
© 2012 P K Suri, Sandeep Kumar. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

Volume 12 Issue 3 Version 1.0 Fabruary 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: & Print ISSN:

Effort Distribution in COTS Components Integration: A
Simulation Based Approach

By P K Suri & Sandeep Kumar
 Galaxy Global Group of Institutions, Dinarpur, Ambala, Haryana

Abstract - Component Based Development lays emphasis upon composing software from pre-existing
commercially off the shelf (COTS) components. Component repositories are searched for the existing
components according to requirement specifications and then components are integrated in the system.
Though all the components are important for the success of a Component Based Software, some of them may
be more important than others. While distributing the cost, efforts, time and other resources, starting from
component requirement specification to component integration, we need to differentiate between more and
somewhat less important components and distribute the resources accordingly. In this paper we have
developed a simulator for identifying the critical components in a component based system for optimum
distribution of the resources while integrating the components in the system. This simulator can be used to
plan the distribution of available resources in a better way. This will help to overcome the problems of cost and
time overrun while integrating and deploying components in a Component Based System (CBS).

Keywords : Component Based Software, COTS, Simulation, Component Integration and Deployment, Erlang

GJCST Classification: I.6 , I.6.8

Effort Distribution in COTS Components Integration A Simulation Based Approach

Strictly as per the compliance and regulations of:

Effort Distribution in COTS Components
Integration: A Simulation Based Approach

P K Suri & Sandeep Kumar

Abstract - Component Based Development lays emphasis
upon composing software from pre-existing commercially off
the shelf (COTS) components. Component repositories are
searched for the existing components according to
requirement specifications and then components are
integrated in the system. Though all the components are
important for the success of a Component Based Software,
some of them may be more important than others. While
distributing the cost, efforts, time and other resources, starting
from component requirement specification to component
integration, we need to differentiate between more and
somewhat less important components and distribute the
resources accordingly. In this paper we have developed a
simulator for identifying the critical components in a
component based system for optimum distribution of the
resources while integrating the components in the system.
This simulator can be used to plan the distribution of available
resources in a better way. This will help to overcome the
problems of cost and time overrun while integrating and
deploying components in a Component Based System (CBS).

Keywords : Component Based Software, COTS,
Simulation, Component Integration and Deployment,
Erlang

lthough Component Based Software Engineering
is new paradigm in software engineering, it may
be likened to traditional engineering branches like

civil or mechanical engineering, where emphasis is not
laid on developing as such; rather it is on designing and
composing. Almost similar approach is followed by the
Component based software engineering where instead
of developing the application from scratch, pre-
developed and pre-tested black box components are
integratedtogether to compose a new software. Due to
this reasonthese black box components are also known
as Commercially–Off-The-Shelf (COTS) components [1].
This is so because they are developed by someone else

and used by someone else. Every component has some
clearly defined interfaces.

Through these interfaces it takes services from
other components and provides services to other
components.

This give

and

take

of the service

by

Author

α : Dean, Research and Development; Chairman CSE/IT/MCA,

HCTM Technical Campus, Kaithal, Haryana, India.-136034.

E-mail

: pksuritf25@yahoo.com.

Author

σ : Assistant Professor and Head, Faculty of Computer

Applications, Galaxy Global Group of Institutions, Dinarpur, Ambala,
Haryana-133207, India

E-mail

: sandeepnain77@gmail.com

components is called interaction [2]among
components. But before the components can interact
with each other, they must be integrated together.
Process of integrating the components in a component
based system is not as easy and straightforward as it
seems to be. Existing components may be part of some
other applications. From there they are collected into
component repositories. Depending upon the
requirements of the current application, component
repositories are searched for the required components.
Different components may be found in different
repositories. Then these components are integrated
together to compose a new application. This process is
shown in fig.1.

So developing Component Based Software
does not mean developing everything afresh. One thing
that is very important here is that sometimes it may
happen that no component satisfying the user
requirements is found in any of the component
repositories; in that case we may have to develop a new
component. Although developing a new component
follows the usual procedure of developing any software
module, here wewill assume that we don‟t need to
develop any new components, rather we have all the
required components in one or the other repositories
and we only need to identify and search them according
to our requirements and then integrate them in the
system. Finding a component that meets the user
requirements in itself is a tedious task and involves
many activities. Composing existing components to
form a new application follow certain predefined
procedure. This procedure consists of many steps [3],
[4], [5], [6]. Although different researchers have given
different models of composing component based
software, there are certain things where almost all of
them agree upon.

There are following six broad activities that are
essential for component integration:
a) Component Requirement Specification

b) Component Requirement Review

c) Component Identification and Selection

d) Component Adaptation

e) Component Integration

f) Component Deployment

A

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II
I
 V

er
si
on

 I

33

20

12
Fe

br
ua

r y

A brief description of these activities is given below.

a) Component Requirement Specification
This isconcerned with providing a formal

α σ

Component Repository

New Application 1

New Application 2

New Application M

Application 1 1

Application 2

Application N

Fig.1.Storage and Searching of COTS Components

documented consensus regarding the requirements,
scope and boundaries of a software component [15]. It
is important to document customer‟s vision of the
component after analyzing the customer requirements.
Depending upon the customer‟s requirements, an
existing component may be reused or may be adapted

for reuse. In the worst case a new component may have
to be developed. This is a very important phase

because quality of the component selected and ability of
the component to perform a specified task depends
upon how well the requirements have been understood
and documented.

b)

Component Requirement Review

Every software component has a clearly
specified functionality. Conceptual Design of a
component and its functional requirements are specified
in component requirement specification document. It is
very important that requirements specified in this
document are complete, adequate, without any
ambiguity, feasible to implement and consistent with the
intended component. To avoid any problems related
with these attributes, it is important that all the parties‟
involved in component selection, integration and

deployment review the requirements thoroughly[14]. In
this phase all the component related requirements are
reviewed by stakeholders.

c)

Component Identification and Selection

Success of a Component Based Software
depends a lot upon our ability to select a suitable
component according to user requirements

[8], [9],
[10], [11]. This selection and identification process
involves four steps [4]: Search, Screen, Evaluate and

Analyse. The search process may give a list of many
candidate components and it becomes very important
to select best suited component. One such technique of
component selection is given by Suri et al in [12].

d)

Component Adaptation

All the components that have been selected
using the Component integration and selection process
may have been developed using different platforms, by
different teams of people for different applications. So it
is very important that component services are provided
through a standard published interface so that
components are able to interoperate. Practically it is
quite difficult to find a software component that can fulfill
the hundred per-cent user requirements. So it becomes
very important to adapt the component for the present
application. Rine et al [13]have proposed the use of G

lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II
I
 V

er
si
on

 I

34

20
12

© 2012 Global Journals Inc. (US)

Fe
br

ua
r y

adapters to adapt the components according to present
application.

e) Component Integration

Next job is to integrate the components so that
they can interact with each other. Vigder [16]identified
three important components of the component
integration. These are: Wrappers, Glue and Component

Tailoring. Through wrappers, underlying components
are isolated from other components in the system. Glue
provides the functionality to combine the components
and through Component Tailoring, functional ability of a
component is enhanced. Testing and validation are also
part of the component integration process. Components
may have been tested earlier but it is very important to
test them for the present application too. Generally
internal structure of a component is not known so most
appropriate for testing the components is Black Box
Testing[1],[17], [18]. Also it is very difficult to test all the
components when number of components in the system
is very large. This search space can be reduced using a
technique proposed by Suri and Kumar[19].

f)

Component Deployment

According toNing[20], deployment involves
packaging components so that they can connect ,
disconnect and reconnect at runtime. A tool called
packager is proposed for the purpose.

Each component based system may consist of
hundreds to thousands of components. These
components are developed using different technologies
on different platforms. Depending upon the user
requirements, component libraries are searched for the
suitable components. Once suitable components are
found, they are integrated or composed to create the
system. While integrating these components in a
Component Based System (CBS), we need to put in
efforts and resources in each step or activity that leads
to component integration. All components of a CBS are
not equally important. So that the available resources,
time, efforts can be utilized optimally, it is important that
a plan of the schedule of component integration be
prepared. This plan must contain the details of the
efforts, may be in person-hours, to be put

in various
component integration activities. There are certain
components that are heavily loaded as compared to
other components because they need to be accessed
more frequently for getting some job done. For example
the initial component, that provides an interface to the
user for the input, is accessed every time user has to
work on the system. Similarly, the component that get
output to the user is also accessed each time user
needs an output. There may be other components in the
systems that are not accessed so frequently. It is very
important to identify these critical components so that
they can be allotted more time and efforts. Identifying
such components is the main theme of this paper.

Here a Component Based System is
represented with the help of an activity network. The
network consists of nodes and edges. Nodes in the
network represent the individual components of the

system. Edges represent the flow of execution between
various components. An edge from component Ci

to
component Cj

represents an interface link („provide‟ or
„gets‟ interface) from Ci

to Cj. Many components in
sequence starting from the first component and
terminating into the last component make an interfaces
path. To achieve an artifact result, execution starts from
the first component that provides a user interface. The
control keeps transferring from one component to
another, through interface links. When a component is
integrated in the CBS, six activities:

Component
Requirement Specification, Component Requirement
Review, Component identification and selection,
Component Adaptation, Component Integration and
Component Deployment

are to be performed, in that
order. These activities are stochastic in nature because
time taken by each of these activities and efforts
required in fulfilling these activities are distributed
exponentially. If we assume that on average, each of
these six activities take constant efforts (say β), then
effort required for integrating and deploying a
component is governed by Erlang-6 distribution [24].
Because if there are k independent stochastic random
variables v1, v2, v3,…..vk, having same exponential
distribution.

f(vi) = µkeµkv
igiven that vi>0; µ> 0 and k is a positive

integer, then

V = ∑vi

is governed by Erlang distribution.

So all six stochastic variables so obtained are
composed using above formula and then weight so
obtained is assigned to the corresponding component.
Weight assigned to a component is distributed equally
among all interface links terminating into that
component node. This weight computed is governed by
Erlang-6 distribution. Because efforts required for
integrating each component are stochastic and not
deterministic in nature, it will be erroneous to assume
single effort estimate for the each component‟s
integration. Due to stochastic nature of the component
integration efforts, we take three types of effort estimates
as

Minimum Effort Estimate (Emin): The minimum
possible efforts required for integrating the
component. We

will require minimum efforts if
everything goes well, there are no employee
switchover, and no new requirements, no conflicting
requirements and we are in an ideal situation.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II
I
 V

er
si
on

 I

35

20

12
Fe

br
ua

r y

 Maximum Effort Estimate (Emax): The maximum
possible efforts required for integrating the
component. This is the effort requirement when
everything goes bad.

 Normal Effort Estimate (Enor): This is the effort
required if the component is integrated under
normal circumstances. All practical problems that
may arise have been considered.

Taking these three types of efforts into

consideration following may hold true for Mean Efforts
Required (µ) and Standard Deviation (σ)

Mean of Efforts (µ) = (Emin

+ 4*Enor

+ Emax)/6

Standard Deviation (σ) = (Emax

–

Emin)/6

Variance = (σ)2

Each activity of component integration process
is stochastic in nature. As we have assumed that efforts
required in performing each activity follow beta
distribution, it is possible to identify the critical
components along one interface path. But sometimes
results given by this process may be wrong. In many
cases we can assume that efforts required are available
in the form of a discrete or continuous frequency
distribution. In some cases in addition to the
components along critical interface

path there may be
other components that are near critical and are also
important and need a fair share of the time and efforts.
In this case total efforts required along near critical path
may be slightly less than the critical path, but quite
possible that may have happened because the variance
along the near critical path is slightly more than the
critical path. So it is important that near critical path is
also tested because if we run the simulator for many
number of times, then near critical components may
also sometimes become critical. This is why simulation
as a tool has been used for identifying the critical
components.

Following assumptions have been made for the
proposed simulation model

:

Each node of the network represents a

component.

Directed edge from component Ci

to component Cj

means that a „provides‟ and/or „gets‟ relationship
exist between these two components.

Integrating each component involve six phases
(component requirement specification, component
requirement review, component identification and
selection, Component Adaptation, Component
Integration, Component Deployment).

Effort required in carrying out each of these phases
is constant and exponentially distributed.

Effort required in integrating and deploying each
component

is governed by Erlang-6 distribution.

All the components (nodes) are assigned numbers
in topological order according to Fulkerson‟s i-j
rule[23].

Any execution in the CBS starts with the first
component that provides an interface to the user
and terminates with nth interface that provides the

final output

interface. In between many components
are accessed along different interface paths.

Each component is assigned a weight which is
effort required in integrating corresponding
component.

All the interface links terminating into a component
node are assigned the equal weight. This weight is
equal to the weight assigned to the component
towards which these links are directed/ number of
components.

Total weight W is the sum of all link weights along a
path and represents the total efforts required in
integrating all the components along that path.

Path with maximum total weight is a critical path and
all the components that fall along that path are
critical components. All the interface links along this
path are

also critical interface links.

ORIGIN[]:

Array containing originating
component number of all the
execution links.

TERMINAL[]:

Array containing terminating
component number of all the
execution links.

S

:

Starting or First Component of the
CBS.

F

:

Finishing or Last component of the
CBS

ORIGIN[i]:

Originating (tail end) Component of
link i.

TERMINAL[i] :

Terminating (head end) Component
of link i.

WT[i]

 :

Array containing weights assigned
to all the interface links.

LSW[i]

 :

Least cumulative starting weight of
link i.

LTW[i] :

Least cumulative terminating weight
of link i

MSW[i] :

Most cumulative starting weight of
link i.

MTW[i]

 :

Most cumulative terminating weight

of link i.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II
I
 V

er
si
on

 I

36

20
12

© 2012 Global Journals Inc. (US)

Fe
br

ua
r y

MinCW[j] : Minimum weight that can be
assigned to component j.

MaxCW[j] : Maximum weight that can be
assigned to component j.

M : Number of components in the CBS.
N : Number of interface links in the

system.
Crit_M[j]: Criticality index of the jth component

Crit_N[i] : Criticality index of the ithinterface
link.

One of the most important question that arises
during the effort and resource allocation is that which
are the components and interfaces in the system that
are most important for the overall working of the system,
so that they can be allocated efforts and resources in
bulk. These are the components and interfaces that fall
along the path that has got the maximum weight of all
possible paths. This path is called the critical path and
components and interfaces along that path are called
critical components and critical links respectively.
Pseudo code below

in this

section

describes the
process to find the critical components and interfaces.
In this process first we move in the forward direction in
the network of components. While moving in the forward
direction we compute the least cumulative terminating
weights of all the

links by adding link weights to their
least cumulative starting weights. At the end of the
forward process we compute the minimum weight that
can be assigned to the Mth component (output interface
component). Next we traverse the network in backward
direction finding most cumulative starting weight of each
link by using most cumulative terminating weight and
link weights. The procedure is describes as follows:

1.

Initially assign weights to all the interfaces or
execution links. These weights are generated using
a random number generator. Samples so generated
follow Erlang-6 distribution. Theseweights are stored
in the array WT[i], for i = I to N.

2.

Traverse the component network in forward
direction.

a.

Set the minimum component weight MinCW[j] for all
components (j = 1 to M) to zero.

b.

Each component node may have many execution
links terminating into it. Once all the execution links
enter into the present component, compute the
minimum component weight. This is equal to the
maximum of the weights of all the execution links
entering into that component node. Call it MinCW[j]
for the jth component. By definition MinCW[1] is
zero.

This process is repeated for all combinations of
links and components and finally minimum component
weight of last component i.e. Mth component is
computed. Call it MinCW[M]. Assign this to W (this is
sum of weights of all components along that path).

3.

Traverse the component network in backward
direction.

a.

Assign the minimum component weight computed
in step 2 to the last component of the network, call it
MaxCW[M] = W. This weight is also assigned as
maximum terminating cumulative weight of all links
terminating into Mth component i.e. MTW[all
execution links terminating into M] = MaxCW[M].

Moving further maximum starting weight of link N is
computed as MSW[N] = MTW[N] –

WT[M].

b.

Moving further backwards, maximum starting
cumulative weight of each execution link is
computed as MSW[i] = MTW[i] –

WT[i].

c.

Next, maximum weight that can be assigned to a
component „j‟ is computed. Call it MaxCW[j]

d.

Compute

maximum terminating weight MTW of all
the links starting from component j. They are
assigned the value MaxCW[j].

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II
I
 V

er
si
on

 I

37

20

12
Fe

br
ua

r y

All the components for which MaxCW =
MinCW, are critical components and form a critical path.
Similarly all the interface links that are part of this critical
path are critical interface links.This algorithm is repeated
many times, each time for a different set of random
weights assigned to the execution links. This is done to
accommodate the error element, E. Due to this error
sometimes, components that may have remained near
critical in some previous run, may become critical in
some other simulation runs. This way we can find out
how many times a particular component and interface
link becomes critical. More number of times a
component becomes critical, more efforts we need to
put in while integrating this component in the system to
safeguard our system from failure. Same is true for
interface links too. Formally the algorithm is described
in fig.2.

a) Case Study 1
We experimented with the simulator developed

in C Language over Window 7.0 Platform using
DosBox0.73. Two case studies for experiment were
conducted. In the first case study, a CBS consisting of 8
components was considered. The execution flow
through interface links of the CBS is shown in figure 3.
There are a total of 11 interface links and 8 components
in this system. Each component in the system is
integrated using six steps described above. Each
interface link connects two components. At the tail end
of the interface is the originating component and at the
head end is terminating component. The details about
originating components, terminating components and
criticality indices of each interface link are given in table
1. Table 2 contains the information about criticality
indices of the components. This information is also
depicted in graphs in fig. 4 and fig. 5 respectively.

b) Case Study 2
For the second case study, we have taken a

CBS with eight component nodes and 13 interface links.
The graphic representation of the system is shown in fig
5. Table 3 contains information about the originating and
terminating component of each interface link and also
the criticality indices of the interface links after the
simulation run are performed 1000 times. Table 4
contains the criticality indices of different components

1.

Input the values

for RUNS, N, M, E and Populate

arrays ORIGIN[] and TERMINAL[] accordingly.

2.

for i = 1 to N (Set Crit_E[i] = 0)

3.

for j = 1 to M (Set Crit_E[j] = 0)

4.

for x =1 to RUNS repeat steps 5 to 9 in step of 1.

5.

fori = 1 to N (Generate random variants and store

them in array WT[i]).

6.

Start forward pass

a.

Set MinCW[1] = 0

b.

Compute MinCW for all component

nodes as follows

i.

LSW[i] = MinCW of the node at

tail end

ii.

LTW[i] = LSW[i] + WT[i]

iii.

MinCW[j] = max{LTW(all

interface links terminating into

component node j)}

7.

Start Backward Pass

a.

Assume MaxCW[M] = MinCW[M]

(MinCW[M] was computed in forward

pass).

b.

fori = I to N (MTW [i] = MaxCW of the

node at head end).

c.

MSW[i] = MTW[i] –

WT[i]

d.

Compute MaxCW for all component

nodes (except last node, M) as follows

MaxCW[j] = min {MSW(all links
originating from component j)}

8.

Update Criticality index of interface links

If (MSW[i] –

LSW[i] <= E (Increment
Cri_E[i] by 1)

9.

Update Criticality indes of Component node

If (MaxCW[j] –

MinCW[j] <= E (Increment
Cri_C[j]] by 1)

10.

for I = I to N (Print Crit_E[i]).

11.

for j = I to M (Print Crit_C[j].

12.

Stop.

for 1000 simulation runs. Criticality indices of interface links and components are also depicted in fig. 6

and

fig.7

respectively.

Fig.2.

Algorithm for finding Critical components and
Interface Links

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II
I
 V

er
si
on

 I

38

20
12

© 2012 Global Journals Inc. (US)

Fe
br

ua
r y

Component
1

Component
2

Component
3

 Component
4

Component 5

 Component
7

 Component
6

 Component
8

A

 C
o
m
po
ne
nt
4

B

C

o

m

p

o

n

e

n

t

4

C

C

o

m

p

o

n

e

n

t

4

D

C

o

m

p

o

n

e

n

t

4

E

C

o

m

p

o

n

e

n

t

4

F

C

o

m

p

o

n

e

n

t

4

G

C

o

m

p

o

n

e

n

t

4

I

C

o

m

p

o

n

e

n

t

4

H

C

o

m

p

o

n

e

n

t

4

J

C

o

m

p

o

n

e

n

t

4

K

C

o

m

p

o

n

e

n

t

4

Interface
Link

Originating
Component

Terminating
Component

Mean Weigh
(Efforts)

Standard
Deviation

Criticality
Index

A 1 2 µ1 σ 1 .912

B 1 3 µ2 σ 2 .260

C 2 3 µ3 σ 3 .610

D 1 4 µ4 σ 4 .912

E 3 5 µ5 σ 5 .958

F 4 5 µ6 σ 6 .610

G 4 6 µ7 σ 7 .000

H 5 7 µ8 σ 8 .502

I 5 6 µ9 σ 9 .499

J 6 8 µ10 σ 10 .500

K 7 8 µ11 σ 11 .502

Fig.3. CBS Component Network 1

Table1. Originating Component, Terminating Component and Criticality Indices of Interface Links.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II
I
 V

er
si
on

 I

39

20

12
Fe

br
ua

r y

Fig.4.

Graph of Criticality Indices of Interface
Links

Fig.5.

Graph of Criticality Indices of Components

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

C
o

m
p

o
n

e
n

t
C

ri
tic

a
lit

y
In

d
e
x

Component Number

Component

Criticality Index

1

1.0

2

.912

3

.938

4

.061

5

1.0

6

.500

7

.629

8

1.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A B C D E F G H I J K

In
te

fa
c
e
 L

in
k

C
ri
tic

a
lit

y
In

d
e
x

Component Interface Links

Table 2.

Component Criticality Indices

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II
I
 V

er
si
on

 I

40

20
12

© 2012 Global Journals Inc. (US)

Fe
br

ua
r y

Component

1

Component

4

Component

2

Component

5

Component

6

Component

7

Component

8

Component

3

B

C

o

m

p

o

n

e

n

t

4

A

C

o

m

p
o

n

e

n

t

4

D

C

o

m

p

o

n

e

n

t

4

G

C

o

m

p

o

n

e

n

t

4

E

C

o

m

p

o

n
e

n

t

4

C

C
o

m

p

o

n

e

n

t

4

H

C

o

m

p

o

n

e

n

t

4

I

C

o

m

p

o

n

e

n

t

4

J

C

o

m

p

o

n
e

n

t

4

K

C

o

m

p

o

n

e

n

t

4

L

C

o

m

p

o

n

e

n

t

4

M

C

o

m

p

o
n

e

n

t

4

F

C
o

m

p

o

n

e

n

t

4

Fig.6. CBS Component Network 2

Interface
Link

Originating
Component

Terminating
Component

Mean Weigh
(Efforts)

Standard
Deviation

Criticality
Index

A 1 2 µ1 σ 1 .970

B 1 4 µ2 σ 2 .026

C 2 3 µ3 σ 3 .031

D 2 4 µ4 σ 4 .918

E 2 5 µ5 σ 5 .021

F 3 7 µ6 σ 6 .031

G 4 5 µ7 σ 7 .940

H 4 6 µ8 σ 8 .004

I 5 6 µ9 σ 9 .469

J 5 7 µ10 σ 10 .491

K 5 8 µ11 σ 11 .004

L 6 8 µ12 σ 12 .474

M 7 8 µ13 σ 13 .523

Table 3. Originating Component, Terminating Component and Criticality Indices of Interface Links.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II
I
 V

er
si
on

 I

41

20

12
Fe

br
ua

r y

Table 4.

Component Criticality Indices

0

0.2

0.4

0.6

0.8

1

1.2

A B C D E F G H I J K L M

In
te

rf
a

c
e
 L

in
k

C
ri
tic

a
lit

y
In

d
e
x

Component Interface Links

Fig.7.

Graph of Criticality Indices of Interface
Links

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8
C

o
m

p
o

n
e
n

t
C

ri
tic

a
lit

y
In

d
e
x

Component Number

Component

Criticality Index

1

1.0

2

.970

3

.031

4

.944

5

.964

6

.474

7

.523

8

1.0

From above discussed case studies 1 and 2
important conclusions were drawn. In the first case
study it was found that interface links A, D and E are the
most critical interface links. These links provide
interfaces between components 1-2, 1-4 and 3-5
respectively. Links C (2-3) and F (4-5) are also important
but not as important as A,D and E. Interface Link G (4-5)
is the least critical link. Out of 8 Components of the CBS
Components 1,2,3,5 and 8 are most critical and we
should allocate most of the resources

and efforts

while

integrating and deploying these components in the
system. Similarly in case study 2, we found that interface
links A (1-2), D (2-4) and G (4-5) are the most critical
ones and H (4-6) and K (5-8) are the least critical. As far
as components are concerned, components 1,2,4,5,8
are the most important for the overall success of the
system and a good number of efforts must be put in
while integrating them.

So as we saw this simulator can be a handy tool
for the project team that has to decide on how much
efforts, time and cost should be put in while
specification and review of requirements and
identification, selection, adaptation, integration and
deployment of the different components in a component
bases system.

Fig.8. Graph of Criticality Indices of Components

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II
I
 V

er
si
on

 I

42

20
12

© 2012 Global Journals Inc. (US)

Fe
br

ua
r y

1. Korel, B. (1999) Black Box Understanding of COTS
Components. IEEE Xplore Digital Library. 92-99.

2. Councill, B.&Heinman, G. (2001) Component Based
Software Engineering: Putting the pieces together.
NY: Addison Wesley. 5-99.

3. Cai, X., Wong, K., Ko, R. &Lyu, M. (2000)
Component Based Software Engineering:
Technologies, Development Frameworks and
Quality AssuranceSchemes. IEEE Xplore Digital
Library. 372-379.

4. Mahmood, S. & La, R. (2007) Survey of Component
Based Software Development. IET Soft. 1 (2) 57-66.

5. Crnkovic, .I (2003) Component Based Software
Engineering: New Challenges in Software
Development..IEEE Xplore, 25th Int. Conf. on
Information Technology Interfaces. 9-18.

6. Crnkovic, I., Chaudron, M. & Larson, S. (2006)
Component Based Development Process and
Component Lifecycle. Proc. of IEEE Int. Conf. on
Software Engineering Advances.

7. Maiden, N.&Ncube, C. (1998) Acquiring COTS
Software Selection Requirements. IEEE Soft. 15 (2)
46-56.

8. Leung, K.& Leung, H. (2002) On the Efficiency of
Domain Based COTS Product Selection Method.
Info. Soft. Tech.44 (12) 703-715

9. Alves, C.& Finkelstein, A. (2003) Investigating
Conflicts in COTS Decision Making. International
Journal of Software Engineering Knowledge
Engineering. 13. 1-21.

10. Chung, L.&Kooper, K. (2002) Knowledge based
COTS aware Requirements Engineering Approach.
Proceedingsof 14th Int. Conf. on Software Eng.
(ACM Press). 175-182.

11. Sommervile, I (2005) Integrated Requirement
Engineering: A Tutorial. IEEE Soft. 22 (1) 16-23.

12. Suri, P., Kumar, S. & Singh, G. (2011) Precision in
Rapid Application Development and Reusability of
Software Components for Greater Performance
using Ranking Mechanism. International Journal of
Computer Applications, NY. 35 (8) 21-27

13. Rine, D.& Nada, N. (1999) Using Adapters to
Reduce Interaction Complexity in Reusable
Component Based Software Development.
Proceedings of Symp. on Software Reusability
(ACM Press). 37-43

14. Mazzza, C (1995) Guide to the Software
Requirements Definition Phase. ESA PSS. 1 (1).

15. Dixit, A &Saxena, P (2011) Umbrella: A new
Component Based Software Development Model.
International Conference on Computer Engineering
and Applications, Singapore. (IASCIT Press).

16. Vidger, M.& Dean, J. (1997) AnArchitectural
Approach to Building Systems from COTS Software

Components. Proc. of conference of Advanced
Studies of Collaborative Research (IBM Press).

17. Gao , J.& Gupta, K. (2002) On Building Testable
Software Components. Proc. of 1st Int. Conf. on
COTS Based Software Systems, Springer-Verlag.
108-121.

18. Muller, C &Korel, B (2001) Automated Black Box
Evaluation of COTS Components with Multiple
Interfaces. Proceedings of 2nd Int. workshop on
Automated Programming, Analysis, Testing and
Verification, ICSE.

19. Suri, P.& Kumar, S. (2010) Simulator for Identifying
Critical Components for Testing in a Component
Based Software System..International Journal of
Computer Science and Network Security, Korea.10
(6) 250-257.

20. Ning, J. (1997) Component Based Software
Engineering (CBSE). Proc. of 5th International
Symposium on Assessment of Software Tools and
Technologies, 34-43.

21. Meling, R.& Wong, E. (2000) Storing and Retrieving
Software Components: A Component Description
Manager.Proc. of Australian Software Eng.
Conference (IEEE Press).107-117.

22. Smith, R. (1998) Effort Estimation in Component
Based Software Development: Identifying
Parameters. SIGCSE Doctoral Consortium,
Available: http://www.cs.ulexas.edu.

23. Wills, R. (1981) A Note on the Generation of Project
Network Diagram. Operation Research Society. 32.
235-238

24. Deo, N (2009). System Simulation with Digital
Computer. New Delhi: PHI Learning Pvt. Ltd.

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II
I
 V

er
si
on

 I

43

20

12
Fe

br
ua

r y

http://www.cs.ulexas.edu/

©2011 Global Journals Inc. (US)

This page is intentionally left blank

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

II
I
 V

er
si
on

 I

44

20
12

© 2012 Global Journals Inc. (US)

Fe
br

ua
r y

	Effort Distribution in COTS Components Integration: ASimulation Based Approach
	Author's
	Keywords
	I. INTRODUCTION
	a) Component Requirement Specification
	b) Component Requirement Review
	c)Component Identification and Selection
	d) Component Adaptation
	e) Component Integration
	f) Component Deployment

	II. PROBLEM STATEMENT
	III. PROPOSED SIMULATION MODEL
	IV. WHY SIMULATION FOR THIS PROBLEM
	V. ASSUMPTIONS
	VI. NOTATIONS
	VII. ALGORITHM DESCRIPTION
	VIII. CASE STUDIES
	a) Case Study 1
	b) Case Study 2

	IX. DISCUSSION AND CONCLUSION
	REFERENCES REFERENCES REFERENCES

