
© 2012 N.Sasirekha, Dr.M.Hemalatha. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Volume 12 Issue 1 Version 1.0 January 2012
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: & Print ISSN:

Abstract - Software security and protection plays an important role in software engineering. Considerable

attempts have been made to enhance the security of the computer systems because of various available

software piracy and virus attacks. Preventing attacks of software will have a huge influence on economic

development. Thus, it is very vital to develop approaches that protect software from threats. There are various

threats such as piracy, reverse engineering, tampering etc., exploits critical and poorly protected software.

Thus, thorough threat analysis and new software protection schemes, needed to protect software from

analysis and tampering attacks becomes very necessary. Various techniques are available in the literature for

software protection from various attacks. This paper analyses the various techniques available in the literature

for software protection. The functionalities and the characteristic features are various software protection

techniques have been analyzed in this paper. The main goal of this paper is to analyze the existing software

protection techniques and develop an efficient approach which would overcome the drawbacks of the existing

techniques.

Keywords : Software Security, Software Tampering, Tampering Attacks, Encryption, Cryptography, Decryption.

GJCST Classification: K.6.5

A Survey on Software Protection Techniques against Various Attacks

Strictly as per the compliance and regulations of:

A Survey on Software Protection Techniques
against Various Attacks

N.Sasirekha α, Dr.M.Hemalatha Ω

Abstract - Software security and protection plays an important
role in software engineering. Considerable attempts have been
made to enhance the security of the computer systems
because of various available software piracy and virus attacks.
Preventing attacks of software will have a huge influence on
economic development. Thus, it is very vital to develop
approaches that protect software from threats. There are
various threats such as piracy, reverse engineering, tampering
etc., exploits critical and poorly protected software. Thus,
thorough threat analysis and new software protection
schemes, needed to protect software from analysis and
tampering attacks becomes very necessary. Various
techniques are available in the literature for software protection
from various attacks. This paper analyses the various
techniques available in the literature for software protection.
The functionalities and the characteristic features are various
software protection techniques have been analyzed in this
paper. The main goal of this paper is to analyze the existing
software protection techniques and develop an efficient
approach which would overcome the drawbacks of the
existing techniques.
Keywords : Software Security, Software Tampering,
Tampering Attacks, Encryption, Cryptography,
Decryption.

I. INTRODUCTION

oftware protection has become one of the
attractive domains with high commercial interest,
from major software vendors to content providers

which also comprises of the movie and music recording
industries. The digital data of the software is especially
at tremendous risk.

Confidentiality and data authenticity are two
important concepts in security. Confidentiality provides
data secrecy of a message and data authenticity
protects the integrity of the message. Software
protection falls between the domains of security,
cryptography [30] and engineering among other
disciplines.

Author α

: Doctoral Research Scholar, Karpagam University,

Coimbatore, Tamilnadu, India,

E-mail : sasirekha.research@gmail.com, Telephone: number here

E-mail : here@here.com

Author : Head, Department of Software Systems, Karpagam
University, Coimbatore, Tamilnadu, India.

E-mail : hema.bioinf@gmail.com

The software protection technique mainly
concentrates on protecting software from various
attacks such as reverse engineering by obfuscation,
modification by software tamper resistance, program-

based attacks by software diversity, and BORE –

break-
once run everywhere –

attacks by architectural design
[2].

Protecting content needs protecting the
software which processes the content. Copy protection
is another form of software protection to the level that it
needs several same protections against reverse
engineering and software tampering.

Protecting code from attacks such as reverse
engineering [32], analysis and tampering attacks

is one
of the main concerns for software providers. If a
competitor succeeds in obtaining and reusing a
algorithm, it would result in major issue. Moreover,
secret keys, confidential data or security related code
are not planned to be examined, extracted, stolen or
corrupted. Even if legal actions such as patenting and
cyber crime laws are in place, these techniques remain
a significant threat to software developers and security
expert.

This paper provides a survey on software
protection and related areas which would encourage
further research. This paper also provides a number of
viewpoints, discuss challenges and suggest future
directions.

II.

LITERATURE

SURVEY

Piracy, reverse engineering and tampering have
been the major software threats. Collberg et al. [1]
provided a compact outline of the approaches to protect
against these threats. Software watermarking for
instance focuses on protecting software reactively
against piracy. It usually implants hidden, distinctive
data into an application in such a way that it can be
guaranteed that a particular software instance belongs
to a particular individual or company. When this data is
distinctive for each example, one can mark out copied
software to the source unless the watermark is
smashed. The second group, code obfuscation,
protects the software from reverse engineering attacks.
This approach comprises of one or more program
alterations that alter a program in such a way that its
functionality remains identical but analyzing the internals
of the program becomes very tough. A third group of
approaches focuses to make software “tamper-proof”,

S

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

53

 Ja

nu
a r
y

 2
01

2

also called tamper-resistant.
Protecting the reliability of software platforms,

particularly in unmanaged customer computing systems
is a tough task. Attackers may try to carry out buffer

Ω

overflow attacks to look for the right of entry to systems,
steal secrets and patch on the available binaries to hide
detection. Every binary has

intrinsic weakness that
attackers may make use of. In this paper Srinivasan et
al., [3] proposed three orthogonal techniques; each of
which offers a level of guarantee against malware
attacks beyond virus detectors. The techniques can be
incorporated on top of normal defenses and can be
integrated for tailoring the level of desired protection.
The author tries to identify alternating solutions to the
issue of malware resistance. The techniques used are
adding diversity or randomization to data address
spaces, hiding significant data to avoid data theft and
the utilization of distant evidence to detect tampering
with executable code.

This paper focuses on the protection of a
software program and the content that the program
protects. There have been billions

of dollars spent each
year by the industries especially for software piracy and
digital media piracy. The achievement of the
content/software security in a huge segment is based
on the ability of protecting software code against
tampering and identifying the attackers who issue the
pirate copies. In this paper, Hongxia Jin et al., [4]
concentrates on the attacker identification and forensic
examination. The author discussed about a proactive
detection approach for defeating an on-going attack
before the cooperation has occurred. The author also
describes another detection approach for post-
compromise attacker identification. Especially, the
author takes into account the real world scenarios where
the application programs connect with their vendors
every so often, and where a discovery of attacking can
bar a hacker user from further business.

Code obfuscation focuses to protect code
against both static and dynamic study and there exists
another approach to protect against code analysis,
namely self-modifying code. This approach provides the
opportunity to create code at runtime, rather than
changing it statically. Practically, self-modifying code is
highly restricted to the monarchy of viruses and
malware. Yet, some publications regard self-modifying
code as an approach to protect against static and
dynamic analysis. Madou et al., [5] for instance regard
dynamic code generation. The author proposed an
approach where functions are generated earlier to their
first call at runtime. Moreover, clustering is presented in
such a way that a general template can be utilized to
generate each function in a cluster, carrying out a least
amount of alterations. In order to protect the constant
`edits' against dynamic analysis, the authors suggested
the usage of a Pseudo Random Number Generator
(PRNG). The decryption at runtime technique is equal
with code generation, apart from the fact that the
decryption key can depend on other code, rather than
on a PRNG. Moreover, it lessens re-encryption the
viability of code during execution, while Madou et al. do

not clearly protect a function template after the function
executed.

Protecting code against tampering can be
regarded as the issue of data authenticity, where ‘data’
refers to the program code. Aucsmith [6] explained an
approach to implement tamper resistant software. The
approach protects against analysis and tampering. The
author utilizes small, armored code segments, also
called Integrity Verification Kernels (IVKs), to validate
code integrity. These IVKs are protected via encryption
and digital signatures in such a way that it is tough to
modify them. Morover, these IVKs can communicate
with each other and across applications via an integrity
verification protocol.

Chang et al. [7] proposed an approach
depending on software guards. The protection
technique of the author is chiefly based on a composite
network of software guards which mutually validate each
other's consistency and that of the program's critical
sections. A software guard is a small segment of code
carrying out

particulars tasks, e.g. check summing or
repairing. When check summing code discovers a
modification, repair code is capable to undo this
malevolent tamper challenge. The security of the
approach depends partly on hiding the obfuscated
guard code and the complexity of the guard network.

Horne et al. [8] described on the same idea of
Chang et al. [7] and proposed `testers', small hashing
functions that validate the program at runtime. These
testers can be integrated with embedded software
watermarks to result in a unique, watermarked, self-
checking program. Other related research is
unconscious hashing [9] which interweaves hashing
instructions with program instructions and which is
capable of proving whether a program is operated
correctly. Recently, Ge et

al. [10] presented a research
work on control flow based obfuscation. Although the
authors contributed to obfuscation, the control flow data
is protected with an Aucsmith-like tamper resistance
approach.

Buffer overflow utilization is a one of the
notable threat to software security. In order to lessen the
threat, Visual studio C/C++compiler facilitates to
randomize the addresses of the compiled program in
initialization time and to implant security stack guards by
the compiled program in run time. Yongdong Wu [11]
upgrades the compiler by raising the compiled
program's abilities in the following features:

i.

Protects a frame pointer from tampering

without
additional cost;

A Survey on Software Protection Techniques against Various Attacks
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

54

 Ja

nu
ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

ii. Defeats the attack which tampers 1-2 bytes of a
protected region at a very low cost;

iii. Checks the indirect function call against the
prologue pattern so as to lessen the probability
of software crash in case of being attacked.

The experiments demonstrated the
enhancement on Microsoft Visual Studio in generating
secure and robust software.

Cappaert et al., [12] presented a partial
encryption approach depending on a code encryption
approach [12], [13]. In order to utilize the partial
encryption approach, binary codes are partitioned into
small segments and encrypted. The encrypted binary
codes are decrypted at runtime by users. Thus, the
partial encryption overcomes the faults of illuminating all
of the binary code at once as only the essential
segments of the code are decrypted at runtime.

Jung et al., [14] presented a code block
encryption approach to protect software using a key
chain. Jung’s approach uses a unit block, that is, a
fixed-size block, rather than a basic block, which is a
variable-size block. Basic blocks refer to the segments
of codes that are partitioned by control transformation
operations, such as “jump” and “branch” commands, in
assembly code [12], [13]. Jung’s approach is very
similar to Cappaert’s scheme. Jung’s approach tries to
solve the issue of Cappaert’s approach. If a block is
invoked by more than two preceding blocks, the invoked
block is duplicated.

Unauthorized reverse-engineering of algorithms
is a major issue for the software industry. Reverse-
engineers look for security holes in the program to make
use of competitors' vital approaches. In order to
discourage reverse-engineering, developers use a wide
range of static software protections to obfuscate their
programs. Metamorphic software protections include
another layer of protection to conventional static
obfuscation approaches, forcing reverse-engineers to
alter their attacks as the protection changes. Program
fragmentation incorporates two obfuscation
approaches, over viewing and obfuscated jump tables,
into a novel, metamorphic protection. Segments of code
are eliminated from the chief program flow and placed
throughout memory, minimizing the locality of the
program. These fragments move and are called using
obfuscated jump tables which makes program
execution hard. This research by Birrer et al., [15]
evaluates the performance overhead of a program
fragmentation

engine and offers examination of its
efficiency against reverse-engineering approaches. The
experimental results show that program fragmentation
has low overhead and is an effective approach to
obscure disassembly of programs through two common
disassembler/debugger tools.

Song-kyoo Kim [16] deals with the stochastic
maintenance approach for the software protection
through the closed queueing system with the
untrustworthy backups. The technique shows the
theoretical software protection approach in the security
viewpoint. If software application modules are denoted
as backups under proposed structural design, the
system can be overcome through the stochastic

maintenance model with chief untrustworthy and
random auxiliary spare resources with replacement
strategies. Additionally, the practical approach of
technology improvement in software engineering
through the technology innovation tool called TRIZ.

Zeng Min et al., [17] considered the supple
manufacturing venture networks data security and
software protection and proposed an enterprise
classified data security and software protection solution,
to describe the enterprise data storage, transmission
and application software installation authorization,
license and so on, presented a time and machine code
depending on MD5, AES encryption algorithm dynamic
secret key the encryption approach, to protect the
enterprise data confidentiality, integrity and availability,
to attain the software installation restrictions and using
restrictions.

Kent [18] proposed a software protection
technique which deals with the security needs of
software vendors like protection from software copying
and modification (e.g. physical attacks by users, or
program-based attacks). Techniques proposed to
handle these requirements include physical Tamper-
Resistant Modules (TRMs) and cryptographic
techniques. One approach comprises of using
encrypted programs, with instructions decrypted
immediately preceding to execution. Kent also observed
the dual of this issue like user needs that externally-
supplied software be confined in its access to local
resources.

Gosler’s software protection survey [19]
investigates circa-1985 protection technologies which
comprise of hardware security tools (e.g. dongles),
floppy disc signatures (magnetic and physical), analysis
denial approaches (e.g. anti-debug approaches,
checksums, encrypted code) and slowing down
interactive dynamic analysis. The main goal is on
software copy prevention, but Gosler observed that the
potency of resisting copying should be balanced by the
potency of resisting software analysis (e.g. reverse
engineering to study where to alter software and for
protecting proprietary approaches) and that of software
modification (to bypass security checks). Useful
tampering is generally headed by reverse engineering.

Gosler also described that one should
anticipate that an opponent can execute dynamic
analysis on the target software without discovery (e.g.
using in-circuit emulators and simulators) and that in

A Survey on Software Protection Techniques against Various Attacks

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

55

 Ja

nu
a r
y

 2
01

2

such scenario, due to repeated experiments, one should
anticipate the opponent to win. Thus, the main goal of
practical resistance is to construct such experiments
“enormously arduous”. Another proposal [19] is cycling
software (e.g. through some forced obsolescence) at a
rate faster than an opponent can break it; this expects
the model of forced software renewal (Jakobsson and
Reiter [20]), who suggested hopeless pirates via forced
updates and software aging). This technique is suitable

where protection from attacks for a restricted time
period suffices.

Herzberg and Pinter [21] focused on the issue
of software copy protection and presented a solution
needing CPU encryption support (which was far less
possible when presented almost 20 years ago, circa
1984-85). Cohen’s research [22] on software diversity
and obfuscation is directly concentrated to software
protection and offers a wide range of algorithms.

The subsequent practical tamper resistance
system of Aucsmith [23] handled similar problems by an
integration of just-in-time instruction decryption, and re-
arranging instruction blocks at run-time to vigorously
change the deals with the executing statements during
program execution.

Several researchers have proposed techniques
on software obfuscation using automated tools and
code transformations [24, 25]. One idea would be to
employ language-based tools to transform a program
(most easily from source code) to a functionally
equivalent program which presents greater reverse
engineering barriers. If implemented in the form of a pre-
compiler, the

usual portability issues can be handled by
the back-end of standard compilers.

Collberg et al. [26] provides more information
regarding software obfuscation which includes
descriptions about:

•

Categorizing code transformations (e.g. control
flow obfuscation, data obfuscation, layout
obfuscation, preventive transformations)

•

Identification of control flow changes using
opaque predicates (expressions not easy for an
attacker to predict, but whose worth is
recognized at compilation or obfuscation time)

•

Preliminary suggestions on metrics for code
transformations

•

Program slicing tools

•

The usage of (de)aggregation of flow control or
data

Essential suggestions in software protection are
done by Aucsmith [6], in combination with Graunke [23]
at Intel. Aucsmith provides tamper prevention software
which prevents inspection and change, and it is highly
dependent to work accurately in unfriendly situations.
Architecture is suggested according to an Integrity
Verification Kernel (IVK) that checks the reliability of vital
code segments. The IVK architecture is self-decrypting
and includes self adjustment code.

Software tampering prevention using self-
checking code was described by Horne et al. [27]. The
integrity of segments of code is tested using some code
known as testers. This can be a linear hash function and
a predictable hash value. If the integrity condition is not
satisfied, suitable actions will be carried out so as to
make the integrity condition satisfied. The attackers can
be confused and it is difficult for them

to hack the

testers if more number of testers is used.

Chang and Atallah [28] presented a technique
with fairly extensive capacity containing a set of guards
that can be programmed to perform arbitrary processes.
An illustration for this is the check sum code segments
for integrity checking which provides resistance against
software tamper. An additional described guard function
is repairing code (e.g. if a spoiled code segment is
identified, downloading and installing a new version of
the code section). The author also presents a technique
for automatically keeping protections within code.

Chen et al. [29] put forth oblivious hashing that
engages compile-time code alterations which outcomes
in the calculation of a running trace of the execution
history of a complete code. In this approach a trace are
considered as increasing hash values of a subset of
expressions that happens inside the usual program
execution.

Gutmann [30] put forth an apparent
conversation of the security concerns facing
cryptographic usage in software under general-purpose
operating systems, and analyzes the design difficulties
in nullifying these concerns faced by using secure
cryptographic co-processors.

Approaches

Functionalities

[1]

Outline of the approaches to protect
against these threats. Software
watermarking for instance focuses
on protecting software reactively
against piracy

[2]

Proposed three orthogonal
techniques; each of which offers a
level of guarantee

against malware
attacks beyond virus detectors.

[4]

Concentrates on the attacker
identification and forensic
examination. The author discussed
about a proactive detection
approach for defeating an on-going
attack before the cooperation has
occurred

[5]

an approach in which functions are
generated earlier to their first call at
runtime

[6]

The author utilizes small, armored
code segments, also called Integrity

A Survey on Software Protection Techniques against Various Attacks
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

56

 Ja

nu
ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

Verification Kernels (IVKs), to validate
code integrity

[7]

The protection technique of the
author is chiefly based on a
composite network of software
guards which mutually validate each
other's consistency and that of the
program's critical sections.

[12]
Presented a partial encryption
approach depending on a code
encryption approach

[16]

Deals with the stochastic
maintenance approach for the
software protection through the
closed queueing system with the
untrustworthy backups

[12]

Focused on the issue of software
copy protection and presented a
solution needing CPU encryption
support

[27]

Software tampering prevention using
self-checking code

III.

PROBLEMS

AND

DIRECTIONS

The theoretical results to date on software
obfuscation provide software protection of considerable
practical value. The impracticality of constructing a
program to find out whether other software is malicious
does not preclude highly valuable computer virus
detection technologies, and a feasible, anti-virus
industry. It is still early in the history of research in the
domains of software protection and obfuscation and
that several discoveries and innovations lie ahead
particularly in the domains of software diversity (which
are utilized are less in the present scenario), and
software tamper resistance. Increased number of secure
techniques for software protection is very much needed
which involves public scrutiny and peer evaluation.
Cappaert proposed a tamper-resistant code encryption
scheme, and Jung proposed a key-chain-based code
encryption scheme. However, Cappaert’s scheme did
not meet the security requirements for code encryption
schemes, and Jung’s scheme had an efficiency
problem. Moreover, time cost and space cost should
also be taken into consideration. To improve efficiency,
support from the compiler and operating system is
needed [19].

More open discussion of particular approaches
is very much needed. Cryptography is observed to be
the technique that can be incorporated in the software
protection technique for improved protection. Past
trends of proprietary, undislosed techniques of

software
obfuscation approaches similar to the early days in
cryptography have to be altered.

For decades encryption has provided the
means to hide information. In this research, the self-
encrypting code is used as a means of software
protection. In this

research work, the concept of efficient
code encryption techniques, which offers confidentiality
and a method to create code dependencies that
implicitly protect integrity need to be established.
Moreover, several dependency schemes based on a
static call

graph which allow runtime code decryption
simultaneous with code verification can also be used. If
code is modified statically or dynamically, it will result in
incorrect decryption of other code, producing a

corrupted executable. Better and efficient cryptographic
techniques can be integrated for better results. This
research uses the encryption technique to secure
software static analysis and tampering attacks.

IV.

CONCLUSION

This paper presented and discussed a survey
on the protection of software because of various
attacks. Several software protection techniques
available in the literature are analyzed and examined.
The characteristic features of the existing algorithms are
thoroughly investigated in this paper. This study would
facilitate in development of efficient software protection
techniques. Encryption techniques can be incorporated
with the existing software protection techniques to
improve the overall security of the

software. Code
encryption schemes for protecting software against
various attacks like reverse engineering and
modification. Therefore, novel and efficient code
encryption scheme have to be established based on an
indexed table to guarantee secure key management
and efficiency.

REFERENCES REFERENCES

REFERENCIAS

1.

Collberg, C.S.; Thomborson, C.; “Watermarking,
tamper-proofing, and obfuscation -

tools for
software protection”, IEEE Transactions on Software
Engineering, Volume: 28 , Issue: 8, Page(s): 735 –

746, 2002.

2.

T. Ogiso, U. Sakabe, M. Soshi, A. Miyaji, “Software
Tamper Resistance Based on the Difficulty of
Interprocedural Analysis”, 3rd Workshop on
Information Security Applications (WISA 2002),
Korea, August 2002.

3.

Srinivasan, R.; Dasgupta, P.; Iyer, V.; Kanitkar, A.;
Sanjeev, S.; Lodhia, J.; “A Multi-factor Approach to
Securing Software on Client Computing Platforms”,
2010 IEEE Second International Conference on
Social Computing (SocialCom), Page(s): 993 –

998,
2010.

4.

Hongxia Jin; Lotspiech, J.; “Forensic analysis for

A Survey on Software Protection Techniques against Various Attacks

© 2012 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

57

 Ja

nu
a r
y

 2
01

2

[14]
Presented a code block encryption
approach to protect software using a
key chain

tamper resistant software”, 14th International
Symposium on Software Reliability Engineering,
2003. ISSRE 2003.

5. M. Madou, B. Anckaert, P. Moseley, S. Debray, B.
De Sutter, and K. De Bosschere. Software
protection through dynamic code mutation

6. D. Aucsmith. Tamper resistant software: an
implementation. Information Hiding, Lecture Notes
in Computer Science, 1174:317-333, 1996.

7. H. Chang and M. J. Atallah. Protecting software
codes by guards. ACM Workshop on Digital Rights
Managment (DRM 2001), LNCS 2320:160-175,
2001.

8. B. Horne, L. R. Matheson, C. Sheehan, and R. E.
Tarjan. Dynamic Self-Checking Techniques for
Improved Tamper Resistance. In Proceedings of
Workshop on Security and Privacy in Digital Rights

9.

Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha,
and M. Jakubowski. Oblivious hashing: a stealthy
software integrity veri_cation primitive. In Information
Hiding, 2002.

10.

J. Ge, S. Chaudhuri, and A. Tyagi. Control flow
based obfuscation. In DRM '05: Proceedings of the
5th ACM workshop on Digital rights management,
pages 83{92, 2005.

11.

Yongdong Wu; “Enhancing Security Check in Visual
Studio C/C++ Compiler”, Software Engineering,
2009. WRI World Congress on WCSE '09. Volume:
4

, Page(s): 109 –

113, 2009.

12.

J. Cappaert et al., “Toward Tamper Resistant Code
Encryption: Practice and Experience,” LNCS, vol.
4991, 2008, pp. 86-100.

13.

J. Cappaert et al., “Self-Encrypting Code to Protect
Against Analysis and Tampering,” 1st Benelux
Workshop Inf. Syst. Security, 2006.

14.

D.W Jung,

H.S Kim, and J.G. Park, “A Code Block
Cipher Method to Protect Application Programs
From Reverse Engineering,”J. Korea Inst. Inf.
Security Cryptology, vol. 18, no. 2, 2008, pp. 85-96
(in Korean)

15.

Birrer, B.D.; Raines, R.A.; Baldwin, R.O.; Mullins,
B.E.; Bennington, R.W. Program Fragmentation as a
Metamorphic Software Protection, Third
International Symposium on Information Assurance
and Security, 2007 , Page(s): 369 –

374, 2007. IAS
2007.

16.

Song-kyoo Kim; “Design of enhanced software
protection architecture by using theory of inventive
problem solving”, IEEE International Conference on
Industrial Engineering and Engineering
Management, 2009. IEEM 2009.

17.

Zeng Min; Liu Qiong-mei; Wang Cheng; Practices
of agile manufacturing enterprise data security and
software protection, 2010 2nd International
Conference on Industrial Mechatronics and
Automation (ICIMA).

18.

S. Kent, Protecting Externally Supplied Software in
Small Computers, Ph.D. thesis, M.I.T., September
1980.

19.

J. Gosler, “Software Protection: Myth or Reality?”,
Advances in Cryptology –

CRYPTO’85, Springer-
Verlag LNCS 218, pp.140–157 (1985)

20.

M. Jakobsson, M.K. Reiter, “Discouraging Software
Piracy Using Software Aging”, Proc. 1st ACM
Workshop on Digital Rights Management (DRM
2001), Springer LNCS 2320, pp.1–12 (2002).

21.

A. Herzberg, S.S. Pinter, “Public Protection of
Software”, pp.371–393, ACM Trans. Computer
Systems, vol.5 no.4 (Nov. 1987). Earlier version in
Crypto’85.

22.

F. Cohen, “Operating System Protection Through
Program Evolution”, Computers and Security 12(6),
1 Oct. 1993, pp. 565–584.

23.

D. Aucsmith, G. Graunke, Tamper Resistant
Methods and Apparatus, U.S. Patent 5,892,899
(filed June 13 1996; issued Apr.6 1999).

24.

C. Collberg, C. Thomborson, D. Low,
“Manufacturing Cheap, Resilient, and Stealthy
Opaque Constructs”, Proc. Symp. Principles of
Programming Languages (POPL’98), Jan. 1998.

25.

C. Collberg, C. Thomborson, D. Low, “Breaking
Abstractions and Unstructuring Data Structures”,
IEEE International Conf. Computer Languages
(ICCL’98), May 1998.

26.

C. Collberg, C. Thomborson, D. Low, “A Taxonomy
of Obfuscating Transformations”, Technical Report
148, Dept. Computer Science, University of
Auckland (July 1997).

27.

B. Horne, L. Matheson, C. Sheehan, R. Tarjan,
“Dynamic Self-Checking Techniques for Improved
Tamper Resistance”, Proc. 1st ACM Workshop on
Digital Rights Management (DRM 2001), Springer
LNCS 2320, pp.141–159 (2002).

28.

H. Chang, M. Atallah, “Protecting Software Code by
Guards”, Proc. 1st ACM Workshop on Digital Rights
Management (DRM 2001), Springer LNCS 2320,
pp.160–175 (2002).

29.

Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha,
M. Jakubowski, “Oblivious Hashing: A Stealthy
Software Integrity Verification Primitive”, Proc. 5th
Information Hiding Workshop (IHW), Netherlands
(October 2002), Springer LNCS 2578, pp.400–414.

30.

P. Gutmann, “An Open-source Cryptographic Co-
processor”, Proc. 2000 USENIX Security
Symposium.

31.

E. Eilam, Reversing: Secrets of Reverse
Engineering, Wiley Publishing, Inc., 2005.

A Survey on Software Protection Techniques against Various Attacks
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
II
 I
ss
ue

I
 V

er
si
on

 I

58

 Ja

nu
ar
y

 2
01

2

© 2012 Global Journals Inc. (US)

Management 2001, pages 141-159, 2001.

	A Survey on Software Protection Techniquesagainst Various Attacks
	Author's
	Keywords :
	I. INTRODUCTION
	II. LITERATURESURVEY
	III. PROBLEMS AND DIRECTIONS
	IV. CONCLUSION
	REFERENCES REFERENCES REFERENCIAS

