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Hamiltonian or not with all Possible Paths 
          By Narendra Pratap Singh, Ramu Agrawal & Indra Paliwal 

                                       BSA College of Engineering and Technology, Mathura, U.P, India 

Abstract - Given a Graph G (V, E), We Consider the problem of deciding whether G is Hamiltonian, that is- 
whether or Not there is a simple cycle in E spanning all vertices in V. [1] However to Verify that the given cycle 
is Hamiltonian by checking whether it is permutation of the vertices of V and whether each of the consecutives 
edges along the cycle actually exists in the Graph. This Verification Algorithm can certainly be implemented to 
run in O (n2) time, where n is the length of the encoding of G [2]. But to predict in Advance that the Graph has 
Hamiltonian Cycle or not was still Exponential before this Algorithm. This Problem is known to be NP-Complete 
hence cannot be solved in Polynomial time in |V| unless P=NP. However till today there was no known 
Criterion we can apply to determine the existence Hamiltonian Circuit in General [3]. For its Exponential time 
We can Refer to theorems: - Vertex Cover problem is polynomially transformable to the Hamiltonian circuit 
Problem for Directed graphs, hence the Hamiltonian Circuit problem for Directed Graph is NP-Complete and 
the Hamiltonian Circuit Problem for Directed Graph is Polynomialy transformable to Hamiltonian Cycle 
Problem for Undirected Graph, hence the Hamiltonian Cycle Problem for undirected Graph is NP-complete 
[4]. Note that these derivations are based on the CNF- Satisfiability.  

Through this Paper we have introduced a Newer Algorithm with different approach to determine 
whether a given Graph is Hamiltonian or Not with all possible Paths, by applying Few Mathematical and logical 
Operations. This provides necessary and sufficient condition for a graph to be Hamiltonian. 
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Efficient Algorithm to Determine Whether a given 
Graph is Hamiltonian or not with all Possible 

Paths 
Narendra Pratap Singh α, Ramu Agrawal σ & Indra Paliwal ρ 

Abstract - Given a Graph G (V, E), We Consider the problem of 
deciding whether G is Hamiltonian, that is- whether or Not 
there is a simple cycle in E spanning all vertices in V. [1] 
However to Verify that the given cycle is Hamiltonian by 
checking whether it is permutation of the vertices of V and 
whether each of the consecutives edges along the cycle 
actually exists in the Graph. This Verification Algorithm can 
certainly be implemented to run in O (n2) time, where n is the 
length of the encoding of G [2]. But to predict in Advance that 
the Graph has Hamiltonian Cycle or not was still Exponential 
before this Algorithm. This Problem is known to be NP-
Complete hence cannot be solved in Polynomial time in |V| 
unless P=NP. However till today there was no known Criterion 
we can apply to determine the existence Hamiltonian Circuit in 
General [3]. For its Exponential time We can Refer to 
theorems: - Vertex Cover problem is polynomially 
transformable to the Hamiltonian circuit Problem for Directed 
graphs, hence the Hamiltonian Circuit problem for Directed 
Graph is NP-Complete and the Hamiltonian Circuit Problem for 
Directed Graph is Polynomialy transformable to Hamiltonian 
Cycle Problem for Undirected Graph, hence the Hamiltonian 
Cycle Problem for undirected Graph is NP-complete [4]. Note 
that these derivations are based on the CNF- Satisfiability. 

Through this Paper we have introduced a Newer 
Algorithm with different approach to determine whether a given 
Graph is Hamiltonian or Not with all possible Paths, by 
applying Few Mathematical and logical Operations. This 
provides necessary and sufficient condition for a graph to be 
Hamiltonian. 
Keywords : Adjacency matrix, Adjacency List, Nodes, 
Vertices, Edges, Hamiltonian circuit. 

I. Introduction 

amiltonian Problem is Decision Problem in which 
G (V, E) should be traversed from any one vertex 
to same vertex without repeating any vertex 

again (means, Vertex should be traverse exactly once). 
We look for  n long sequence of vertices v0, v1, v2, .…., 
vn-1 visit all vertices in v such that ni ≤≤0 , (vi, 
v(i+1)mod n) E∈ , along with the element of Adjacency 
Matrix Ai, j= 1,if ),( jiE∈∀ , 0, otherwise. From the 
general prediction as prescribed in literature that 
Hamiltonian Cycle exists if and only if there is an n- long 
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tour that cover all the vertices and returns to the 
standing point. 

Scientist around the globe deduced the Method 
based on the number of edges and degrees of graph, 
some for planarity and some for connected but they all 
failed for a general graph and was not sufficient. It 
follows the CNF- satisfiability also [4]. 

But we put through the above statement from 
the mathematical and logical point of view. 

By this algorithm, now the scientist will have 
reasonable condition to determine the Hamiltonian 
Circuit in Advance without traversing it vertex to vertex 
manually on the paper.  

Till today this problem which spurred the 
computer scientist around the globe to be able to draw 
an Algorithm which Culminate the possibilities, the 
usage of global information was shown to speed up the 
process: however it has cost in communication and 
complexity of individual agent. Now in our Algorithm 
there is no foundation for an undirected, directed, 
planarity, colorability, and connectedness of a graph, it 
can be applied to the all types of graphs. 

Rest of the paper is organized as follows. 
Section2 present the related work. The proposed 
method algorithm has been described in section3. In 
section4, experimental results and sample run have 
been presented and paper is concluded in section5. 

II. Related work 

Since, its (Hamiltonian Cycle Problem) origin, by 
famous Irish Mathematician Sir William Rowan Hamilton, 
1859, was still unsolved. There was no known criterion 
we could apply to determine the existence of 
Hamiltonian circuit in general. A circuit is a connected 
graph G is said to be Hamiltonian if it includes every 
vertex of G. Hence a Hamiltonian Circuit in a Graph of n 
vertices cost of exactly n edges. Obviously, not every 
connected Graph has Hamiltonian Circuit. For example, 
neither of the Graph shown in figures (2.1 and 2.2) and 
has a Hamiltonian circuit. This raise the Question: What 
is the necessary and sufficient condition for a connected 
Graph G to have Hamiltonian Circuit? [5] 

Also, No known Characterization to determine 
Hamiltonian graph in any given Graph G has been found 
[6]. 

H 
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However several Scientist has proposed several 
methods on the basis of degree and edges with the 
reference to any specific graph (like connected, 
planarity, etc.). But they had not found full success with 
necessary condition to predict Hamiltonian cycle in 
advance for every Graph. Most of works has been 
presented before the 1975. Hence there was no 
programming based algorithmic approach had been 
considered? Some famous works are as follows: 
• Every Graph G with 3≥n vertices and minimum 

degree at least n\2 has a Hamiltonian Cycle [7] 
(Dirac 1956). 

[Note that this theorem bound prediction within 
limit of 3≥n .] 
• Every Graph G with |G| 3≥  and K(G)≥ α(G) has a 

Hamiltonian Cycle. 
[Note that the theorem is bounded within 

condition |G|≥3[7](Dirac 1956). 
• Every 4- Connected planar Graph has a Hamiltonian 

Cycle. (Tutte 1956)[8, 9, 10] 
• Historically, Dirac’s Theorem formed the point of 

departure for the discovery of a series of weaker 
degree conditions, all sufficient for Hamiltonian 
circuit. The development of our algorithm 
culminates all the theorem s and encompasses all 
the earlier results. 

If G is graph with n vertices and degrees 
d1<d2<…..<d n , then the n-tuples (d1, d2, …, d n)is 
called the degree of sequence of G. Note that this 
Sequence is unique, even though G has a several vertex 
enumeration giving emphasis to its degree sequence(a1, 
a2, ……, an) Hamiltonian if Every Graph with n vertices 
and a degree sequence point wise greater than (a1, 
….an ) if ( di ≥ ai for all i) 

The following theorem characterizes all 
Hamiltonian Sequences. 
• (Chvatal 1972), An integer Sequence (a1, …., an) 

such that 0≤ a1 ≤……≤ an <n and n≥3 is 
Hamiltonian if and only if the following holds for 
every i<n/2: 

ai  ≤ i ⇒an-1 ≥ n-i.[11] 

• An integer sequence (a1, …an) such that n ≥ 2 and 
0 ≤a1≤……≤ an < n  is path Hamiltonian  if and 
only if every i ≤ n/2 is such thatai< i ⇒an+i-2 ≥ n-1 
Hamiltonian Cycle in the square of a graph 

• (Fleischner 1974), if G is a 2- Connected graph then 
G 2 has a Hamiltonian Graph. [11] 

• (Seymour 1974), let G be a Graph of order n ≥3 , 
and k be positive integer. If G has a minimum 
degree δ (G) ≥ (k / k+1)*(n), there 

G has Hamiltonian Cycle H such that H k ⊆ G. [12]. 
For k=1, this is preciselyDirac’s theorem the 

case k=2 had already been conjecture by Posa in 1963 

and was proved for large n by kamlos, Sarojy & 
Szemerdi, 1996.[13] 

Beyond the above given thesis, the age comes 
to programming and computer scientist developed 
several algorithms in the same context but did not get 
succeed to make sure exact prediction for a graph to be 
Hamiltonian or not. These are given as follows: 
• Frieze [14] introduced a heuristic polynomial – time 

algorithm, Ham, for finding Hamiltonian cycle in 
random graphs with high Probability. 

[Note that High probability terms indicate not to 
be fully assured for being a Graph, Hamiltonian. 
• Improved version of Ham, Semi Ham [15] by 

keydar. 
• Vandegrind analyzes the knight’s tour problem in 

some details. He gave several existence and Non- 
existence theorems for different parameters values. 
He also reports on existence compute Experiments. 

• An inspired Heuristic for regonizing Hamiltoion 
graphs, by Israel A. Wagner. 

From IBM Hafia research lab, Matan, Hafia, 
Dept. of C.S. Technion City, Haifa 32000, Israel and 
Alfred M. Bruckstein from AT &T Bells at Murray Hill 
NJ0794, USA. Remain some challenging Question. 
1. Vertex ant walk (VAW) has the Hamiltonian cycles as 

its limit cycle; however we do know if those are the 
only limit cycles of the process which are longer 
than the n variables.  

2. A probabilistic Version of VAW rule does not 
determine the next neighbor specifically, but 
assigns each neighbor a probability according to its 
current (µ, t) mark (e.g) the probability of jumping 
from u to v be 

Prob(u→ v) =(1/(1+µ(v)))/(∑w∈N(u)(1/(1+µ(w)) 

Where, clearly, ∑ w∈N(u) prob (u→w) 

=1N(u) stands for the sets of vertices v∈V such that   
(u, v) ∑∈ ). In such a semi-Random process faster, 

(In recognizing a Hamiltonian Graph), on the average, or 
lower than the deterministic one? 

[Note that, the prediction in above method is 
probabilistic, means of having some amount of 
Uncertainty.] 
• Solving the Hamiltonian cycle Problem using 

symbolic determinant by V.Ejov1, J.A.Filar2, S.K 
Lucas3& J.L. Nelson4(1, 2,3 school of mathematics 
and srtatistics, University of south Australia, Dept. of 
mathematics, Harvey mudd college ,1250 N. 
Dartmouth Ave Clare mount CA91711 USA. has 
applied Algebra but Complexity remain for this 
algorithm is Exponential. 

• Bitonic Euclidean traveling-salesman problem[2] 

The Euclidean traveling-salesman problem is 
the problem of determining the shortest closed 
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Tour that connects a given set of n points in the 
plane Figure 2.1(a) shows the solution to a 7- point 
problem. The general problem is NP-complete, and its 
solution is therefore believed to require more than 
polynomial time  

Figure 15.9: Seven points in the plane, shown 
on a unit grid. (a) The shortest closed tour, with Length 
approximately 24.89. This tour is not bitonic. (b) The 
shortest bitonic tour for the same set of points. Its length 
is approximately 25.58. 

J. L. Bentley has suggested that we simplify the 
problem by restricting our attention to bitonic tours, that 
is, tours that start at the leftmost point, go strictly left to 
right to the rightmost point, and then go strictly right to 
left back to the starting point. Figure (b) shows the 
shortest bitonic tour of the same 7 points. In this case, a 
polynomial-time algorithm is possible. 

Describe an O(n 2)-time algorithm for 
determining an optimal bitonic tour. You may assume 

That no. two points have the same x-coordinate. 
(Hint: Scan left to right, maintaining optimal Possibilities 
for the two parts of the tour.) 

  
(a)                                       (b)  

But, we have introduced a Newer Algorithm 
which over comes all the Hurdles suggested in above 
given recent research, by applying logical and 
mathematical operations. Hence it proves itself as a 
sufficient condition for a Graph to be Hamiltonian. 

III. The proposed method 

In this section, we will present our original 
approach to determine all Hamiltonian paths for a Given 
Graph G. G(V, E) is the ordered pair consists two sets, V 
for vertices(v1, v2, v3, …., vn) and E for edges (e1, e2, 
e3, …., en)[or ek∈E, k N∈ . the vertices are the basic  
nodes types  which stores the information of Graph, 
itself a mathematical structures and finds its application 
in many areas of interest in which problem need to 
solved using Computers. In case of Hamiltonian, e.g., 
Indian Railways may need to expand its tracking 
belongs to each station in such a manner that the train 
running on this must visit each station exactly once by 
starting from any station and reached at the same. It 
represented in the Data Structures. These 
representations commonly used Adjacency Matrix, 
Adjacency list and Multi- list representation. Firstly, we 
will use these for Adjacency Matrix Aij = 1, if 

⇔∈∀ vie ( vj ), Aij = 0, otherwise, takes O(n2) space to 
represent graph with n vertices, even for Sparse Graph. 

Algorithm (for First Basic method*):  
1. Draw the Adjacency matrix ( Inputting graph): 

Let take adjacency matrix for any undirected 
graph without parallel edges or loops.  

[1] [2] [3]……… [n] 
[1]  0    0    1 ………   0 
[2]  0    0    1 ………   1  
[3]  1    1    0 ………   0 
.      .      .    .  ………….   
.      .      .    .  …………. 
.      .      .    .  …………. 
[n] 1     1   0 ………   0 

Fig. 3.1 :  n*n- matrix for undirected graph 

 
Certainly, it would represent a Graph, 

connected, planar, directed, and undirected or of having 
some self loops and parallel edges to put p∈W, (p, no. 
of edges) 

Adjacency matrix for directed/undirected having 
loops and parallel edges. 

[1]  [2]  [3] ………..[n] 
[1]    1    2      3 ……….. 2 
[2]    2    0      2 ……….. 0  
[3]    3    2      0 ……….. 0   
.        .     .       .   ………… 
.        .     .       .   ………… 
[n]    .     .       .   …….… 1 

Fig. 3.2 : n*n matrix for graph having loop and parallel 
edges 

 

2.
 

Make function for traversing from vertex to vertex: 
 

For a completely connected graph there will be 
n!

 
Path (possible arrangements of all the vertices), 

which provides highest probability to find out the 
Hamiltonian paths, hence for the cases having parallel 
edges the path increases by the factor of

 
2. Let take any 
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graph, fig (3.1), if we make all possible arrangements of 
vertices as paths. 

 
Fig. 3.3 : Undirected graph for without Hamiltonian 

1-2-3-4-5-6-1 
1-2-3-4-6-5-1 
1-2-3-5-4-6-1 
1-2-3-5-6-4-1 
. 
. 
. 
. 
Up to 6!  (Possible constructions)   

However the path of the fashion of that 
arrangement may not be occurred, but our main 
concern is to make them.  

 

      
       
       
                     
       

Observe carefully, in the case of Hamiltonian 
the possibility to move on from one vertex[i] to another 
vertex [j] occurs only when if the [i][j]th element of matrix 
is 1(one). If the value of [i][j]th element in adjacency 
matrix is 0(zero) then it halt the path to proceed.

 

In the Succeeding way if all the

 

values in the 
given path is 1 in the reference of [i][j]th element 
therefore it has Hamiltonian path because in the path 
(say) 1-24-5-3-6-1, all the element of matrix([1][2], 
[2][4], [4][5], [5][3], [6][1] are 1(one), except [3][6]. If 
this value becomes one the path will be successfully 
turn into Hamiltonian circuit.

 

Let us take a Hamiltonian Graph

 

 
Fig. 3.4 : Undirected graph with parallel edges and 

loops 

Adjacency matrix for fig (3.4) 

 

We observe carefully for path (say) 1-2-4-5-3-6-
1, all the element of adjacency matrix [1][2], [2][4], 
[4][5], [3][6],  [5][3], [6][1] have some value k, k W∈
,whole numbers. 

A. We enumerate a logic from this, let take the array 
elements in the specific sequences (generated by 
permutation, all possible paths, drawn by 
interchanging array function).that to put logical AND 
(&&) between these elements. Interchange them for 
above given sequences.  

If Pk = 
[1][2]&&[2][4]&&[4][5]&&[4][5]&&[5][3]&&[3][6]&&[6][1
] = 1 
There, Hamiltonian circuit exists.  
Else 
Not exist. 
Functionally in C programming, we have done this as:  
Visit (int*, int, int) 
Visit (int*NODES, int N, int k) 
{ 
Static level= -1; 
Level =level+1; 
NODES[k] =level; 
If (level == N) 
{ 
  Int j=0, p=1, lock=0; 
  While (j<N-1) 
P = GRAPHIN [NODES[j]}[NODES[j+1]&&P; 
J++ 
} 
P=GRAPHIN [NODES][j] NODES[j+1]}&&P; 
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Do the same operation for all the sequences, 
we get P1, P2, P3,…,, Pn. 

B. Then we apply logical OR(||) operator between all 
the path values. 

P = P1||P2||P3||….., ||Pn  
If P = 1 
  Then it is Hamiltonian Graph 
Else 
              Not Print the Paths: 
In this program it gets prints by the function  

Input Adjacency Matrix: 

 
 

 

*fortunately this algorithm provides sufficient 
conditions for a Graph to be Hamiltonian  and also print 
all the possible paths but Unfortunately takes more time 
for large Graphs, so we were in search for next 
Algorithms which take less time than this, therefore we 
developed second Algorithm which  facilitate all the 
requirements.  

We prepare second Algorithm using the 
concept of Graph theory, means of having linked list, 
structures and few pointers.  

Second Algorithm: 
Pseudo code for second Algorithm: 
Algorithm Hamiltonian path (vertex adj[ ], N, K, a[ ]) 
{ 
Create_ham(adj, p→  vertex, N) 
Print_ham(a, N) 
Count: = 0; 
If count= N then 
{ 
p: = adj[K]; p:= next; 
While p≠ NULL do 
     { 
          If a[1] = p→ vertex than write (a, N); break; 
     } 

     P: = p→next; 
} 
Else 
{ 
     P: =adj[K]; p: =p→next; 
     While p ≠NULL 
      { 
             Loc: =0; 
             For j←1 to count do 
             { 
                    If a[j]=p→ vertex then 
                    { 
                          Loc++; break; 
                     } 
            } 
            If loc=0 then 
         { 
              Count++; 
a[count]:=p→ vertex; 
create_ham(adj, N, p→ vertex) 
                 count--; a[count]:=0; 
           } 
           P: = p→next; 
   } 
  Print_ham(a,N) 
  { 
         For i←1 to N do 
          Write(a[i]); 
Write(a[1]); 
} 
} 

Output 

© 2012 Global Journals Inc.  (US)
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IV. Experiment result 

Let an Example of the Wide Network of Airlines, 
in which there are n Airports, as in the given figure you 
may assume each node as an Airport and the edges as 
the route of Airline from one to another. 

Hence this will form a type of Adjacency list 
(linked list), in which each airport has the knowledge of 
incoming and outgoing flights in various directions. In 
the given figure ( ), we take Home Node A (means, the 
Plane should have to back this again after traversing all 
the airports exactly once).  You may consider any one 
airport as a Home Node, in our Algorithm. 

 
Figure : Graph showing Airlines connections 

In the general analysis, take this example of 
Airline system as a Strongly Connected Complete 
Graph, means each and every Airport is connected to all 
other Airports. 
T (n) for Best Case: 

Let start from the node A, the Adjacency list will 
seem like this 

......................................

......................................
........
.......
.......

DBAC
DCAB
DCBA

→→→
→→→
→→→

 

If all nodes are reachable from A, than flights 
may seek to any Airport, Note that this step will make 
just one comparison and proceed to next one (say, B). 

On the next point, it will decide to move on the 
next Airport Except the later traversed Airport (A). If this 
node is reachable to another then it will move on by 
making just single Comparison again. This sequence of 
comparison at one time and moving on the next node 
will remain next Node will remain continue till it did not 
reach at the initial vertex (Airport). 

T (n ) = 1+1+1+……+1      (n
 

times)
 

 T (n) = n 
T (n) For Worst Case: 

In the worst case, the Airplane will choose the 
move to specific Airport by making (n-1) comparison for 
itself; therefore the airplane at the next step will decide 
the next move to further proceeding after making n-1 
comparison. The routine will remain till the Airplane did 
not reach at the initial Airport (or Standing point). 

= n (n-1)! 

       Hence, this Algorithm runs near to polynomial 
for small vertices sets.  

V. Conclusion 

Our method exploits the ways to find 
Hamiltonian Circuit using Sequential and predicate logic 
and opens up opportunities for future researcher 
interested in this problem succinctly in much advance 
way. However our method has successfully find out all 
possible paths but still working near to polynomial not 
exactly polynomial, but it opens opportunities to think 
about this problem by applying advance methods of 
predicate calculus to find out all possible paths in 
polynomial time.  

References Références Referencias 

1. Israel A. Wagner, Alfred M. Bruckestein, An Ant 
Inspired Heuristic for Recognizing Hamiltonian 
Graphs, 0-78-3-5536-9/99/1999 IEEE. 

2. T. H. Cormen, C. E. Leiserson and R. L. Rivest, 
Introduction to Algorithms, MIT Press Cambridge, 
MA,           2009. 

3. Narsingh Deo, Graph Theory with Application to 
Engineering and Computer Science, Prentice Hall 
India, pp. 20-32, 20007. 

4. Alfred V. Aho, John E. Hopcroft, Jefferey D. Ulman, 
The Design and Analysis of Computer Algorithms, 
pp.387-393, 2008. 

5. Ellis Horowitz, Sataj Sahni, Sanguthevar 
Rajshekharan, University press 2nd Edition 2009. 

6. Reinhard Diestel, Graph Theory Electronic edition, 
2000, Springer-verlog, New york, 2000, pp.222-237. 

7. B.Bollobas, External Graph Theory, Academic Press 
1978. 

8. R.Halin, Graph theorie, Wissen Schatliche 
Buchgessellschaft, 1980. 

9. C.Thomassen, J.Graph Theory7 (1983), pp.169-176. 
10. J.A.Bondy & U. S. R. Murthy, Graph Theory With 

Applications, Macvmillan 1976 
11. Fleischner, J. Combin Theory (1991), 117-123. 
12. P. D. Seymour, Problem3, in (T. P. Mc Donough and 

V.C. Marron, OD) Combinatorics, Camridge 
University Press 1974. 

13. J. Komlos, G. N. Sarkozy & E. Szemredi, Random 
Structures and Algorithms, 1976, pp. 193-211. 

  
  
  
 

  
  

©  2012 Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
II 

 I
ss
ue

 X
IV

  
V
er
sio

n 
I 

16

  
 

(
DDDD

)
C

  
20

12
Y
e
a
r



14. B. Bollobas, T. I. Fenmer and A.M. Frieze, An 
Algorithm for finding Hamiltonian Paths and Cycles 
in Random Graphs, Combinatorica,7(4), pp. 327-
341, 1987. 

15. Eram keydar, Finding Hamiltonian cycle in Semi 
random Graphs. Mastros Thesis, Weizerman 
Institute of Science, 2002.       

 
 
 

© 2012 Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
II 

 I
ss
ue

 X
IV

  
V
er
sio

n 
I 

  
  
 

  

17

  
 

(
DDDD

)
C

  
20

12
Y
e
a
r



 
 

 
 

 

 
 
 
 
 
 
 
 
 
 

This page is intentionally left blank 

  
  
  
 

  
  

©  2012 Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
II 

 I
ss
ue

 X
IV

  
V
er
sio

n 
I 

18

  
 

(
DDDD

)
C

  
20

12
Y
e
a
r


	Efficient Algorithm to Determine whether a given Graph isHamiltonian or not with all Possible Paths
	Author's

	Keywords
	I. Introduction
	II. Related work
	III. The proposed method
	IV. Experiment result
	V. Conclusion
	References Références Referencias

