
© 2012. Narendra Pratap Singh, Ramu Agrawal & Indra Paliwal. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 12 Issue 14 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Hamiltonian or not with all Possible Paths
 By Narendra Pratap Singh, Ramu Agrawal & Indra Paliwal

 BSA College of Engineering and Technology, Mathura, U.P, India

Abstract - Given a Graph G (V, E), We Consider the problem of deciding whether G is Hamiltonian, that is-
whether or Not there is a simple cycle in E spanning all vertices in V. [1] However to Verify that the given cycle
is Hamiltonian by checking whether it is permutation of the vertices of V and whether each of the consecutives
edges along the cycle actually exists in the Graph. This Verification Algorithm can certainly be implemented to
run in O (n2) time, where n is the length of the encoding of G [2]. But to predict in Advance that the Graph has
Hamiltonian Cycle or not was still Exponential before this Algorithm. This Problem is known to be NP-Complete
hence cannot be solved in Polynomial time in |V| unless P=NP. However till today there was no known
Criterion we can apply to determine the existence Hamiltonian Circuit in General [3]. For its Exponential time
We can Refer to theorems: - Vertex Cover problem is polynomially transformable to the Hamiltonian circuit
Problem for Directed graphs, hence the Hamiltonian Circuit problem for Directed Graph is NP-Complete and
the Hamiltonian Circuit Problem for Directed Graph is Polynomialy transformable to Hamiltonian Cycle
Problem for Undirected Graph, hence the Hamiltonian Cycle Problem for undirected Graph is NP-complete
[4]. Note that these derivations are based on the CNF- Satisfiability.

Through this Paper we have introduced a Newer Algorithm with different approach to determine
whether a given Graph is Hamiltonian or Not with all possible Paths, by applying Few Mathematical and logical
Operations. This provides necessary and sufficient condition for a graph to be Hamiltonian.

Keywords : Adjacency matrix, Adjacency List, Nodes, Vertices, Edges, Hamiltonian circuit.

GJCST-C Classification :

Efficient Algorithm to Determine whether a given Graph is Hamiltonian or not with all Possible Paths

Strictly as per the compliance and regulations of:

E.1

Efficient Algorithm to Determine Whether a given Graph is

Efficient Algorithm to Determine Whether a given
Graph is Hamiltonian or not with all Possible

Paths
Narendra Pratap Singh α, Ramu Agrawal σ & Indra Paliwal ρ

Abstract - Given a Graph G (V, E), We Consider the problem of
deciding whether G is Hamiltonian, that is- whether or Not
there is a simple cycle in E spanning all vertices in V. [1]
However to Verify that the given cycle is Hamiltonian by
checking whether it is permutation of the vertices of V and
whether each of the consecutives edges along the cycle
actually exists in the Graph. This Verification Algorithm can
certainly be implemented to run in O (n2) time, where n is the
length of the encoding of G [2]. But to predict in Advance that
the Graph has Hamiltonian Cycle or not was still Exponential
before this Algorithm. This Problem is known to be NP-
Complete hence cannot be solved in Polynomial time in |V|
unless P=NP. However till today there was no known Criterion
we can apply to determine the existence Hamiltonian Circuit in
General [3]. For its Exponential time We can Refer to
theorems: - Vertex Cover problem is polynomially
transformable to the Hamiltonian circuit Problem for Directed
graphs, hence the Hamiltonian Circuit problem for Directed
Graph is NP-Complete and the Hamiltonian Circuit Problem for
Directed Graph is Polynomialy transformable to Hamiltonian
Cycle Problem for Undirected Graph, hence the Hamiltonian
Cycle Problem for undirected Graph is NP-complete [4]. Note
that these derivations are based on the CNF- Satisfiability.

Through this Paper we have introduced a Newer
Algorithm with different approach to determine whether a given
Graph is Hamiltonian or Not with all possible Paths, by
applying Few Mathematical and logical Operations. This
provides necessary and sufficient condition for a graph to be
Hamiltonian.
Keywords : Adjacency matrix, Adjacency List, Nodes,
Vertices, Edges, Hamiltonian circuit.

I. Introduction

amiltonian Problem is Decision Problem in which
G (V, E) should be traversed from any one vertex
to same vertex without repeating any vertex

again (means, Vertex should be traverse exactly once).
We look for n long sequence of vertices v0, v1, v2, .….,
vn-1 visit all vertices in v such that ni ≤≤0 , (vi,
v(i+1)mod n) E∈ , along with the element of Adjacency
Matrix Ai, j= 1,if),(jiE∈∀ , 0, otherwise. From the
general prediction as prescribed in literature that
Hamiltonian Cycle exists if and only if there is an n- long

Author

α σ ρ

:

Department of Computer Science, BSA College of
Engineering and Technology, Mathura, U.P, India.

E-mail

α

: narendrapratapbsa@gmail.com

E-mail

σ

: ramuagrawalbsa@gmail.com

E-mail

ρ

: indrapaliwal@gmail.com

tour that cover all the vertices and returns to the
standing point.

Scientist around the globe deduced the Method
based on the number of edges and degrees of graph,
some for planarity and some for connected but they all
failed for a general graph and was not sufficient. It
follows the CNF- satisfiability also [4].

But we put through the above statement from
the mathematical and logical point of view.

By this algorithm, now the scientist will have
reasonable condition to determine the Hamiltonian
Circuit in Advance without traversing it vertex to vertex
manually on the paper.

Till today this problem which spurred the
computer scientist around the globe to be able to draw
an Algorithm which Culminate the possibilities, the
usage of global information was shown to speed up the
process: however it has cost in communication and
complexity of individual agent. Now in our Algorithm
there is no foundation for an undirected, directed,
planarity, colorability, and connectedness of a graph, it
can be applied to the all types of graphs.

Rest of the paper is organized as follows.
Section2 present the related work. The proposed
method algorithm has been described in section3. In
section4, experimental results and sample run have
been presented and paper is concluded in section5.

II. Related work

Since, its (Hamiltonian Cycle Problem) origin, by
famous Irish Mathematician Sir William Rowan Hamilton,
1859, was still unsolved. There was no known criterion
we could apply to determine the existence of
Hamiltonian circuit in general. A circuit is a connected
graph G is said to be Hamiltonian if it includes every
vertex of G. Hence a Hamiltonian Circuit in a Graph of n
vertices cost of exactly n edges. Obviously, not every
connected Graph has Hamiltonian Circuit. For example,
neither of the Graph shown in figures (2.1 and 2.2) and
has a Hamiltonian circuit. This raise the Question: What
is the necessary and sufficient condition for a connected
Graph G to have Hamiltonian Circuit? [5]

Also, No known Characterization to determine
Hamiltonian graph in any given Graph G has been found
[6].

H

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

11

(
DDDD

)
C

20

12
Y
e
a
r

However several Scientist has proposed several
methods on the basis of degree and edges with the
reference to any specific graph (like connected,
planarity, etc.). But they had not found full success with
necessary condition to predict Hamiltonian cycle in
advance for every Graph. Most of works has been
presented before the 1975. Hence there was no
programming based algorithmic approach had been
considered? Some famous works are as follows:
• Every Graph G with 3≥n vertices and minimum

degree at least n\2 has a Hamiltonian Cycle [7]
(Dirac 1956).

[Note that this theorem bound prediction within
limit of 3≥n .]
• Every Graph G with |G| 3≥ and K(G)≥ α(G) has a

Hamiltonian Cycle.
[Note that the theorem is bounded within

condition |G|≥3[7](Dirac 1956).
• Every 4- Connected planar Graph has a Hamiltonian

Cycle. (Tutte 1956)[8, 9, 10]
• Historically, Dirac’s Theorem formed the point of

departure for the discovery of a series of weaker
degree conditions, all sufficient for Hamiltonian
circuit. The development of our algorithm
culminates all the theorem s and encompasses all
the earlier results.

If G is graph with n vertices and degrees
d1<d2<…..<d n , then the n-tuples (d1, d2, …, d n)is
called the degree of sequence of G. Note that this
Sequence is unique, even though G has a several vertex
enumeration giving emphasis to its degree sequence(a1,
a2, ……, an) Hamiltonian if Every Graph with n vertices
and a degree sequence point wise greater than (a1,
….an) if (di ≥ ai for all i)

The following theorem characterizes all
Hamiltonian Sequences.
• (Chvatal 1972), An integer Sequence (a1, …., an)

such that 0≤ a1 ≤……≤ an <n and n≥3 is
Hamiltonian if and only if the following holds for
every i<n/2:

ai ≤ i ⇒an-1 ≥ n-i.[11]

• An integer sequence (a1, …an) such that n ≥ 2 and
0 ≤a1≤……≤ an < n is path Hamiltonian if and
only if every i ≤ n/2 is such thatai< i ⇒an+i-2 ≥ n-1
Hamiltonian Cycle in the square of a graph

• (Fleischner 1974), if G is a 2- Connected graph then
G 2 has a Hamiltonian Graph. [11]

• (Seymour 1974), let G be a Graph of order n ≥3 ,
and k be positive integer. If G has a minimum
degree δ (G) ≥ (k / k+1)*(n), there

G has Hamiltonian Cycle H such that H k ⊆ G. [12].
For k=1, this is preciselyDirac’s theorem the

case k=2 had already been conjecture by Posa in 1963

and was proved for large n by kamlos, Sarojy &
Szemerdi, 1996.[13]

Beyond the above given thesis, the age comes
to programming and computer scientist developed
several algorithms in the same context but did not get
succeed to make sure exact prediction for a graph to be
Hamiltonian or not. These are given as follows:
• Frieze [14] introduced a heuristic polynomial – time

algorithm, Ham, for finding Hamiltonian cycle in
random graphs with high Probability.

[Note that High probability terms indicate not to
be fully assured for being a Graph, Hamiltonian.
• Improved version of Ham, Semi Ham [15] by

keydar.
• Vandegrind analyzes the knight’s tour problem in

some details. He gave several existence and Non-
existence theorems for different parameters values.
He also reports on existence compute Experiments.

• An inspired Heuristic for regonizing Hamiltoion
graphs, by Israel A. Wagner.

From IBM Hafia research lab, Matan, Hafia,
Dept. of C.S. Technion City, Haifa 32000, Israel and
Alfred M. Bruckstein from AT &T Bells at Murray Hill
NJ0794, USA. Remain some challenging Question.
1. Vertex ant walk (VAW) has the Hamiltonian cycles as

its limit cycle; however we do know if those are the
only limit cycles of the process which are longer
than the n variables.

2. A probabilistic Version of VAW rule does not
determine the next neighbor specifically, but
assigns each neighbor a probability according to its
current (µ, t) mark (e.g) the probability of jumping
from u to v be

Prob(u→ v) =(1/(1+µ(v)))/(∑w∈N(u)(1/(1+µ(w))

Where, clearly, ∑ w∈N(u) prob (u→w)

=1N(u) stands for the sets of vertices v∈V such that
(u, v) ∑∈). In such a semi-Random process faster,

(In recognizing a Hamiltonian Graph), on the average, or
lower than the deterministic one?

[Note that, the prediction in above method is
probabilistic, means of having some amount of
Uncertainty.]
• Solving the Hamiltonian cycle Problem using

symbolic determinant by V.Ejov1, J.A.Filar2, S.K
Lucas3& J.L. Nelson4(1, 2,3 school of mathematics
and srtatistics, University of south Australia, Dept. of
mathematics, Harvey mudd college ,1250 N.
Dartmouth Ave Clare mount CA91711 USA. has
applied Algebra but Complexity remain for this
algorithm is Exponential.

• Bitonic Euclidean traveling-salesman problem[2]

The Euclidean traveling-salesman problem is
the problem of determining the shortest closed

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

12

(
DDDD

)
C

20

12
Y
e
a
r

Tour that connects a given set of n points in the
plane Figure 2.1(a) shows the solution to a 7- point
problem. The general problem is NP-complete, and its
solution is therefore believed to require more than
polynomial time

Figure 15.9: Seven points in the plane, shown
on a unit grid. (a) The shortest closed tour, with Length
approximately 24.89. This tour is not bitonic. (b) The
shortest bitonic tour for the same set of points. Its length
is approximately 25.58.

J. L. Bentley has suggested that we simplify the
problem by restricting our attention to bitonic tours, that
is, tours that start at the leftmost point, go strictly left to
right to the rightmost point, and then go strictly right to
left back to the starting point. Figure (b) shows the
shortest bitonic tour of the same 7 points. In this case, a
polynomial-time algorithm is possible.

Describe an O(n 2)-time algorithm for
determining an optimal bitonic tour. You may assume

That no. two points have the same x-coordinate.
(Hint: Scan left to right, maintaining optimal Possibilities
for the two parts of the tour.)

(a) (b)

But, we have introduced a Newer Algorithm
which over comes all the Hurdles suggested in above
given recent research, by applying logical and
mathematical operations. Hence it proves itself as a
sufficient condition for a Graph to be Hamiltonian.

III. The proposed method

In this section, we will present our original
approach to determine all Hamiltonian paths for a Given
Graph G. G(V, E) is the ordered pair consists two sets, V
for vertices(v1, v2, v3, …., vn) and E for edges (e1, e2,
e3, …., en)[or ek∈E, k N∈ . the vertices are the basic
nodes types which stores the information of Graph,
itself a mathematical structures and finds its application
in many areas of interest in which problem need to
solved using Computers. In case of Hamiltonian, e.g.,
Indian Railways may need to expand its tracking
belongs to each station in such a manner that the train
running on this must visit each station exactly once by
starting from any station and reached at the same. It
represented in the Data Structures. These
representations commonly used Adjacency Matrix,
Adjacency list and Multi- list representation. Firstly, we
will use these for Adjacency Matrix Aij = 1, if

⇔∈∀ vie (vj), Aij = 0, otherwise, takes O(n2) space to
represent graph with n vertices, even for Sparse Graph.

Algorithm (for First Basic method*):
1. Draw the Adjacency matrix (Inputting graph):

Let take adjacency matrix for any undirected
graph without parallel edges or loops.

[1] [2] [3]……… [n]
[1] 0 0 1 ……… 0
[2] 0 0 1 ……… 1
[3] 1 1 0 ……… 0
. . . . ………….
. . . . ………….
. . . . ………….
[n] 1 1 0 ……… 0

Fig. 3.1 : n*n- matrix for undirected graph

Certainly, it would represent a Graph,

connected, planar, directed, and undirected or of having
some self loops and parallel edges to put p∈W, (p, no.
of edges)

Adjacency matrix for directed/undirected having
loops and parallel edges.

[1] [2] [3] ………..[n]
[1] 1 2 3 ……….. 2
[2] 2 0 2 ……….. 0
[3] 3 2 0 ……….. 0
. . . . …………
. . . . …………
[n] . . . …….… 1

Fig. 3.2 : n*n matrix for graph having loop and parallel
edges

2.

Make function for traversing from vertex to vertex:

For a completely connected graph there will be
n!

Path (possible arrangements of all the vertices),

which provides highest probability to find out the
Hamiltonian paths, hence for the cases having parallel
edges the path increases by the factor of

2. Let take any

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

13

(
DDDD

)
C

20

12
Y
e
a
r

graph, fig (3.1), if we make all possible arrangements of
vertices as paths.

Fig. 3.3 : Undirected graph for without Hamiltonian

1-2-3-4-5-6-1
1-2-3-4-6-5-1
1-2-3-5-4-6-1
1-2-3-5-6-4-1
.
.
.
.
Up to 6! (Possible constructions)

However the path of the fashion of that
arrangement may not be occurred, but our main
concern is to make them.

Observe carefully, in the case of Hamiltonian
the possibility to move on from one vertex[i] to another
vertex [j] occurs only when if the [i][j]th element of matrix
is 1(one). If the value of [i][j]th element in adjacency
matrix is 0(zero) then it halt the path to proceed.

In the Succeeding way if all the

values in the
given path is 1 in the reference of [i][j]th element
therefore it has Hamiltonian path because in the path
(say) 1-24-5-3-6-1, all the element of matrix([1][2],
[2][4], [4][5], [5][3], [6][1] are 1(one), except [3][6]. If
this value becomes one the path will be successfully
turn into Hamiltonian circuit.

Let us take a Hamiltonian Graph

Fig. 3.4 : Undirected graph with parallel edges and

loops

Adjacency matrix for fig (3.4)

We observe carefully for path (say) 1-2-4-5-3-6-
1, all the element of adjacency matrix [1][2], [2][4],
[4][5], [3][6], [5][3], [6][1] have some value k, k W∈
,whole numbers.

A. We enumerate a logic from this, let take the array
elements in the specific sequences (generated by
permutation, all possible paths, drawn by
interchanging array function).that to put logical AND
(&&) between these elements. Interchange them for
above given sequences.

If Pk =
[1][2]&&[2][4]&&[4][5]&&[4][5]&&[5][3]&&[3][6]&&[6][1
] = 1
There, Hamiltonian circuit exists.
Else
Not exist.
Functionally in C programming, we have done this as:
Visit (int*, int, int)
Visit (int*NODES, int N, int k)
{
Static level= -1;
Level =level+1;
NODES[k] =level;
If (level == N)
{
 Int j=0, p=1, lock=0;
 While (j<N-1)
P = GRAPHIN [NODES[j]}[NODES[j+1]&&P;
J++
}
P=GRAPHIN [NODES][j] NODES[j+1]}&&P;

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

14

(
DDDD

)
C

20

12
Y
e
a
r

Do the same operation for all the sequences,
we get P1, P2, P3,…,, Pn.

B. Then we apply logical OR(||) operator between all
the path values.

P = P1||P2||P3||….., ||Pn
If P = 1
 Then it is Hamiltonian Graph
Else
 Not Print the Paths:
In this program it gets prints by the function

Input Adjacency Matrix:

*fortunately this algorithm provides sufficient
conditions for a Graph to be Hamiltonian and also print
all the possible paths but Unfortunately takes more time
for large Graphs, so we were in search for next
Algorithms which take less time than this, therefore we
developed second Algorithm which facilitate all the
requirements.

We prepare second Algorithm using the
concept of Graph theory, means of having linked list,
structures and few pointers.

Second Algorithm:
Pseudo code for second Algorithm:
Algorithm Hamiltonian path (vertex adj[], N, K, a[])
{
Create_ham(adj, p→ vertex, N)
Print_ham(a, N)
Count: = 0;
If count= N then
{
p: = adj[K]; p:= next;
While p≠ NULL do
 {
 If a[1] = p→ vertex than write (a, N); break;
 }

 P: = p→next;
}
Else
{
 P: =adj[K]; p: =p→next;
 While p ≠NULL
 {
 Loc: =0;
 For j←1 to count do
 {
 If a[j]=p→ vertex then
 {
 Loc++; break;
 }
 }
 If loc=0 then
 {
 Count++;
a[count]:=p→ vertex;
create_ham(adj, N, p→ vertex)
 count--; a[count]:=0;
 }
 P: = p→next;
 }
 Print_ham(a,N)
 {
 For i←1 to N do
 Write(a[i]);
Write(a[1]);
}
}

Output

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

15

(
DDDD

)
C

20

12
Y
e
a
r

IV. Experiment result

Let an Example of the Wide Network of Airlines,
in which there are n Airports, as in the given figure you
may assume each node as an Airport and the edges as
the route of Airline from one to another.

Hence this will form a type of Adjacency list
(linked list), in which each airport has the knowledge of
incoming and outgoing flights in various directions. In
the given figure (), we take Home Node A (means, the
Plane should have to back this again after traversing all
the airports exactly once). You may consider any one
airport as a Home Node, in our Algorithm.

Figure : Graph showing Airlines connections

In the general analysis, take this example of
Airline system as a Strongly Connected Complete
Graph, means each and every Airport is connected to all
other Airports.
T (n) for Best Case:

Let start from the node A, the Adjacency list will
seem like this

......................................

......................................
........
.......
.......

DBAC
DCAB
DCBA

→→→
→→→
→→→

If all nodes are reachable from A, than flights
may seek to any Airport, Note that this step will make
just one comparison and proceed to next one (say, B).

On the next point, it will decide to move on the
next Airport Except the later traversed Airport (A). If this
node is reachable to another then it will move on by
making just single Comparison again. This sequence of
comparison at one time and moving on the next node
will remain next Node will remain continue till it did not
reach at the initial vertex (Airport).

T (n) = 1+1+1+……+1 (n

times)

 T (n) = n
T (n) For Worst Case:

In the worst case, the Airplane will choose the
move to specific Airport by making (n-1) comparison for
itself; therefore the airplane at the next step will decide
the next move to further proceeding after making n-1
comparison. The routine will remain till the Airplane did
not reach at the initial Airport (or Standing point).

= n (n-1)!

 Hence, this Algorithm runs near to polynomial
for small vertices sets.

V. Conclusion

Our method exploits the ways to find
Hamiltonian Circuit using Sequential and predicate logic
and opens up opportunities for future researcher
interested in this problem succinctly in much advance
way. However our method has successfully find out all
possible paths but still working near to polynomial not
exactly polynomial, but it opens opportunities to think
about this problem by applying advance methods of
predicate calculus to find out all possible paths in
polynomial time.

References Références Referencias

1. Israel A. Wagner, Alfred M. Bruckestein, An Ant
Inspired Heuristic for Recognizing Hamiltonian
Graphs, 0-78-3-5536-9/99/1999 IEEE.

2. T. H. Cormen, C. E. Leiserson and R. L. Rivest,
Introduction to Algorithms, MIT Press Cambridge,
MA, 2009.

3. Narsingh Deo, Graph Theory with Application to
Engineering and Computer Science, Prentice Hall
India, pp. 20-32, 20007.

4. Alfred V. Aho, John E. Hopcroft, Jefferey D. Ulman,
The Design and Analysis of Computer Algorithms,
pp.387-393, 2008.

5. Ellis Horowitz, Sataj Sahni, Sanguthevar
Rajshekharan, University press 2nd Edition 2009.

6. Reinhard Diestel, Graph Theory Electronic edition,
2000, Springer-verlog, New york, 2000, pp.222-237.

7. B.Bollobas, External Graph Theory, Academic Press
1978.

8. R.Halin, Graph theorie, Wissen Schatliche
Buchgessellschaft, 1980.

9. C.Thomassen, J.Graph Theory7 (1983), pp.169-176.
10. J.A.Bondy & U. S. R. Murthy, Graph Theory With

Applications, Macvmillan 1976
11. Fleischner, J. Combin Theory (1991), 117-123.
12. P. D. Seymour, Problem3, in (T. P. Mc Donough and

V.C. Marron, OD) Combinatorics, Camridge
University Press 1974.

13. J. Komlos, G. N. Sarkozy & E. Szemredi, Random
Structures and Algorithms, 1976, pp. 193-211.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

16

(
DDDD

)
C

20

12
Y
e
a
r

14. B. Bollobas, T. I. Fenmer and A.M. Frieze, An
Algorithm for finding Hamiltonian Paths and Cycles
in Random Graphs, Combinatorica,7(4), pp. 327-
341, 1987.

15. Eram keydar, Finding Hamiltonian cycle in Semi
random Graphs. Mastros Thesis, Weizerman
Institute of Science, 2002.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

17

(
DDDD

)
C

20

12
Y
e
a
r

This page is intentionally left blank

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
IV

V
er
sio

n
I

18

(
DDDD

)
C

20

12
Y
e
a
r

	Efficient Algorithm to Determine whether a given Graph isHamiltonian or not with all Possible Paths
	Author's

	Keywords
	I. Introduction
	II. Related work
	III. The proposed method
	IV. Experiment result
	V. Conclusion
	References Références Referencias

