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Fixed and Variable Size Text Based Message 
Mapping Techniques Using ECC 

Jayabhaskar Muthukuru   & Prof. Bachala Sathyanarayana   

Abstract -  Elliptic Curve Cryptography recently gained a lot of 
attention in industry. The principal attraction of ECC compared 
to RSA is that it offers equal security for a smaller bit size, 
thereby reducing processing overhead. ECC is ideal for 
constrained environment such as pager, PDAs, cellular 
phones and smart cards. ECC Encryption and Decryption 
methods can only encrypt and decrypt a point on the curve 
and not messages. This paper presents the implementation of 
mapping of text message into multiple points on Elliptic Curve 
with an Initial Vector (IV) using ECC. Further it also includes the 
transformation of fixed and variable size word in source text on 
to Elliptic Curve. These proposed methods enhance the 
security of ECC with multi fold encryption. 

Keywords : Elliptic Curve Cryptography, finite 
fields,Smart Cards, public key cryptography, discrete 
logarithm. 

 
lliptic curve cryptography was independently 
proposed by Koblitz and Miller in 1985[1]. Unlike 
standard public-key methods that operate over 

integer fields, the elliptic curve cryptosystems operate 
over points on an elliptic curve. Similar to other Public 
Key encryption techniques, the security level of ECC 
also depends on the sizes of the keys used. The sizes of 
the cryptographic keys can be decided considering the 
following points [4]. 

 The approximate duration for which the information 
requires to be kept secure. 

 The allowable level of impracticability of an attack to 
be carried out. 

 The advancements in the computational resources, 
which are available to the attackers. 

 The progress in the area of cryptanalysis. 

Cryptographic algorithms based on discrete 
logarithm problem can be efficiently implemented using 
elliptic curves [2].  

Elliptic curve cryptography is emerging as an 
attractive public-key cryptosystem for resource 
constrained devices like smart cards because 
compared to  traditional  cryptosystems  like  RSA/DH,  it       
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offers equivalent security with smaller key sizes, faster 
computation, lower power consumption, as well as 
memory and bandwidth savings [3]. 

  

Elliptic curves are not like an ellipse or curve in 
shape. They look similar to doughnuts. Geometrically 
speaking they somehow resemble the shape of torus, 
which is the product of two circles when projected in 
three-dimensional coordinates. ECC makes use of 
elliptic curves in which the variables and coefficients are 
restricted to elements of a finite field. There are two 
families of elliptic curves defined for use in 
cryptography: prime curves defined over odd prime field 
FP and binary curves defined over Galois field GF (2m). 

a) Geometrical Definition Of Point Addition And Point 
Doubling Using Chord-And-Tangent Rule 

For any two points P(x1, y1) ≠ Q(x2, y2) on an 
elliptic curve, EC group law point addition can be 
defined geometrically (Figure 1) as: “If we draw a line 
through P and Q, this line will intersect the elliptic curve 
at a third point (-R). The reflection of this point about x-
axis,    R(x3, y3) is the addition of P and Q”. 

 

                    Fig.1.
 

Addition: R=P+Q
 

For P=Q, point doubling, geometrically
 

(Figure 
2) if we draw a tangent line at point P, this line intersects 
elliptic curve at a point (-R). Then, R is the reflection of 
this point about x-axis.

 

E 
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       Fig.2. Doubling: R=P+P 

b) Point Multiplication 
The dominant operation in ECC cryptographic 

schemes is point multiplication. This is the operation 
which is the key to the use of elliptic curves for 
asymmetric cryptography---the critical operation which 
is itself fairly simple, but whose inverse (the elliptic curve 
discrete logarithm) is very difficult. ECC arranges itself 
so that when you wish to performance operation the 
cryptosystem should make easy encrypting a message 
with the public key, decrypting it with the private key the 
operation you are performing is point multiplication. 
Scalar multiplication of a point P by a scalar k as being 
performed by repeated point addition and point 
doubling for example 7P=(2((2P)+P)+P. 

c) Elliptic Curve Over FP
 And F2

m 

Definition of elliptic curve over FP as follows [5]. 

Let p be a prime in FP and a, b FP such that  4a3 + 
27b2 ≠ 0 mod p in  FP, then an elliptic curve E (FP) is 
defined as  

                   E (FP):= { p( x, y) , x, y  FP
 } 

 

Such that y2 = x3 + ax + b mod p together with 
a point O, called the point at infinity. Below is the 
definition of addition of points P and Q on the elliptic 
curve E (FP). Let P(x1, y1) and Q(x2, y2) then 

 
                          O               If x1 = x2

 
and y2 = 

 
y1

 

 

 
R= P+Q =          Q = Q+P   If P = O 

 
               

 

 
                          (x3, y3 )        otherwise

 

 Where                        
 

                   2 
 
x1

 


 
x2   If P

 
≠

 
±Q (Point Addition)

  
   x3

 

  =                                    
 

                  
 
2 

 
2x1        If P

 
= Q (Point Doubling)

   
 

 
  y3  = (x1 
  

x3) 
 

y1, and  
 

                    y2
  y1         If P ≠ ±Q (Point Addition) 

                               x2
  x1     

        =                                     

                   3x1
2  a    If P = Q (Point Doubling)  

                        2y1
 

 

The point p(x, -y) is said to be the negation of 
p(x, y).  

The elliptic curves over F2
m  is defined as follows.  

Denote the (non-super singular) elliptic curve 
over F2

m by E (F2
m). If a, b  F2

m such that b ≠ 0 then  

              

E (F2
m) = {p(x, y), x, y  F2

m
 } 

 

such that  y2 + xy = x3 + ax2 + b  FP
m 

together with a point O, called the point at infinity. 

The addition of points on E (F2
m) is given as 

follows: Let P(x1, y1) and Q(x2, y2) be points on the elliptic 
curve E(F2

m), then 

                             O                    If x1 = x2 and y2 = y1 

 

R = P+Q =         Q = Q+P      If P = O 

                 

                             (x3, y3 )            otherwise           

    
Where                             

 

                   2  x2 x1  a  If P ≠ ±Q (Point Addition) 

       x3   =                                     

                   2    a             If P = Q (Point Doubling)  

 

    y3   =  ( x1  x3 ) x3  y1      

 

 and 

                     y2  y1                   If P ≠ ±Q (Point Addition) 

                                  x2  x1     

          =                                     

                      x1    x1         If P = Q (Point Doubling) 

                             y1 

  

Elliptic curve cryptosystems over finite field have 
some advantages like the key size can be much smaller 
compared to other cryptosystems like RSA, Diffie-
Hellman since only exponential-time attack is known so 
far if the curve is carefully chosen [5] [1] and Elliptic 
Curve Cryptography relies on the difficulty of solving the 
Elliptic Curve Discrete Logarithm Problem ECDLP, which 
states that, “Given an elliptic curve E defined over a 
finite field FP

 , a point PE (FP) of order n, and a point   
QE (FP) , find the integer k  [0,n −1] such that Q = k 
P. The integer k is called the discrete logarithm of Q to 
the base P, denoted k = logPQ”. 
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a) Elliptic Curve Encryption/Decryption 
Consider a message „Pmt‟ sent from A to B. „A‟ 

chooses a random positive integer „k‟, a private key „nA‟ 
and generates the public key PA = nA × G and 
produces the cipher text „Cm‟ consisting of pair of 
points Cm = { kG , Pmt + kPB } where G is the base 
point selected on the Elliptic Curve, PB = nB × G is the 
public key of B with private key „nB‟. 

To decrypt the cipher text, B multiplies the 1st 
point in the pair by B‟s secret & subtracts the result from 
the 2nd point  Pmt + kPB – nB(kG) = Pmt + k(nBG) – 
nB(kG) = Pmt 

 

The proposed method the text message could 
be represented with all 256 symbols included in the 
standard ASCII codes. 

a) Fixed Length Block Mapping Technique 
In ECC the computation basically consists of an 

affine point Pm(x, y). This point and Base point (G) may 
represent the same point or both may be different. Base 
point implies it has the smallest (x, y) co-ordinates, 
which satisfy the EC. Following are the mapping 
algorithm for fixed length block message. 

Notation :   m - Message 

                   IV - Initial Vector 

                   K - Block Size 

                   G - Base point  

                   Pmt - Transformed point 

                   Cm  - Cipher text 
                   AT  - ASCII Value of the text 
Encryption Algorithm : 

Step 1: Begin 

Step 2: n = m/k 

Step 3: XORed_str  = IV 

Step 4: for i = 1 to n 

Step 4.1: XORed_str  = XORed_str   Block[i] 

Step 4.2: AT = ASCII(XORed_str) //ASCII value of 
XORed_str  in base 256 format 

Step 4.3: Pmt  = AT * Pm 

Step 4.4: Cm[i] = { kG , Pmt + kPB } //Pmt encrypted 
using ECC (Presented in section II) 

Step5: End. 

 
Decryption Algorithm:  
Step1: Begin 
Step 2: XORed_str  = IV 
Step 3: for i = 1 to n 
Step 3.1: Pmt = Pmt + k(nBG) – nB(kG) // get Pmt using 
private key nB (Presented in section II) 
Step 3.2: Get Pm, AT  //Calculate these  values from Pmt 
using discrete logarithm 
Step 3.3: XORed_str  = Text(AT ) //generate string using 
AT which is in base 256 format  
Step 3.4: Decrypt_block[i] = XORed_str   Block[i] 
Step 3.5: XORed_str  = Block[i] 
Step 4: End 

b) Variable Length Block Mapping Technique 

In this mapping technique we consider each 
word as a block and null characters are padded to IV or 
message block if their lengths are not same. The other 
encoding and decoding techniques are same as fixed 
length block mapping technique. 

 
 

The typical Elliptic Curve is represented by:  
y2 = x3 + 3x - 3 (mod 1386491) 

The base point G is selected as (1, 1). Base 
point implies that it has the smallest (x, y) co-ordinates 
which satisfy the EC. 

a) Fixed Length Block Mapping Implementation 
Under fixed length block implementation we 

have implemented for single character block and two 
characters block and presented the results. 
For single character block mapping results shown in 
table 1 and their graphical representation is shown in 
Fig.3, Fig.4 and Fig.4 for the plaintext message 
"A#2AAZ" 

For two characters block mapping results 
shown in table.2 and their graphical representation is 
shown in Fig.6, Fig.7 and Fig.8 for the plaintext 
message "Aa@$59Aa@$" 

   
Table 1:  Mapping points for plaintext "A#2AAZ" and IV =”2” 

Plaintext 
Block Mapping Point Encrypted Point Decrypted Point 

A (845227, 1303111) (612399, 1262010) (845227, 1303111) 

# (824245, 1138831) (520953, 403024) (824245, 1138831) 

2 (867657, 460591) (591611, 904819) (867657, 460591) 

A (603452, 158814) (725362, 106713) (603452, 158814) 

A (867657, 460591) (591611, 904819) (867657, 460591) 

Z (1255016, 1103602) (19218, 623927) (1255016, 1103602) 
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                  Fig.3.

 

Mapping                                      Fig.4.

 

Encrypted                                     Fig.5.

 

Decrypted

 

 

Table 2:  Mapping points for plaintext "Aa@$59Aa@$"

 

and IV = “24”

 

 

Plaintext 
Block

 

Mapping Point

 

Encrypted Point

 

Decrypted Point

 

Aa

 

(503400, 797492)

 

(1378250, 715061)

 

(503400, 797492)

 

@$

 

(978908, 708756)

 

(153590, 704662)

 

(978908, 708756)

 

59

 

(1085662, 709747)

 

(756400, 1273838)

 

(1085662, 709747)

 

Aa

 

(1202808, 1273936)

 

(1204937, 625801)

 

(1202808, 1273936)

 

@$

 

(41405, 1007904)

 

(436269, 1049661)

 

(41405, 1007904)

 

 

  

 

   

 

            Fig.6.

 

Mapping                                          Fig.7.

 

Encrypted                                   Fig.8.

 

Decrypted

  
 

 

b)

 

Variable Length Block Mapping Implementation

 

Under variable length block implementation we 
have implemented for one word block presented the 
results.

 

Mapping results shown in table 3 and their 
graphical representation is shown in Fig.9,  Fig.10 and 
Fig.11 for the plaintext message  "A to  Z 1 to 10 ! to )"  
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Table 3 :  Mapping points for plaintext "A to Z 1 to 10 ! to )" and IV = “69” 

 
Plaintext 
Block

 
Mapping Point

 
Encrypted Point

 
Decrypted Point

 
A

 
(1143751, 1132381)

 
(1269235, 391778)

 
(1143751, 1132381)

 
to

 
(84586, 283729)

 
(1353127, 582406)

 
(84586, 283729)

 
Z

 
(321420, 867260)

 
(699790, 1214960)

 
(321420, 867260)

 
1

 
(988208, 942508)

 
(453764, 347504)

 
(988208, 942508)

 
to

 
(802250, 650335)

 
(672017, 694990)

 
(802250, 650335)

 
10

 
(416579, 1085820)

 
(4704, 95182)

 
(416579, 1085820)

 
!
 

(257086, 28323)
 

(1279171, 987239)
 

(257086, 28323)
 

to
 

(589667, 1090547)
 

(1356372, 1172684)
 

(589667, 1090547)
 

)
 

(680970, 712757)
 

(1345141, 1117444)
 

(680970, 712757)
 

         

                      
              Fig.9. Mapping                                           Fig.10. Encrypted                          Fig.11. Decrypted 
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If a block of message using same mapping 
point from plaintext  to cipher text throughout encrypted 
message[6][8] then  It is easy to decipher using 
substitution ciphers with frequency analysis because the
simple mappings preserve letter frequencies of the 
plaintext message[7]. The main disadvantage of the 
existing methods [6] [8] is attacker need not require 
private key of the receiver when attacker uses letter 
frequency attack to decipher plaintext message. In
proposed mapping methods if a block of message is 
repeated then every time it maps to different points. So it 
is difficult to decipher using uses letter frequency 
analysis. It hides letter frequencies of the plaintext 
message.

This paper presented a method to embed the
message blocks in point form before using Elliptic Curve 
Cryptosystem. The modified scheme is believed to be 

secure because it involves multi fold encryption. Even 

security is needed to protect data during their 
transmission also, as there are many people hiding in 
the cyber space who have the inclination skills to steal 
from both individuals and corporations. In the proposed 
methods if a block of message is repeated then every 
time it maps to different points. Proposed methods 
strengthen the cryptosystem, i.e., for an intruder it would 
be very difficult to guess on which points the message 
blocks are mapped and it hides letter frequencies of the 
plaintext message.
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