which x-value is equal to n-2/n-1 introduces itself as a pivot node and broadcasts a message to other nodes to let them know about this object. So, this node adds itself to pivot set D. The algorithm continues in this way. During all the above rounds, some node i compares its t-ball with pivot set D and changes its color to gray if it has at least
k nodes from its t-ball that they are in pivot set D, too. This algorithm finishes when all the network nodes are gray and all of them have at least k nodes from the pivot set D that they are in t-balls, too. Now the algorithm is finished and all the nodes of the pivot set D are selected as covering ones and they can cover the entire network. A disadvantage of this algorithm is energy consumption for communication between nodes to achieve the pivot set D. The proposed algorithm in [4] lets a node to go to sleep mode if its sensing range is covered by its neighbors. If the complexity of calculations increases there will be some simplifications to solve this problem. Dominating sets are employed in [5] and [6] to cover single points of the region. In [5] the sensing range of nodes is adjustable and nodes are deployed randomly to monitor several targets. To save energy, covering nodes will be organized into some sets and will be activated successively. Each node can be a member of several sets and the targets would be covered by several sets. Dai and Wu [6] state that a set is dominating if either all the hosts or their neighbors are in the set. The size of the dominating sets and their configurations have direct impact on the efficiency of dominating-set-based routing because of the overhead they make. Using k-connected k-dominating set is mention in [7]. K-coverage and having extensions from point coverage to area coverage are proposed in [8].

III. PROPOSED ALGORITHM

The problem that the proposed algorithm attempts to solve is to cover all the area by the entire network during its lifetime by employing the remained energy of the nodes to recognize their sensing range. First, the network is to be clustered by the Feed algorithm [9], which is presented for Wsn. Feed selects the cluster heads based on factors such as energy, density, centrality, and distance between nodes. This algorithm improves the network lifetime in a significant way in comparison with two well known clustering algorithms Leach [10] and Heed [11]. Furthermore, Feed algorithm leads the network to be fault tolerant. “Fig. 1” shows the improvement of network lifetime by Feed in comparison to Leach and Heed algorithms. In Feed when the remained energy of a cluster head falls under a threshold, its supervisor node will replace it and the cluster can continue its activity by the new cluster head. This property leads network to be fault tolerant. “Fig. 1” presents that Feed algorithm improves network lifetime in comparison to two other algorithms. Supervisor node replacement can be a reason for this enhancement. “Fig. 2” shows the percentage of total remaining energy of the network nodes after 1, 20 and 50 rounds. After one round, Heed algorithm outperforms the rest, but in later rounds Feed algorithm performance is the best. After round 300 only feed algorithm is still executing, but Leach and Heed algorithms have terminated. “Fig. 2” shows that Feed significantly improves the network energy consumption. “Fig. 3” shows the network clusters made by the Feed algorithm. After clustering there will be some cluster heads and some regular nodes. At the beginning of the proposed algorithm every cluster head divides its neighboring area into four parts each one as a quarter of an assumed circle that we name it circle1. The radius of circle1 would be equal to the distance between cluster head and its hindmost member. We assume this amount as r. So r is the radius of circle1. Then cluster head assumes another circle into circle1 that we name it circle2 and its radius is r/2. All the members of this cluster would be in circle1 and some of them that their distance from cluster head is less then r/2 would be also in circle2. A cluster head should try to cover all the area of the circle1 by using its members. For doing such, cluster head tries to make a strategy for covering each quarter of the circle1 in the network lifetime. All four quarters of both of circle1 and circle2 should be covered completely during network functioning. There is a group for each circle. Each node whose distance from cluster head is less than r/2 will be put in group 2 and if the distance of a node from cluster head is more than r/2 it would be put in group 1.
So, group2 contains the id and angle of those of the nodes that their distance from cluster head is less than r/2 and group1 includes other nodes that their distance from cluster head is between r/2 and r. Each of the mentioned groups is divided into four subgroups and each one corresponds to the circle quarters. “Fig. 4” presents the subgroups’ location. The g11, g12, g13, g14, g21, g22, g23, and g24 are belonging to circle1 and circle2 respectively. Each subgroup has a certain number of nodes. For example subgroupij has nij members with a number of id and angles. The strategy that cluster head assumes is to use some of the nodes of each subgroup for covering the corresponding part of that subgroup. So, cluster head may use one or more nodes for that part in different time slices. The coverage radius considered by cluster head for each node is based on its remained energy. There is a maximum sensing range, which depends on 0.33r, and also there is a minimum sensing range which depends on 0.25r so:

\[\text{MaxSen } \sin \theta \alpha 0.33 \times r \]

\[\text{MinSen } \sin \theta \alpha 0.25 \times r \]

MaxSensingR changes in different rounds. Thus, cluster head assumes the sensing range of each node as follows:

\[
s_{\text{R}} = \begin{cases}
0, & \text{node.energy < threshold} \\
\text{Max[node.energy * MaxSensingR, (0.25r)]}, & \text{otherwise}
\end{cases}
\]

This algorithm presents a way by which almost all over the region is to be covered completely. Moreover each node has a sensing range corresponding to its remained energy: more energy results in a bigger sensing range and vice versa. If the energy of the node is more than a threshold it contributes in covering. Each node of the cluster informs its cluster head about its energy. The threshold amount is based on maximum initial energy. Thus, if the energy of the node is more than this threshold (assume: threshold = 0.05* initial energy), cluster head decides to contribute it in covering by giving a sensing range between MaxSensingR and MinSensingR to that node. Cluster head selects covering range of every one of its member based on (4):

\[\text{MinSen } \sin \theta \alpha \text{Sen } \sin \theta \alpha \text{MaxSen } \sin \theta \]
In (4), \(sr, \) node.energy, \(r \) and \(\text{MaxSensingR} \) are the sensing range of a node, the percentage of the remained energy of a node, the distance between cluster head and its hindmost member and the maximum sensing range of the node respectively. Based on (4) each node will be aware of its covering range. Furthermore, it gets its turn on time slice from its cluster head. By using this equation if the energy of a node is less than the threshold it will have no contribution in covering and its sensing range is equal to zero, but when a nodes’ energy is more than the threshold, its sensing range will be between 0.25\(r \) and 0.33\(r \). When the node has the minimum required energy for contributing in covering, its sensing range would be equal to 0.25\(r \) and it will have a sensing range equals to 0.33\(r \) when it is full of energy. The sensing range of each node that the cluster head denotes is between 0.25\(r \) and 0.33\(r \). The usual sensing range of each node is about 8 meters in the FEED algorithm, but it can be changed based on the number of clusters. “Fig. 5” shows part of the region covered by a cluster, which has eight covering active nodes. There are four active nodes in circle1 (red circles) and four active nodes in circle2 (black circles). “Fig. 5” shows that in each cluster always, 8+1 nodes (8 regular nodes and a cluster head) should be in active mode (black, red and blue circles) and the rest can go to sleep, because their neighbors perform their responsibilities. The green nodes in “Fig. 5” are those that are in charge of covering the holes. The covering region of the cluster head is presented by a blue circle at the center of the cluster. By doing such, all over of each cluster will be covered and consequently all over the network will be covered as well. Suppose \(n \) be the number of network nodes. The desired percentage of clusters is equal to 0.05\(n \). So, there will be about twenty nodes in each cluster. As we said just 9 nodes should be in active mode in each time and 11 nodes can go to sleep mode. The problem that can occur is the existence of holes between covering circles. But, “Fig. 5” presents that the probability of having holes is low. However, if such event happens, then cluster head will turn on the nearest node to that hole. The worst situation that can take place is to have 4 holes between the covering circles. Thus, 7/20 of the cluster nodes will go to sleep and there is at most thirty-five percent energy efficiency in a round for a cluster and consequently for the entire network. In the best condition 11/20 of all the nodes can go to sleep. This means that in each round there is at most about fifty-five percent reduction in the network energy consumption. Thus, network lifetime is increased about fifty five percent. An important point is the percentage of clusters assumed for the network. Usually, this amount is equal to 5\%, but it may change to 4\% or 6\% in some rounds. Changing the percentage of clusters leads to some changes in the functionality of the algorithm as shown in Table. I. By changing the percentage of clusters, percentage of minimum and maximum number of slept nodes per round will change. In parallel with these changes, the maximum sensing range changes and leads to denoting different sensing range for active nodes. Let \(a \) be the usual sensing range of a node which is equal to 8 meters, but it changes when the percent of clusters changes. We relate \(\text{MaxSensingR} \) to both of \(A \) and \(R \), as follows:

\[
\text{MaxSensingR} = \begin{cases}
 \text{max}(0.25r, 1.2a), & a < 0.25r \\
 \text{max}(0.29r, a), & 0.25r < a < 0.33r \\
 0.33r, & a > 0.33r
\end{cases}
\]

(5)
The best situation occurs when the size of the area is 100*100 and the number of nodes is equal to 100, or the size of the area is 200*200 and the number of nodes is equal to 200, or the size of the area is 300*300 and the number of nodes is equal to 300. This models are well known standard models used in several same works. In this models with this condition that the dispersion of the nodes is normal, the usual sensing range (a) is equal to 8 meters. Now, we pay attention to the results of the coverage. Some facts about r, MinSensingR and MaxSensingR are mentioned in "Table. II". "Table. II" shows that energy reduction can be computed, easily. Note that there is well energy reduction for slept nodes, but active nodes are loosing energy. Based on (5), MaxSensingR changes in different implementations of the network and consequently energy reduction will have different kinds, because r changes as a result of changing the implementation of the network. It is possible sometimes for MaxSensingR to be greater than a. So, active nodes will have at most about twenty percent more energy consumption or at most about twenty percent less energy consumption depending on the percent of the clusters. Thus, average percent of energy reduction (AER) can be computed as follows:

\[
AER = \text{ASN} - (\text{AAN} \times (\text{OEC})) \quad (6)
\]

In above equation, AER is average percent of energy reduction, ASN is average percent of slept nodes, AAN is average percent of active nodes and OEC is over energy consumption of the active nodes. Also cluster head is active, so we increment AAN.

\[
\text{AER (worst)} = \text{MIPS} - (\text{OEC} \times \text{MAPA}) \quad (7)
\]

\[
\text{AER (best)} = \text{MAPS} - (\text{OEC} \times \text{MIPS}) \quad (8)
\]

In (7), AER (worst) is the worst case, the minimum amount of average percent of energy reduction, MIPS is the minimum percent of energy consumption of the active nodes, and MAPA is the maximum percent of active nodes.

In (8), AER (best) is the best case and the maximum amount of average percent of energy reduction, MAPS is the maximum percent of slept nodes and MIPS is the minimum percent of active nodes.

IV. PERFORMANCE EVALUATION

This section presents the performance evaluation of the algorithm. By considering indicated facts and (6), the worst case for average percent of energy reduction (AER (worst)) and best case for average percent of energy reduction (AER (best)) can be computed as shown in Table. III. The results of this method are shown in "Fig. 6." Based on this figure, this method can save energy from % 28 to % 67 during coverage.
By doing such, always every cluster has some nodes to be turning on and other nodes go to sleep mode. The width of circle1 and circle2 is equal to 0.5r, so having a sensing range greater than 0.33r is redundant, and if sensing range of a node is less than 0.25r it will help to make holes. It is possible for a node to be turning on more that once per a round, because after the last node finishes its duty the first node starts covering again, if the round is still continuing. By the proposed algorithm all over the region will be covered completely till end of the network life time. By applying (4), sensing range of each node will be chosen by cluster head during every round in a dynamic way. So, network covering will be under control of cluster heads and they work as the managers of coverage algorithm. This coverage method is at the expansion of a clustering algorithm (FEED) and can be improved, because FEED clustering algorithm selects cluster heads based on important factors like energy, density, centrality and node distances. Furthermore it considers a supervisor node for each cluster to replace the cluster head if it fails.

V. CONCLUSION

This paper presents a novel coverage method for WSN. This method employs clustering and pays attention to energy of nodes to denote the covering range. Cluster heads are in the charge of denoting these ranges for their members. Some groups are to be created for each cluster region and there are two circles in each, circle1, and circle2 with radius r and r/2, respectively. For covering all over the region all the groups of all the clusters together should cover their corresponding areas to achieve at region full coverage.

The nodes of each group are to be scheduled to be turn on by cluster head to cover the area. This method can save energy from %28 to %67 during coverage which can significantly improve the network life time.

REFERENCES RÉFÉRENCES REFERENCIAS

mobile computing, Networking and Communications (WiMob), 2005.
11) O. Younis and S. Fahmy, “HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad-hoc Sensor Networks”, sponsored in part by NSF grant ANI-0238294 (CAREER) and the Schlumberger Foundation
An Approach For Grid Based Authentication Mechanism To Counter Cyber Frauds With Reference To Credit Card Payments

By Nayani Sateesh

Abstracts - In the era of internet world, the most prominent flashing string is credit cards when we referring to online payments. They enable the feature called “buy now and pay later” which increases the usage of credit cards day by day. Increasing fashion of credit cards is prone to cyber fraud nowadays. All the methods so far we have are based on the purchased patterns to detect the frauds. Prevention is better than cure. In this paper proposed an approach which helps in detecting the frauds at the early stage itself before a fraudulent transaction is being made by the unauthorized person.

Keywords: Cyber Frauds, Credit Cards, Online Payment, Hidden Markov Model, Debit Cards

Classification: GJCST Classification: D.4.6
An Approach For Grid Based Authentication Mechanism To Counter Cyber Frauds With Reference To Credit Card Payments

Nayani Sateesh

Abstract: In the era of internet world, the most prominent flashing string is credit cards when we referring to online payments. They enable the feature called "buy now and pay later" which increases the usage of credit cards day by day. Increasing fashion of credit cards is prone to cyber fraud nowadays. All the methods so far we have are based on the purchased patterns to detect the frauds. Prevention is better than cure. In this paper proposed an approach which helps in detecting the frauds at the early stage itself before a fraudulent transaction is being made by the unauthorized person.

Keywords: Cyber Frauds, Credit Cards, Online Payment, Hidden Markov Model, Debit Cards.

I. INTRODUCTION

With the growth of internet technologies, the entire world become a global village with resources are being connected together even though they are geographically dispersed. By a single mouse click, we can access and make use of resources and services available over the Internet. Being cheap and an efficient medium to communicate and share the services, internet is becoming more popular in the modern economy, especially with reference to e-commerce. The following table shows various online payment systems. According to Sumanjeet (2008) credit card is most popular method of payments.

Table 1.1: E-Commerce Payments

<table>
<thead>
<tr>
<th>E-Commerce Payment Systems</th>
<th>Percentage</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Card</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>Debit Card (Smart Card)</td>
<td>26.5</td>
<td>2</td>
</tr>
<tr>
<td>Cash on Delivery</td>
<td>23.5</td>
<td>3</td>
</tr>
<tr>
<td>Bank Transfer</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Money Transfer</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Postal Transfer</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Prepaid Card</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Payment Through Convenience Store</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

The usage of the credit cards is increasing from the consumer perspective day by day because of its easiness in online payments and the feature “buy now pay later”.

II. TRADITIONAL CREDIT CARD PROCESSING

Here let us have look at the way the credit cards working mechanism

Step 1: The merchant submits a credit card transaction to the Authorize.Net Payment Gateway on behalf of a customer via secure Web site connection, retail store, MOTO center or wireless device.
Step 2: Authorize.Net receives the secure transaction information and passes it via a secure connection to the Merchant Bank’s Processor.
Step 3: The Merchant Bank’s Processor submits the transaction to the Credit Card Network (a system of financial entities that communicate to manage the processing, clearing, and settlement of credit card transactions).
Step 4: The Credit Card Network routes the transaction to the Customer’s Credit Card Issuing Bank.
Step 5: The Customer’s Credit Card Issuing Bank approves or declines the transaction based on the customer’s authentication credentials and available funds and passes the transaction results back to the Credit Card Network.
Step 6: The Credit Card Network relays the transaction results to the Merchant Bank’s Processor.
Step 7: The Merchant Bank’s Processor relays the transaction results to Authorize.Net.
Step 8: Authorize.Net stores the transaction results and sends them to the customer and/or the merchant. This step completes the authorization process – all in about three seconds or less!
Step 9: The Customer’s Credit Card Issuing Bank sends the appropriate funds for the transaction to the Credit Card Network, which passes the funds to the Merchant’s Bank. The bank then deposits the funds into the merchant’s bank account. This step is known as the settlement process and typically the transaction funds are deposited into your primary bank account within two to four business days.
As the credit cards usage is increasing, the frauds are also taking place on the other side. Credit card frauds are detected so far using Neural Network methods, Hidden Markov Model etc. All these methods work based on the unusual patterns in payments. They are all the post methods which help to detect and then take the measures on the fraud that is occurred. But we need a system that helps in preventing the fraud at the initial stage itself such that the fraud could not take part. Here let us have a look at our proposed system in the following section.

III. RELATED WORK

Credit card frauds are detected so far using Neural Network methods, Hidden Markov Model etc. All these methods work based on the unusual patterns in payments. They are all the post methods which help to detect and then take the measures on the fraud that is occurred. But we need a system that helps in preventing the fraud at the initial stage itself such that the fraud could not take part. Here let us have a look at our proposed system in the following section.

IV. PROPOSED GRID MERCHANT PROCESSING

Step 1: The customer submits his/her credit card credentials along with the respective Grid Characters on the grid card associated with the credit card. Grid card contains the alphabets associated with the numeric numbers printed on it. These grid codes are generated randomly by the user interface application through which the customer is connecting to the Payment Gateway via secure internet connection.

Step 2: Authorize.Net receives the secure transaction information along with the Grid codes and passes it via a secure connection to the Merchant Bank's Processor.

Step 3: The Merchant Bank's Processor submits the transaction to the Credit Card Network (a system of financial entities that communicate to manage the processing, clearing, and settlement of credit card transactions).

Step 4: The Credit Card Network routes the transaction to the Customer's Credit Card Issuing Bank.

Step 5: The Customer's Credit Card Issuing Bank approves or declines the transaction based on the customer's authentication credentials and available funds and passes the transaction results back to the Credit Card Network.

Step 6: The Credit Card Network relays the transaction results to the Merchant Bank's Processor.

Step 7: The Merchant Bank's Processor relays the transaction results to Authorize.Net.

Step 8: Authorize.Net stores the transaction results and sends them to the customer and/or the merchant. This step completes the authorization process – all in about three seconds or less!

Step 9: Once the Customer is authenticated The Customer's Credit Card Issuing Bank sends the appropriate funds for the transaction to the Credit Card Network, which passes the funds to the Merchant's Bank. The bank then deposits the funds into the merchant's bank account. This step is known as the settlement process and typically the transaction funds are deposited into your primary bank account within two to four business days.
Grid Based Credit Card Process

V. Conclusion

In Grid Based approach each credit card is associated with a Grid Card. Without the Grid Card, no one can do the online payments incase of credit card theft or lost. It helps in get ride of the credit card fraud.

VI. Limitations

Grid Based system requires the existing traditional Credit card process applications to be enhanced and revised. Every Credit card should have an associated Grid card which makes the user inconvenience at the initial stage while doing the online payments but it helps in get ride of the credit card frauds. If both the credit card and Grid card are lost then there is a chance for the credit card frauds and this process is slow.

REFERENCES

1) Jiawei Han , Micheline Kamber “Data Mining : Concepts and Techniques”, Second Edition , 2006 by Elsevier Inc.
5) Scott Schmith “Credit Card Market: Economic Benefits and Industry Trends”
7) FTC FACTS for Consumers - “Avoiding Credit and Charge Card Fraud” by Federal Trade Commission, Bureau of Consumer Protection, Office of Consumer and Business Education, August 1997
8) “FMCBC Recommended Practice: Acceptance of Credit Cards and Debit Cards”, 2005
11) Credit card payment processing – A diagrammatic illustration http://www.authorize.net/resources/howitworksdigram/111
12) Online payment processing - ICICI grid cards - www.icicibank.com
Fellows

FELLOW OF INTERNATIONAL CONGRESS OF COMPUTER SCIENCE AND TECHNOLOGY (FICCT)

- FICCT' title will be awarded to the person after approval of Editor-in-Chief and Editorial Board. The title 'FICCT" can be added to name in the following manner e.g. Dr. Andrew Knoll, Ph.D., FICCT, Er. Pettor Jone, M.E., FICCT
- FICCT can submit two papers every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- Free unlimited Web-space will be allotted to 'FICCT 'along with subDomain to contribute and partake in our activities.
- A professional email address will be allotted free with unlimited email space.
- FICCT will be authorized to receive e-Journals - GJCST for the Lifetime.
- FICCT will be exempted from the registration fees of Seminar/Symposium/Conference/Workshop conducted internationally of GJCST (FREE of Charge).
- FICCT will be an Honorable Guest of any gathering hold.

ASSOCIATE OF INTERNATIONAL CONGRESS OF COMPUTER SCIENCE AND TECHNOLOGY (AICCT)

- AICCT title will be awarded to the person/institution after approval of Editor-in-Chief and Editorial Board. The title 'AICCT' can be added to name in the following manner:
 eg. Dr. Thomas Herry, Ph.D., AICCT
- AICCT can submit one paper every year for publication without any charges. The paper will be sent to two peer reviewers. The paper will be published after the acceptance of peer reviewers and Editorial Board.
- Free 2GB Web-space will be allotted to 'FICCT' along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted with free 1GB email space.
- AICCT will be authorized to receive e-Journal GJCST for lifetime.
- A professional email address will be allotted with free 1GB email space.
- AICHSS will be authorized to receive e-Journal GJHSS for lifetime.
Auxiliary Memberships

ANNUAL MEMBER

- Annual Member will be authorized to receive e-Journal GJCST for one year (subscription for one year).
- The member will be allotted free 1 GB Web-space along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted free 500 MB email space.

PAPER PUBLICATION

- The members can publish paper once. The paper will be sent to two-peer reviewer. The paper will be published after the acceptance of peer reviewers and Editorial Board.
Process of submission of Research Paper

The Area or field of specialization may or may not be of any category as mentioned in ‘Scope of Journal’ menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as ‘Knowledge Abstract’ at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of ‘Author Guideline’ Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (*.DOC, *.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission.

Online Submission: There are three ways to submit your paper:

(A) (I) Register yourself using top right corner of Home page then Login from same place twice. If you are already registered, then login using your username and password.

 (III) Click ‘Submit Manuscript’. Fill required information and Upload the paper.

(B) If you are using Internet Explorer (Although Mozilla Firefox is preferred), then Direct Submission through Homepage is also available.

(C) If these two are not convenient, and then email the paper directly to dean@globaljournals.org as an attachment.

Offline Submission: Author can send the typed form of paper by Post. However, online submission should be preferred.
Preferred Author Guidelines

MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)

Page Size: 8.27” X 11”

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Times New Roman.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, “Abstract” word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of .2
- First Character must be two lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt.
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

You can use your own standard format also.

Author Guidelines:

1. General,
2. Ethical Guidelines,
3. Submission of Manuscripts,
4. Manuscript’s Category,
5. Structure and Format of Manuscript,
6. After Acceptance.

1. GENERAL

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

Scope

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization.

The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.
2. ETHICAL GUIDELINES

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.

Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission.

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R&D authorship, criteria must be based on:

1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.

2) Drafting the paper and revising it critically regarding important academic content.

3) Final approval of the version of the paper to be published.

All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

Acknowledgements: Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

Appeal of Decision: The Editorial Board’s decision on publication of the paper is final and cannot be appealed elsewhere.

Permissions: It is the author's responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.

Please mention proper reference and appropriate acknowledgements wherever expected.

If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author's responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

3. SUBMISSION OF MANUSCRIPTS

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.

To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.
4. MANUSCRIPT’S CATEGORY

Based on potential and nature, the manuscript can be categorized under the following heads: Original research paper: Such papers are reports of high-level significant original research work.

Review papers: These are concise, significant but helpful and decisive topics for young researchers.

Research articles: These are handled with small investigation and applications

Research letters: The letters are small and concise comments on previously published matters.

5. STRUCTURE AND FORMAT OF MANUSCRIPT

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

Papers: These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:

(a) Title should be relevant and commensurate with the theme of the paper.

(b) A brief Summary, “Abstract” (less than 150 words) containing the major results and conclusions.

(c) Up to ten keywords, that precisely identifies the paper’s subject, purpose, and focus.

(d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.

(e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.

(f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;

(g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.

(h) Brief Acknowledgements.

(i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and to make suggestions to improve briefness.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

Format

Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.
Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min, except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 l rather than 1.4 × 10-3 m3, or 4 mm somewhat than 4 × 10-3 m. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

Structure

All manuscripts submitted to Global Journals Inc. (US), ought to include:

Title: The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the e-mail address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

Abstract, used in Original Papers and Reviews:

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources. One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art. A few tips for deciding as strategically as possible about keyword search:

- One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in research paper?" Then consider synonyms for the important words.
- It may take the discovery of only one relevant paper to let steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
- One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

Numerical Methods: Numerical methods used should be clear and, where appropriate, supported by references.

Acknowledgements: Please make these as concise as possible.

References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work.
References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

Tables, Figures and Figure Legends

Tables: Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.

Figures: Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.

Preparation of Electronic Figures for Publication

Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs) : >350 dpi; figures containing both halftone and line images: >650 dpi.

Color Charges: It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

Figure Legends: Self-explanatory legends of all figures should be incorporated separately under the heading ‘Legends to Figures’. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.

6. AFTER ACCEPTANCE

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.
Acrobat Reader will be required in order to read this file. This software can be downloaded (Free of charge) from the following website:

www.adobe.com/products/acrobat/readstep2.html. This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

Proofs must be returned to the dean at dean@globaljournals.org within three days of receipt.

As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)

The Global Journals Inc. (US) are enclosed by our publishing’s Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

6.3 Author Services

Online production tracking is available for your article through Author Services. Author Services enables authors to track their article - once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

6.4 Author Material Archive Policy

Please note that if not specifically requested, publisher will dispose off hardcopy & electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

6.5 Offprint and Extra Copies

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher’s terms and conditions. Additional paper offprint may be ordered by emailing us at: editor@globaljournals.org.

Informal Tips for writing a Computer Science Research Paper to increase readability and citation

© Copyright by Global Journals Inc.(US) | Guidelines Handbook
Before start writing a good quality Computer Science Research Paper, let us first understand what is Computer Science Research Paper? So, Computer Science Research Paper is the paper which is written by professionals or scientists who are associated to Computer Science and Information Technology, or doing research study in these areas. If you are novel to this field then you can consult about this field from your supervisor or guide.

Techniques for writing a good quality Computer Science Research Paper:

1. **Choosing the topic:** In most cases, the topic is searched by the interest of author but it can be also suggested by the guides. You can have several topics and then you can judge that in which topic or subject you are finding yourself most comfortable. This can be done by asking several questions to yourself, like Will I be able to carry our search in this area? Will I find all necessary recourses to accomplish the search? Will I be able to find all information in this field area? If the answer of these types of questions will be “Yes” then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.

2. **Evaluators are human:** First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.

3. **Think Like Evaluators:** If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.

4. **Make blueprints of paper:** The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

5. **Ask your Guides:** If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can’t clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.

6. **Use of computer is recommended:** As you are doing research in the field of Computer Science, then this point is quite obvious.

7. **Use right software:** Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.

8. **Use the Internet for help:** An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.

9. **Use and get big pictures:** Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.

10. **Bookmarks are useful:** When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.

11. **Revise what you wrote:** When you write anything, always read it, summarize it and then finalize it.

12. **Make all efforts:** Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.
13. **Have backups:** When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.

14. **Produce good diagrams of your own:** Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating “hotchpotch.” So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.

15. **Use of direct quotes:** When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.

16. **Use proper verb tense:** Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.

17. **Never use online paper:** If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.

18. **Pick a good study spot:** To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.

19. **Know what you know:** Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.

20. **Use good quality grammar:** Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straightforward. Put together a neat summary.

21. **Arrangement of information:** Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.

22. **Never start in last minute:** Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.

23. **Multitasking in research is not good:** Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.

24. **Never copy others’ work:** Never copy others’ work and give it your name because if evaluator has seen it anywhere you will be in trouble.

25. **Take proper rest and food:** No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.

26. **Go for seminars:** Attend seminars if the topic is relevant to your research area. Utilize all your resources.

27. **Refresh your mind after intervals:** Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.
28. **Make colleagues:** Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.

29. **Think technically:** Always think technically. If anything happens, then search its reasons, its benefits, and demerits.

30. **Think and then print:** When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.

31. **Adding unnecessary information:** Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. Amplification is a billion times of inferior quality than sarcasm.

32. **Never oversimplify everything:** To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren’t essential and shouldn’t be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put onward earth-shaking thoughts. Give a detailed literary review.

33. **Report concluded results:** Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.

34. **After conclusion:** Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium though which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

INFORMAL GUIDELINES OF RESEARCH PAPER WRITING

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template.
- Please note the criterion for grading the final paper by peer-reviewers.

Final Points:

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the order listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.
General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear

- Adhere to recommended page limits

Mistakes to evade

- Insertion a title at the foot of a page with the subsequent text on the next page
- Separating a table/chart or figure - impound each figure/table to a single page
- Submitting a manuscript with pages out of sequence

In every sections of your document

- Use standard writing style including articles ("a", "the," etc.)
- Keep on paying attention on the research topic of the paper
- Use paragraphs to split each significant point (excluding for the abstract)
- Align the primary line of each section
- Present your points in sound order
- Use present tense to report well accepted
- Use past tense to describe specific results
- Shun familiar wording, don’t address the reviewer directly, and don’t use slang, slang language, or superlatives
- Shun use of extra pictures - include only those figures essential to presenting results

Title Page:

Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address(es) of all authors.

Abstract:

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript--
must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

Introduction:

The Introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.
- Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the whole thing you know about a topic.
• Shape the theory/purpose specifically - do not take a broad view.
• As always, give awareness to spelling, simplicity and correctness of sentences and phrases.

Procedures (Methods and Materials):

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to replace your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

• Explain materials individually only if the study is so complex that it saves liberty this way.
• Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
• Do not take in frequently found.
• If use of a definite type of tools.
• Materials may be reported in a part section or else they may be recognized along with your measures.

Methods:

• Report the method (not particulars of each process that engaged the same methodology)
• Describe the method entirely
• To be succinct, present methods under headings dedicated to specific dealings or groups of measures
• Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
• If well known procedures were used, account the procedure by name, possibly with reference, and that's all.

Approach:

• It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
• Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

What to keep away from

• Resources and methods are not a set of information.
• Skip all descriptive information and surroundings - save it for the argument.
• Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently. You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.
Content

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form.

What to stay away from

- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.
- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report.
- If you desire, you may place your figures and tables properly within the text of your results part.

Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts.
- Despite of position, each figure must be numbered one after the other and complete with subtitle.
- In spite of position, each table must be titled, numbered one after the other and complete with heading.
- All figure and table must be adequately complete that it could situate on its own, divide from text.

Discussion:

The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results, hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work.
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

- When you refer to information, differentiate data generated by your own studies from available information.
- Submit to work done by specific persons (including you) in past tense.
- Submit to generally acknowledged facts and main beliefs in present tense.
Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get rejected.

- **The major constraint** is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else’s analysis.
- Do not give permission to anyone else to "PROOFREAD" your manuscript.
- Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.
- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.
Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).

<table>
<thead>
<tr>
<th>Topics</th>
<th>Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-B</td>
</tr>
<tr>
<td>Abstract</td>
<td>Clear and concise with appropriate content, Correct format. 200 words or below</td>
</tr>
<tr>
<td></td>
<td>Above 200 words</td>
</tr>
<tr>
<td>Introduction</td>
<td>Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited</td>
</tr>
<tr>
<td>Methods and Procedures</td>
<td>Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads</td>
</tr>
<tr>
<td>Result</td>
<td>Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake</td>
</tr>
<tr>
<td>Discussion</td>
<td>Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited</td>
</tr>
<tr>
<td>References</td>
<td>Complete and correct format, well organized</td>
</tr>
</tbody>
</table>
linguistic · 15, 16

MANET · 24, 29
 MDBCP · 40
 methodologies · 8, 12
 microstrip · 68, 69, 70, 71
 movement · 27, 54, 55
 multiplication · 30, 31, 32, 37, 38

necessary · 8, 25, 42, 54
 neighboring · 10, 61
 network · 24, 25, 26, 40, 41, 42, 44, 45, 50, 51, 52, 53, 54, 56, 57, 60, 61, 62, 63, 64, 65
 neural · 44, 45, 50, 51, 53, 54
 Neuro-Fuzzy · 6, 14, 18, 19, 22

occupancy · 42
 organism · 9, 11, 12

parameters · 14, 40, 41, 42, 44, 45, 53, 69, 70
 percentage · 42, 44, 54, 61, 63, 70
 performance · 8, 12, 14, 15, 22, 24, 26, 27, 29, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 64, 68
 phenomenon · 47
 population · 14, 15, 16, 17, 18, 22
 prediction · 41, 45, 46, 51, 53, 68
 procedure · 14, 22, 52, 53, 56
 Proceedings · 65
 product · 44, 45, 46, 47, 48, 49, 50, 51
 programming · 53
 properties · 30, 40, 71
 protocols · 24, 25, 26, 27, 40, 41, 42
 Protocols · 6, 24

Quality · 40, 69

redundancy · 8, 9
 regression · 44, 47, 48, 50
 respectively · 30, 31, 32, 36, 37, 42, 52, 54, 56, 57, 62, 63, 65, 70
 Rhotrices · 6, 30
 rhoitrix · 30, 31, 32, 37, 38
 Routing · 6, 24, 25, 27, 29, 40, 43, 65
 row-column · 30, 31, 32, 37, 38
 RWMM. · 24

selection · 14, 15, 18, 20, 21, 22, 42, 56, 60
 sensor · 60, 65, 66
 sequence · 8, 11, 12, 13, 25
 sexual · 14, 15, 18, 22
 simulation · 24, 25, 26, 27, 29, 42, 53, 54, 56, 72
 sponsored · 60, 66
 success · 42, 44, 45, 46, 50, 51
 supervisor · 30, 61, 65
 System · 6, 14, 18, 19, 22, 57, 65, 66

Technical · 5, 46, 47
 thickness · 68, 69
 traditional · 14, 24, 40, 52, 53, 55, 57
 transforming · 42
 transmit · 53

wavelength · 43, 68, 69
 wireless · 24, 25, 29, 52, 53, 54, 57, 60, 65, 66