
© 2012. P.K. Suri & Sumit Mittal. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 12 Issue 15 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Simulator for Resource Optimization of Job Scheduling in a Grid
Framework

 By P.K. Suri & Sumit Mittal
 M.M. University, Mullana, Ambala, Haryana, India

Abstract - Traditionally, computer software’s has been written for serial computation. This software is
to be run on a single computer with a single Central Processing Unit (CPU). A problem is broken into
a discrete serial of instructions that executed in the exact order, one after another. Only one
instruction can be executed at any moment of time on a single CPU. Parallel computing, on the other
hand, is the simultaneous use of multiple computer resources to solve a computational problem. The
program is to be run using multiple CPU’s. A problem is broken into discrete parts that can be solved
concurrently and executed simultaneously on different CPU’s. The purpose of this proposed work is
to develop a simulator using Java for the implementation of Job scheduling and shows that Parallel
Execution is efficient with respect to serial execution in terms of time, speed and resources.

Keywords : grid computing, grid framework, job scheduling, parallel computing, resource
optimization.

GJCST-C Classification : D.4.1

Simulator for Resource Optimization of Job Scheduling in a Grid Framework

Strictly as per the compliance and regulations of:

Simulator for Resource Optimization of Job
Scheduling in a Grid Framework

P.K. Suri α & Sumit Mittal σ

Abstract - Traditionally, computer software’s has been written
for serial computation. This software is to be run on a single
computer with a single Central Processing Unit (CPU). A
problem is broken into a discrete serial of instructions that
executed in the exact order, one after another. Only one
instruction can be executed at any moment of time on a single
CPU. Parallel computing, on the other hand, is the
simultaneous use of multiple computer resources to solve a
computational problem. The program is to be run using
multiple CPU’s. A problem is broken into discrete parts that
can be solved concurrently and executed simultaneously on
different CPU’s. The purpose of this proposed work is to
develop a simulator using Java for the implementation of Job
scheduling and shows that Parallel Execution is efficient with
respect to serial execution in terms of time, speed and
resources.
Keywords : grid computing, grid framework, job
scheduling, parallel computing, resource optimization.

I. Introduction

mong the many disciplines of computer science,
parallel processing is a discipline that deals with
system structure and software processes related

to the contingency performance of computer programs.
It has been an area of active research interest and
application for many fields, mainly the focus on powerful
processing, but is now growing as the frequent
processing model due to the semiconductor industry’s
move to multi-core processor chips.

Typically, software has been programmed for
sequential computation, i.e., to be run on just one
computer having just one main processing unit; where
Instructions are implemented one after another, a
problem is divided into distinct sequence of guidelines
and only one instruction is executed at any instant.
Although simple and economical serial computing is far
much slower as compared to parallel computing. In
essence, parallel computing is the simultaneous use of
more than one processor or computer to solve a
problem. Problems are run on multiple processors
where each problem is broken into discrete parts which
are further broken down into series of instructions to be
executed simultaneously on different processors.

In the recent days, parallel computing has
become popular based on multi-core processor chips.

Author

α

:

HCTM Technical Campus Kaithal, Haryana, 136 027, India.

E-mail : pksuritf25@yahoo.com

Author

σ

: M.M. Institute of Computer Technology & Business
Management, M.M. University, Mullana, Ambala, Haryana, 133 207
India. E-mail : sumit_amb@yahoo.com

Most desktop computer and laptop computer systems
are now delivered with dual-core micro-processors with
quad-core processor chips which becomes easily
available. Processor producers have started to increase
overall computing performance by including additional
CPU cores to provide the maximum parallelism in a
program. The reason is that improving performance
through parallel computing can be far more energy-
efficient than improving micro-processor time
wavelengths. In a world which is progressively mobile
and energy aware, this has become essential.

II. Parallel computing

Parallel computing is an outline of computation
in which many data operations functions are carried out
simultaneously [1].

Parallel computing takes four different forms:
The first one is data parallelism / loop-level parallelism.
In this computational form, a single thread controls all
the data operations and in other situations, multiple
threads control the execution, but they execute the
same code. Second is Instruction level parallelism
where instructions can be re-ordered and then, they are
combined into groups and executed in parallel without
affecting the result of the program [2]. The third form is
task parallelism which is in contrast with data parallelism
where the processor executes different threads in same
or different sets of data. It focuses on allocating the
processes on different parallel computing nodes. Task
parallelism does not generally changes with the size of a
problem [2]. The last form of parallel computation is bit
level parallelism in which processors have to execute an
operation on variables whose sizes are larger than the
size of word.

Parallel computing has some advantages that
make it attractive for certain types of problems that are
suitable for use of multiprocessors, especially given
limited computer memory, provides concurrency, saves
money - Parallel computing resources can be built from
cheap commodity components as shown in the figure 1,
uses resources from a wide area network and saving
time - Allocating more resources for a task shortens, it’s
time for completion with potential cost savings.

Conversely, parallel programming has also
some disadvantages. By increasing the processors,
memory in parallel computers, hence, produces a lot of
data (I/O) and require parallel file system, need more
space and more power, which leads to load imbalance.

A

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
V

V
er
sio

n
I

39

(
DDDD

)
C

20

12
Y
e
a
r

Figure 1 :

Parallel Computing Cluster [3]

Parallel computer programs are more difficult to
write than sequential ones, [7] because concurrency
introduces several new classes of potential software
bugs, of which race conditions are the most common.
Communication and synchronization between the
different subtasks are typically some of the greatest
obstacles to getting good parallel program
performance.

III.

Association with Grid Framework

Grid computing combines computers from
multiple administrative domains to solve a single task

[4]. The grid

can be thought of as a distributed system

with non-interactive workloads that involve a large
number of files. Grid computing tends

to be more

loosely coupled, heterogeneous and geographically
dispersed

[4]. On a single-processing machine, testing

one model can take as long as five days. Using grid
framework, the model can be distributed

into different

number of processing segments, each of which goes to
its own processor; a task that normally takes five days
can be completed in several hours.

IV.

Comparison of Grids and
Conventional

Supercomputers

Distributed or grid computing in general is a
special type of parallel computing that relies on
complete computers resources (with onboard CPU’s,
storage, power supplies, network interfaces, etc.)
connected to a network (private, public or the Internet)
by

a conventional network interface, such as Ethernet.

This is in contrast to the traditional notion of a
supercomputer, which has many processors connected
by a local high-speed computer bus [6]. The size of a
grid may vary from small network of workstations within
a corporation to large public collaborations across many
companies and networks. The notion of a confined grid
may also be known as intra-nodes cooperation whilst

the notion of a larger, wider grid may thus, refer to inter-
nodes cooperation [7].

The primary advantage of distributed computing
is that each node can be purchased as commodity
hardware, which, when combined, can produce a similar
computing resource as multiprocessor supercomputer,
but at a lower cost. The primary performance
disadvantage is that the various processors and local
storage areas do not have high-speed connections. This
arrangement is thus well-suited to applications in which
multiple parallel computations can take place
independently, without the need to communicate
intermediate results between processors [8].

V. Simulation of Resource
Optimization

The purpose of this research work is to develop
an algorithm for the resource optimization of job
scheduling in a grid framework and shows that parallel
execution is efficient in terms of time, speed and
throughput. In addition to total time taken to execute all
jobs, we will also calculate the CPU’s usage efficiency
using the following equation:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

= ∑ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑜𝑜𝑜𝑜

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑖𝑖=1
𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓 1 𝐽𝐽𝐽𝐽𝐽𝐽 × 100%

The proposed application consists of 3 different classes:

1.

Main Class: It contains a method that is being
executed at program startup. The main flow occurs
in this method.

2.

Processor Class: This class contains

methods to

assign a job, check whether

processor is free and

ready for the next job and to calculate the amount of
time it was busy.

3.

Scheduler

Class: It assigns jobs to the processors

using the Round Robin scheduling. When a job
needs

to be assigned to the CPU, scheduler

searches for the free processor and

assigns the
job

to it. If at some moment, all CPUs are busy, it

waits until one of the processors becomes free.

VI.

Algorithm to Compute the
Efficiency of Job Scheduling in Grid

Framework

Step 1.

Read one line of data from the input
file:

i.

Test serial number

ii.

Number of jobs

iii.

Number of processors.

Step 2.

Create an array of instances of the
Processor class. Create Job scheduler instance.

Step 3.

Run Job Scheduler.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
V

V
er
sio

n
I

40

(
DDDD

)
C

20

12
Y
e
a
r

Simulator for Resource Optimization of Job Scheduling in a Grid Framework

Step 4. When work is finished (all jobs have
been executed); and calculate the results (time taken).

Step 5. Write results to the output file.
Step 6. Go to step no. 1) unless input file is fully

processed.

VII. Simulation Results and Discussions

In order to compare serial and parallel
implementations, a few series of test has been
performed. For a fixed number of CPU’s (2, 5, 10, 20,
30, 40, 50 in different series of tests), we ran 200 tests
with different number of Jobs (5, 10, 15, etc up to 1000).

The input file is a simple text file that can be
created in any text editor as shown in figure 1. Each line
of this file should consist of 3 values separated by pipes
(“|”). First value is a string that is a serial number of the
test, second value is an integer that is number of jobs
and third value is an integer that is number of
processors.

Figure 1 : Input File

Figure 2 shows the output file of the developed
simulator, in this, each row consists of 5 columns
separated by pipe char (“|”):

Sr. N. | Number of Input Jobs | Number of
Processors | Time Taken | Execution Type (Serial /
Parallel)

Figure 2 : Output File

Test Case 1: Table 1 shows the execution time
(in microseconds) taken by the processors in serial and
parallel computation and efficiency of the system for the
5 CPU’s.

Jobs

Time
(In Microseconds)

Efficiency Serial Parallel
5 500 105 95.24

10 1000 206 97.09

15 1500 307 97.72

20 2000 408 98.04

25 2500 509 98.23

50 5000 1014 98.62

100 10000 2024 98.81

150 15000 3034 98.88

200 20000 4044 98.91

250 25000 5054 98.93

500 50000 10104 98.97

750 75000 15154 98.98

1000 100000 20204 98.99

Table 1 : Execution Time and Efficiency (Number of
CPU = 5)

The graph 1 depicts the relationship between
the no. of jobs & the execution time estimation for the
test case 1 (number of CPU’s = 5) and graph 2 shows
the efficiency vs. no. of jobs in terms of the time &
resources.

Graph 1

0

20000

40000

60000

80000

100000

120000

0 500 1000 1500

Ex
ec

u t
i o

n
T i

m
e

Number of Jobs

Serial

Parallel

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
V

V
er
sio

n
I

41

(
DDDD

)
C

20

12
Y
e
a
r

Simulator for Resource Optimization of Job Scheduling in a Grid Framework

Graph No. 2

Test Case 2: Table 2 shows the execution time
taken by the processors in serial and parallel
computation and efficiency of the system for 10 CPU’s.

Jobs Time
(In Microseconds)

Efficiency

Serial Parallel
5 500 105 47.62

10 1000 110 90.91

15 1500 206 72.82

20 2000 211 94.79

25 2500 307 81.43

50 5000 514 97.28

100 10000 1019 98.14

150 15000 1524 98.43

200 20000 2029 98.57

250 25000 2534 98.66

500 50000 5059 98.83

750 75000 7584 98.89

1000 100000 10109 98.92

Table 2 : Execution Time and Efficiency (Number of
CPU = 10)

The graph 3 depicts the relationship between
the number of jobs and the execution time estimation for
the test case 2 (number of CPU’s = 10) and graph 4
shows the efficiency vs. number of jobs in terms of the
time and resources.

Graph No. 3

Graph No. 4

Test Case 3: Table 3 shows the execution time
taken by the processors in serial and parallel
computation and efficiency of the system for 20 CPU’s.

Jobs Time
(In Microseconds)

Efficiency

Serial Parallel
5 500 105 23.81

10 1000 110 45.45

15 1500 115 65.22

20 2000 120 83.33

25 2500 206 60.68

50 5000 312 80.13

100 10000 524 95.42

150 15000 817 91.80

200 20000 1029 97.18

250 25000 1322 94.55

500 50000 2544 98.27

750 75000 3847 97.48

1000 100000 5069 98.64

Table 3 : Execution Time and Efficiency (Number of
CPU = 20)

93
94
95
96
97
98
99

100
Ef

fic
ie

nc
y

Number of Jobs

Efficiency

0

20000

40000

60000

80000

100000

120000

0 1000 2000

Ex
ec

u t
i o

n
T i

m
e

Number of Jobs

Serial

0

20

40

60

80

100

120

0 500 1000 1500

Ef
fic

ie
n c

y

Number of Jobs

Efficiency

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
V

V
er
sio

n
I

42

(
DDDD

)
C

20

12
Y
e
a
r

Simulator for Resource Optimization of Job Scheduling in a Grid Framework

The graph 5 depicts the relationship between
the number of jobs and the execution time estimation for
the test case 3 (number of CPU’s = 20) and graph 6
shows the efficiency vs. number of jobs in terms of the
time and resources.

Graph No. 5

Graph No. 6

Table 4 shows the efficiency for different
number of CPU’s for a given set of jobs executed in the
grid framework.

Jobs Efficiency
5 CPU 10 CPU 20 CPU

5 95.24 47.62 23.81

10 97.09 90.91 45.45

15 97.72 72.82 65.22

20 98.04 94.79 83.33

25 98.23 81.43 60.68

50 98.62 97.28 80.13

100 98.81 98.14 95.42

150 98.88 98.43 91.8

200 98.91 98.57 97.18

250 98.93 98.66 94.55

500 98.97 98.83 98.27

750 98.98 98.89 97.48

1000 98.99 98.92 98.64

Table 4 : Comparison in terms of efficiency for different
CPU’s

Graph 7 : Comparison of efficiency for the different test
cases

VIII. Discussion and Conclusion

After analyzing the generated results, it has
been concluded that parallel execution is very efficient in
terms of execution time and resources. Parallel
execution on N processors is almost N times faster than
serial execution. It’s not exactly N times faster because
of the job scheduler that needs some time to delegate
tasks to the processors available. For large number of
tasks, it approaches to 98% and 2% is that time when
CPU’s are unused waiting for a task from the job
scheduler.

For a fixed number of jobs, when we are
increasing the number of processors, the efficiency will
be decreasing as depicts by graph no. 7, because when
all processors are busy all the time; efficiency will be
equal to 100%. When some of the processors were free
(without a job assigned) some of the time, efficiency will
be less than 100%.

As multi-core processors bring parallel
computing to mainstream customers, the key challenge
in computing today is to transition the software industry
to parallel programming. Future capabilities such as
photorealistic graphics, computational perception and
machine learning rely heavily on highly parallel
algorithms. Enabling these capabilities will advance a
new generation of experiences that will expand the
scope and efficiency of what users can accomplish in
their digital lifestyles and work place. These experiences
include more natural, immersive and increasingly multi-
sensory interactions that offer multi-dimensional
richness and context awareness.

References Références Referencias

1. Gottlieb. A, Almasi. G. S, “Highly parallel
computing”, Benjamin- Cummings Publishing
Co., USA ©1989, ISBN:0-8053-0177-1.

2. David Culler, J.P, “Parallel computer
architecture, Morgan Kaufmann Publishing Inc., San
Fancisco, p. 15. ISBN 1-55860-343-3, 1997.

0
20000
40000
60000
80000

100000
120000

0 1000 2000

Ex
ec

ut
io

n
Ti

m
e

Number of Jobs

Serial

Parallel

0

20

40

60

80

100

120

0 1000 2000

Ef
fic

ie
nc

y

Number of Jobs

Efficiency

0

20

40

60

80

100

120

Ef
fic

ie
n c

y

Number of Jobs

5 CPU

10 CPU

20 CPU

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
V

V
er
sio

n
I

43

(
DDDD

)
C

20

12
Y
e
a
r

Simulator for Resource Optimization of Job Scheduling in a Grid Framework

3. URL: http://proj1.sinica.edu.tw/~ stat phys/
computer/buildPara.html.

4. http://www.e-sciencecity.org/EN/ gridcafe/ what
-is-the-grid.html

5. Pervasive and Artificial Intelligence
Group publications, Diuf.unifr.ch, 2010.

6. Berman, F., Anthony J. G. H. and Geoffrey C. F,
“Grid Computing: Making the global infrastructure a
reality”, ISBN 0-12-742503-9, 2003.

7. Asanovic, Krste et al., "The Landscape of Parallel
Computing Research: A View from Berkeley",
University of California, Berkeley, Technical Report
No. UCB/EECS-2006-183, 2006.

8. URL: http://www.e-sciencecity.org/ EN/ gridcafe/
computational-problems.html.

9. S.V. Adve et al., "Parallel Computing Research at
Illinois: The UPCRC Agenda", Parallel@Illinois,
University of Illinois, Urbana, 2008.

10. Barney, Blaise. "Introduction to Parallel Computing".
Lawrence Livermore National Laboratory, 2007.

11. Stallings, William (2004). Operating Systems
Internals and Design Principles (fifth international
edition). Prentice Hall. ISBN 0-13-147954-7.

12. Hennessy, John L.; Patterson, David A., Larus,
James R. (1999). Computer organization and
design : the hardware/software interface (2. ed., 3rd
print. ed.). San Francisco: Kaufmann. ISBN 1-
55860-428-6.

13. Hennessy, John L.; Patterson, David A. (2002).
Computer architecture / a quantitative approach.
(3rd ed.). San Francisco, Calif.: International
Thomson. p. 43. ISBN 1-55860-724-2.

14. Bernstein, A. J., "Analysis of Programs for Parallel
Processing", IEEE Transactions on Electronic
Computers EC-15 (5): 757– 763, DOI: 10.1109/
PGEC. 1966.264565, 1966.

15. Roosta, Seyed H, “Parallel processing and parallel
algorithms: theory and computation, New York,
Springer, pp no. 114, ISBN 0-387-98716-9, 2000.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
V

V
er
sio

n
I

44

(
DDDD

)
C

20

12
Y
e
a
r

Simulator for Resource Optimization of Job Scheduling in a Grid Framework

	Simulator for Resource Optimization of Job Scheduling in a GridFramework
	Author's

	Keywords
	I. Introduction
	II. Parallel computing
	III. Association with Grid Framework
	IV. Comparison of Grids andConventionalSupercomputers
	V. Simulation of ResourceOptimization
	VI. Algorithm to Compute theEfficiency of Job Scheduling in GridFramework
	VII. Simulation Results and Discussions
	VIII. Discussion and Conclusion
	References Références Referencias

