
© 2012. P K Suri & Sandeep Kumar. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 12 Issue 13 Version 1.0 Year 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Requirement Implementation and Defect Removal across
Component Versions: A Simulation Based Approach

 By P K Suri & Sandeep Kumar
 Galaxy Global Group of Institutions, Dinarpur, Ambala, Haryana, India

Abstract - Competition in component market and short time to market the software components
forces the organization to develop and launch the components in an iterative manner. Components
are launched in various versions. All gathered requirements cannot be implemented in initial version.
So requirements need to be prioritized and implemented in subsequent versions. Similarly defects in
one version are taken care of in subsequent versions. In the present work we have proposed a
simulation model that can be used to study the operational characteristics of the requirements
implementation process and defect removal process in a Component Based Software.

Keywords : Component Based Software, COTS, Simulation, Requirements Implementation, Defects
Removal, Exponential Distribution, Normal Distribution.

GJCST-C Classification: D.2.1

Requirement Implementation and Defect Removal across Component Versions A Simulation Based Approach

Strictly as per the compliance and regulations of:

Requirement Implementation and Defect
Removal across Component Versions: A

Simulation Based Approach
P K Suri α & Sandeep Kumar σ

Abstract - Competition in component market and short time to
market the software components forces the organization to
develop and launch the components in an iterative manner.
Components are launched in various versions. All gathered
requirements cannot be implemented in initial version. So
requirements need to be prioritized and implemented in
subsequent versions. Similarly defects in one version are taken
care of in subsequent versions. In the present work we have
proposed a simulation model that can be used to study the
operational characteristics of the requirements implementation
process and defect removal process in a Component Based
Software.
Keywords : Component Based Software, COTS,
Simulation, Requirements Implementation, Defects
Removal, Exponential Distribution, Normal Distribution.

I. Introduction

raditionally, development of software would focus
on developing for a particular kind of application
only. But Component Based Development is a

market driven technology. Here Components are not
developed for a specific application. Rather they are
developed to be reused in many different kinds of
applications. Different organizations in the common
marketplace offer different components for the same
functionality. Though, competition in the market is not
that much high at present, but looking at the growth
trends of the component based technology, the day
doesn’t seem to be far away when there will be a cut
throat competition in the COTS market. In such type of
scenario, it becomes very important for various market
players and stakeholders to develop quality software
components in least available time and release them in
market. In this market driven environment, Requirement
Engineering is getting more and more attention
[1],[2],[3]

It’s not only that quality components are to be
released in the market as soon as possible; equally
important is that the quality of the components is
improved gradually. Various organizations throughout
geographically dispersed locations improve the
components continuously and release their independent

Author α : Dean, Research and Development; Chairman CSE/IT/MCA,
HCTM Technical Campus, Kaithal, Haryana, India.-136034.

Author σ : Assistant Professor and Head, Faculty of Computer
Applications, Galaxy Global Group of Institutions, Dinarpur, Ambala,
Haryana-133207, India. E-mail : sandeepnain77@gmail.com

versions in the market after the improvements [4], [5],
[6]. If we follow Evolutionary development paradigm [14]
then an organization must deliver first operational
version of the software or component as fast as the
system architecture is defined. This first version should
incorporate a minimum set of requirements in such a
way so that the end user can start working with it. That’s
why this initial version should be called an operational
model. One of the reasons for the early release of the
first operational version and subsequent versions of a
software component is short time to market for
components. Once first version of the component has
been released in the market and used by the users,
remaining system requirements (that were not
incorporated in the earlier version) and some new
requirements can be added to the component in its
future version releases. Not only this, users of the
component will come up with certain defects in the
earlier version of the component. These defects can
also be removed in such a way that they are not present
in all future versions. Though it is possible that some
new defects may creep-up in the current version
release, and they can always be taken care of in the next
version.

Although it is never possible to freeze the
requirements in any software development paradigm,
still efforts should be made to gather as much
requirements as possible, before the release of first
version of that component. Out of these most important
features can be implemented in the first version of the
component and rest of the features can be implemented
in subsequent component versions, along with newly
generated requirements between release of any two
versions, and defects identified in previous component
version removed.

For the efficient development of software
component, requirements should be properly elicited,
analysed and documented at the beginning of a project.
Also important is the correct implementation and
management of these requirements in the later stages
of the component development and integration. This
becomes all the more important because all other
component development activities are based on how
efficiently requirements have been managed. In an ideal
software component development environment it is just
sufficient to elaborate the requirements into working

T

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

29

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

software component designs, code, and tests. But
software development in general and component
development in particular is not that much a straight
forward thing. In practical software development
process (component development processes in that
sense), the requirements keep changing, new
requirements keep coming and sometimes old
requirements need to be removed also. So the process
of management and implementation of requirements is
a complex task. Need to develop and release initial
component version as quickly as possible makes the
process more complex. Due to this sometimes
problems are encountered in maintaining consistency
among the various releases of the component versions.
These problems generally come into picture when
components are integrated in a component based
system.

The process improvement proposals in an
organization can be analysed by carrying out pilot
studies or controlled experiments in that organization
[7]. But this method is very time consuming and
resource crunching. Alternatively, simulations can be
used to study the behaviour of such a system [8], [9].
Simulation approach has been applied in many areas of
engineering and is suitable for application in evaluation
of software development processes also. After analysing
the new processes using simulation, they can also be
analysed in experiments and case studies to establish
the fairness of the results obtained using simulation. In
this way simulations can be a natural part of technology
transfer [10] and evaluation. If simulation is applied for
the evaluation of new technologies and processes then
it becomes easy to identify the changes and evaluate
them in experiments and pilot projects. Sometimes there
are certain changes that do not result in process
improvement. Application of simulation reduces the risks
associated with such changes. Lot of human resources
are often involved in experiments and pilot-studies in an
organization, introduction and evaluation of wrong
changes can lead to a lot of problems. This can
potentially damage the continued process improvement
work in the organisation for a long time. Hence
simulation is needed in the evaluation of new software
process technologies.

In the present work, we have proposed
application of discrete event simulation [11] using
queuing network model [12]. Objective of the study is to
find ways for effective management of the human
resources of an organization for requirement
management and implementation and defect removal
while releasing various versions of a software
component one after the other. The motivation for the
proposed model has come from REPEAT (Requirement
Engineering Process At Telelogic)[15].

Basic idea is to have a database of all the
requirements to be implemented in a software
component. But it is not possible to implement all the

requirements in first (or few subsequent versions for that
matter) version of the component due to many factors.
Most influential of these factors being the competition
from other market players and very short time to market.
Due to this reason requirements need to be prioritized
on some basis and implemented according to their
priorities. The steps of the REPEAT lifecycle model for
requirement implementation are given as follow [13]:

New
This state represents the initial state of a

requirement, and every requirement is defined as new
immediately after it has been issued and given an initial
priority.

Assigned
A requirement is elevated to the assigned state

when an expert team has been assigned to investigate
the requirement and determine the value of a number of
attributes.

Classified
When reaching this state, an expert team has

assigned values to attributes representing a rough
estimate of cost and architectural impact. Comments
and implementation ideas may also be stated.

Selected
All requirements in this state are selected for

implementation for the coming release. They are sorted
in priority order on two list: a must-list for mandatory
requirements and a wish-list for “nice-to-have”
requirements. They also have attributes assigned
concerning detailed cost and impact estimations. There
is also a more detailed textual specification of the
requirement. A selected requirement may be
deselected, due to changed circumstances, and then
re-enters the classification state or gets rejected.

Applied
This is an end-state indicating that the

requirement has been implemented and verified. The
requirement is now incorporated in a component release
that can be marketed to customers.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

30

(
DDDD

)
C

20

12
Y
e
a
r

Fig.1 : Repeat Requirement Lifecycle Model [CAR 2000]

Rejected
This is an end-state indicating that the

requirement has been rejected, e.g. because it is a
duplicate, already implemented, or it does not comply
with the long-term product strategy.

II. Proposed model

For the proposed model, we assume that first
operational version of the component has been released
in the market. Model can be implemented from second
version onwards. Once, the first component version
(with bare minimum requirements) becomes
operational, process for the release of second and
subsequent versions start. More requirements may be
added to the requirement database between the
releases of any two versions. So this set of requirements
to be implemented in a version of software component
form a queue. These requirements are to be
implemented by a team of developers. Once a
component has been released in the market, it is used
by various end users in their applications and feedback
from the users is received. Certain defects may also be
reported by the users. These defects may have crept in
due to implementation errors or discrepancies. These
defects need to be removed so that they are not part of
any future version of the component. So these defects
form another set of inputs to the system. We assume
that requirements to be implemented in the future
component version and defects reported from the
previous component version form a common queue.

System is modelled as “two parallel servers” queuing
system. It is the job of Software Component project
manager, modelled as team T, to decide which of the
inputs are new requirements, and which of the inputs
are defects. Depending upon the nature of input, it is
assigned to a different team. Requirement
implementation is performed by team TR and defect
removal process is performed by team TD.

New

Assigned

Classified

Selected

Applied

Rejected

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

31

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

Fig. 2 : Requirements and Defects Arrival and Service

III. TERMS and notations

Following terms and notations have been used
for the proposed queuing model of the system as far as
arrival patterns and service patterns are concerned:

λ : Average requirement/defect inter arrival time
at team T.

µ : Requirements/Defects arrival rate at team T.
mR : Mean service time of team TR.
sdR : Standard Deviation of service times at team

TR.
mD : Mean service time at team TD.
sdD : Standard Deviation of service times at team

TD.
N : Total no. of arrivals at team T (requirements+

defects).
R : No. of requirements implemented by team

TR.
D : No. of defects removed by team TD.
qR : Queue length of requirements at team TR.
qD : Queue length of defects at team TD.
sR : Service terminating at team TR

(Requirements).
sD : Service terminating at team TD (Defects).
IAT : Inter arrival time between any two

consecutive requirements/ defects.
NAT : Next arrival time of requirement/ defect.
wtR : Time a requirement waits in queue before it is

implemented.
wtD : Time a defect waits in the queue before it is

removed.
itR : Idle time of team TR.
itD : Idle time of team TD.
btR : Busy time of team TR
btD : Busy time of team TD
stR : Team TR service time.
stD : Team TD service time.
SRUNS : No. of simulation Runs.
ri : Random number.
maxqR : Maximum requirements in queue at team TR

at any time.
maxqD : Maximum defects in queue at team TD at any

time.

IV. Algorithm

Formally, algorithm for the model is described
as follows:
1. Read Input Data.
2. Initialize SRUNS. Set clock:=0, N:=0, R:=0, D:=0,

qR:=0, qD:=0, sR:=0, sD:=0, wtR:=0, wtD:=0,
itR:=0, itD:=0.

3. Generate random numbers ri’s.
4. Compute inter arrival times of requirements/defects

(IAT’s) at team T using exponential distribution with
arrival rate µ.

5. (At team T, categorise arrival as a requirement or
defect.)

If (ri< .8),
 Designate the arrival as a requirement,
increment qR.
Else
 Designate the arrival as a defect, increment qD.
6. (Check present status of team TR)

a. If (clock >=sR), then do
Update wtR.
If qR is positive, then do

i. Decrement qR by 1.

ii. Generate stR’s using normal distribution with
mean mR and standard deviation sdR.

iii. sR:= clock+stR.

iv. Increment R by 1.
Else do
Update itR (idle time of team TR).

b. If (clock <sR) then do
Update waiting time, wtR of requirement at team TR.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

32

(
DDDD

)
C

20

12
Y
e
a
r

Team TR

Team TD

Team T

Random Arrival (Requirements
& Defects)

Requirements

Defects

7. (Check present status of team TD)

a. If (clock >=sD), then do
Update wtD.
If qR is positive, then do

i. Decrement qD by 1.

ii. Generate stD’s using normal distribution with
mean mD and standard deviation sdD.

iii. sD:= clock+stD.

iv. Increment D by 1.
Else do
Update itD (idle time of team TD).

b. If (clock <sD), then do
Update waiting time, wtD of requirement at team TD.

8. Compute total Busy and Idle times of team TR and
TD

9. Compute average waiting times of requirements
and defects.

10. Print Required Data.
11. Stop.

 V. Results and discussion

Simulator was executed for various values of
SRUNS. If we assume that on an average 1 requirement
or defect arrives at team T every 7 time units, with
exponential distribution, requirements are implemented

by team TR at a service rate that is normally distributed
with value of mR=6.0 and sdR=2.0; and defects are
removed by team TD at a service rate that is again
normally distributed with value of mD=12.0 and
sdD=6.0, then results for various values of SRUNS are
shown in table 1.

Graph in figure 3 shows that values of various
operational characteristics have larger variation if
simulator is run less than 10000 times. Values of btR,
itR, btD and itD tend to stabilize after 10000 simulation
runs. Same is true for the results depicted in figure 4.
Hence it can be said that 10000 simulation runs are
sufficient to get the accurate results.
Relationships between number of simulation runs v/s N,
R and D is shown in figure 5.

Table 2 shows the results obtained from 50000
simulation runs where value of λ varies from 5 to 10 in
steps of 1. Table contains values of idle times of teams
TR (itR) and TD (iTD), waiting times of teams TR (wtR)
and team TD (wtD) and maximum queue lengths at TR
and TD for various values of λ. It is clear from figure 4
that idle times of team TR (itR) and team TD (itD)
increase with the increase in the value of λ. waiting times
of the requirements and defects decrease with increase
in the values of λ. There is variation in maximum queue
lengths initially, but as the value of λ increases,
maximum queue lengths for both the teams tend to get
stabilize.

Table 1

:

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

33

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

SRUNS btR

(%)

btD

(%)

itR

(%)

itD

(%)

wtR

(avg.)

wtD

(avg.)

Ma

qR

Max

qD

N R D

1000 74.43 27.7 25.57 72.3 6.43 10.38 6 3 149 127 22

2000 76.79 35.04 23.21 64.96 8.53 5.38 7 3 308 257 51

10000 69.14 34.13 30.86 65.87 7.55 3.93 11 3 1429 1151 278

20000 67.44 34.72 32.56 65.28 6.89 3.52 11 3 2805 2232 572

30000 68.35 35.2 32.65 64.8 7.32 3.87 11 4 4257 3396 861

40000 68.63 35.47 31.37 64.53 7.02 3.62 11 4 5711 4555 1156

50000 68.73 35.64 31.27 64.36 6.85 3.72 11 4 4146 5698 1441

Fig. 3 :

Fig.

4

:

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

34

(
DDDD

)
C

20

12
Y
e
a
r

0

10

20

30

40

50

60

70

80

90

1000 2000 10000 20000 30000 40000 50000

P
e
rc

e
n

ta
g

e

SRUNS

btR itR btD itD

0

2

4

6

8

10

12

1000 2000 10000 20000 30000 40000 50000

SRUNS

wtR wtD maxqR maxqD

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

35

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

Fig. 5

:

Table 2

:

0

1000

2000

3000

4000

5000

6000

7000

8000

1000 2000 10000 20000 30000 40000 50000

N
/R

/D

SRUNS

N R D

λ µ itR itD wtR wtD maxqR maxqD

5 0.2 4.35 52.65 49.13 7.07 30 6

6 0.1667 19.21 59.24 13.9 5.73 23 7

7 0.1429 31.16 68.8 7.42 4.21 7 3

8 0.125 38.76 70.04 5.06 3.26 8 4

9 0.1111 45.6 73.2 4.02 2.73 8 4

10 0.1 57.32 75.56 3.03 2.43 6 3

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

36

(
DDDD

)
C

20

12
Y
e
a
r

Fig. 6 :

In the presented work, a simulator has been
proposed that can be helpful in implementation of user
requirements and removal of defects across various
versions of a software component in such a way so that
size of the requirements implementation team and
defects removal team can be optimized. Simulator has
been modelled as a two parallel server queuing model,
where requirements and defects initially form a common
queue and then they are categorized as requirements or
defects depending upon their characteristics.
Requirements and defects are then handled by different
teams. Busy and idle times of both the teams can be
studied and depending upon that team size can be
decided. Simulator can also be used to study other
operational characteristics like the time a requirement or
defect has to spend waiting before it is implemented/
removed and maximum length of the queues formed by
requirements and defects at each team.

3. Yeh A.(1992), Requirements Engineering Support
Technique (REQUEST) – A Market Driven
Requirements Management Process, Proceedings
of Second Symposium of Quality Software
Development Tools, New Orleans USA, IEEE
Computer Society Press, 211-223.

4. Szyperski C.(1998), Component Software—Beyond
Object-Oriented Programming. Addison-
Wesley/ACM Press: Boston, MA, 1998.

5. Heineman G.T. and Councill W.T. (2001.),
Component-Based Software Engineering: Putting
the Pieces Together. Addison-Wesley: Reading.

6. Crnkovic I. et al.(2001), Proceedings of the Fourth
ICSE Workshop on Component-Based Software
Engineering: Component Certification and System
Predication. Software Engineering Institute:
Pittsburgh.

7. Wohlin C., Runeson P., Höst M., Ohlsson M.C.,
Regnell B. and Wesslén A. (2000), Experimentation
in Software Engineering -An Introduction , Kluwer
Academic Publishers.

8. Kellner M.I., Madachy R.J. and Raffo, D.M.(1999),
Software Process Simulation Modeling: Why? What?
How? Journal of Systems and Software, Vol. 46, No.
2-3, 91-105.

9. Pfahl D. and Lebsanft K.(2000), Using Simulation to
Analyse the Impact of Software Requirement
Volatility on Project Performance, Proceedings of
the combined 11th European Software Control and
Metrics Conference and the 3rd SCOPE conference
on Software Product Quality , Munich,
Germany,267-275.

10. Linkman S. and Rombach, H.D.(1997),
Experimentation as a Vehicle for Software

0

10

20

30

40

50

60

70

80

5 6 7 8 9 10

λ

itR itD wtR wtD maxqR maxqD

1. Lubars M., Potts C. and Richter C. (1993), A Review
of the State of the Practice in Requirements
Modeling, Proceedings of First IEEE International
Symposium on Requirements Engineering (RE’93),
San Diego USA, IEEE Computer Society Press.

2. Potts C.(1995), Invented Requirements and
Imagined Customers: Requirements Engineering for
Off-the Shelf Software, Proceedings of Second IEEE
International Symposium on Requirements
Engineering (RE’95), York UK, IEEE Computer
Society Press.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

37

(
DDDD

)
C

20

12
Y
e
a
r

© 2012 Global Journals Inc. (US)1

Technology Transfer - A Family of Software Reading
Techniques, Information and Software Technology,
Vol. 39, No. 11, pp. 777-780.

11. Banks J., Carson J. S. and Nelson, B. L.(1996),
Discrete-Event System Simulation, 2nd Ed., Prentice
Hall.

12. King P. J. B.(1990), Computer and Communication
Systems Performance Modelling, Prentice Hall.

13. Carlshamre P. and Regnell B.(2000), ―Requirements
Lifecycle Management and Release Planning in
Market-Driven Requirements Engineering
Processes‖, Published by IEEE CS press in the
Proceedings of International Workshop on the
Requirements Engineering Process: Innovative
Techniques, Models, and Tools to support the RE
Process, Greenwich UK.

14. Sommersville I.(1996), Software Process Models‖,
ACM Computing Surveys (CSUR) Volume 28, Issue
1, 269-271.

15. Regnel B., Beremark P. and Eklundh, O(1998). ―A
Market-Driven Requirements Engineering Process -
Results from an Industrial Process Improvement
Programme‖, Journal of Requirements Engineering,
Vol. 3, No. 2, 21-29.

This page is intentionally left blank

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
II

 I
ss
ue

 X
III

V
er
sio

n
I

38

(
DDDD

)
C

20

12
Y
e
a
r

	Requirement Implementation and Defect Removal acrossComponent Versions: A Simulation Based Approach
	Author's

	Keywords
	I. Introduction
	II. Proposed model
	III. TERMS and notations
	IV. Algorithm
	V. Results and discussion

	VI. Conclusion

	References References Referencias

