Economical Efficient for High Scalable
Applications

Sreedevi Pogula * & M. Ganesh Kumar®

Absliract - Service-oriented architecture (SOA) paradigm for
the purpose of large-scale applications offers meaningful cost
savings by rework existing services. However, the high oddity
of client appeal and the allocated character of the access may
depreciate service response time and chance. Static cloning
of components in database for placing load spikes need
efficient resource planning and also uses the cloud
infrastructure. Moreover, no service chance gives trust is
provided in situations like datacenter crashes. In this paper,
we explore a cost-efficient usage for dynamic and
geographically-diverse cloning of elements in a cloud
computing infrastructure that perfectly adapts to Ioad
differences and provides service chance guarantees. When
comes to economic level, components hire server
opportunities and clones or trashes themselves based to self
optimizing situations. We proved in real time applications that
such an access better in response time even full cloning of the
components in all servers, while providing service chance
guarantees under failures.

i3 [NTRODUCTION

loud computing is deemed to replace high

capital expenses for infrastructure with lower

operational ones for renting cloud resources on
demand by the application providers. However, with
static resource allocation, a cluster system would be
likely to leave 50% of the hardware resources (i.e. CPU,
memory, disk) idle, thus baring unnecessary operational
expenses without any profit (i.e. negative value flows).
Moreover, as clouds scale up, hardware failures of any
type are unavoidable.

A efficient online application is of capable to
resist traffic spikes and huge crowds efficiently. And also
the service offered by the application have to be volatile
to different types of failures. A perfect solution opponent
to load differences would be static over-provisioning of
resources, at last it result into resource underutilization
for most of the time. Resource redundancy should be
employed to increase service reliability and chance, yet
in a cost-effective way. Most importantly, as the size of
the cloud increases its administrative overhead
becomes unmanageable. The cloud resources for an
application should be self managed and adaptive to
load variations or failures. In this paper, we propose a
middleware (“Scattered Autonomic Resources”, referred
to as Scarce) for supple sharing to avoid stranded and

Authar e - M Tech, CSE Dept, HITS, Hyderabad,
Emal ¢ sreedeligsky nel@gmail.com

Avitior o - M Tech, Asst. Frof. MREC, Hyderabad,
E-mail - ganeshkumar.programs@agmai.com

underutilized computational resources that dynamically
adapts to changing conditions, such as failures or load
variations. Our middleware simplifies the development
of online appliances composed by multiple independent
components (e.g. web services) following the Service
Criented Architecture (SOA) principles. We consider a
virtual economy, where components are treated as
individually rational entities that rent computational
resources from servers, and migrate, replicate or exit
according to their economic fitness. This fitness
expresses the difference between the utility offered by a
specific application component and the cost for
retaining it in the cloud. The server rent price is an
increasing function of the utilization of server resources.
Moreover, components of a certain applications are
dynamically replicated to geographically-diverse servers
according to the chance requirements of the
application. Our access combines the following unique
characteristics:

+ Adaptive component replication for accommodating
load variations.

+ Geographically-diverse
component instances.

¢+ Cost-effective placement of service components for
supple load balancing.

¢ Decentralized seli-management of the
resources for the application.

placement of clone

cloud

Having implemented a full prototype of our
access, we experimentally prove that it effectively
accommodates load spikes; it provides a dynamic
geographical replica placement without thrashing and
cost-effectively utilizes the cloud resources. Specifically,
we found that our access offers lower response time
even than full replication of the service components to
all servers.

[I. MOTIVATION - RUNNING EXAMPLE

Building an application that both provides
robust guarantees against failures (hardware, network,
etc.) and handles dynamically load spikes is a non-trivial
task. As a running example, we have developed a
simple web application for selling e-tickets (print@
home) composed by 4 independent components:

e A web front-end, which is the entry point of the
application and serves the HTML pages to the end
user.

@ 2013 Global Journals Inc. (US)

2013

U
e

Version |

Issue 1

(‘:l‘)(‘(ﬁjﬂl } Volume XIII

Global Journal of Computer Science and Technology

2
)

()1 3

‘

I ¢car

c
i <
-

[ssuc 1

T
1

f',l‘u;-a:ie!l } Volume XTI

o

RA‘!{‘I‘]CC di\;i ‘]-(;L‘E}}}(‘ai:q‘f‘;-‘

Global Journal of Computer

s A user manager for managing the profiles of the
customers.

s The profiles are stored
eventually consistent, allocated,
value store.

s A ficket manager for managing the amount of
available tickets of an event. This component uses a
relational database management system (MySQL).

s An e-ticket generator that produces e-tickets in PDF
format (print@home).

in a highly scalable,
structured key-

Each component can be regarded as a
stateless, standalone and self-contained web service.
Figure 1 depicts the application architecture. A token (or
a session ID) is assigned to each customer's browser
by the web front-end and is passed to each component
along with the appeal. This token is used as a key in the
key-value database to store the details of the client's
shopping cart, such as the number of tickets ordered.
Note that even if the application uses the concept of
sessions, the components themselves is stateless (i.e.
they do not need to keep an internal state between two
appeals).

This application is highly sensitive to traffic
spikes, when, for example, tickets for a concert of a
famous band are sold. If the spike is foreseeable, one
wants to be able to add spare servers that will be used
transparently by the application for a short period of
time, without having to reconfigure the application. After
this period, the servers have to be removed
transparently to the end users. As this application is
business-critical, it needs to be deployed on different
geographical regions, hence on different datacenters.

[II. SCARCE: THE QUEST OF AUTONOMIC
APPLIANCES

al The Access

We consider appliances formed by many
independent and stateless components that interact
together to provide a service to the end user, as in
Service Criented Architecture (SOA). A component is
self-managing, self-healing and is hosted by a server,
which is in fun allowed to host many diflerent
components. A component can stop, migrate or
replicate to a new server according to its load.

b} Server Agent

The server agent is a special component that
resides at each server and is responsible for managing
the resources of the server according to our economic-
based access, as shown in Figure 2. Specifically, this
agent is responsible for starting and stopping the
components of the various appliances at the local
server, as well as checking the “health” of the services
{e.g. by verilying if the service process is still running, or
by firing a test request and checking that the
corresponding reply is correct). The agent knows the

@ 2013 Global Jounals Inc. {US)

properties of every service that composes the
application, such as the path of the service executable,
its minimum and maximum replication factor. This
knowledge is acquired when the agent starts, by
contacting another agent (referred to as “bootstrap
agent”). Any running agent participating in the
application cluster can act as a bootstrap agent.

Servicetl

Agent

| RoutingTable |

| Monitor I
| Manager |

¢/ Houting Table

Instead of using a centralized repository for
locating services, each server keeps locally a mapping
between components and servers. It is maintained by a
gossiping algorithm (see Figure 2), where each agent
contacts a random subset (log (N) where N is the total
number of servers) of remote agents and exchanges

information about the services running on their
respective server. Contrary to usual web services
architectures, there is no central repository [such as a
UDDI registry (uddixml.org)] for locating a service, but
each agent maintains its own local registry (ie. the
routing table), as shown in Table |.

The Local Routing Table

Component Server
Componentl Server 4, Server B
Component2 Server B, Server C
Componeni3 Server 4

A component may be hosted by several
servers, therefore we consider 4 different policies that a
server s may use for choosing the replica of a
component:

1. A proximity-based policy: thanks to the labels
attached to each server, the geographically nearest
replica is chosen.

2. A rent-based policy: the least loaded server is
chosen; this decision is based on the rent price of
the servers.

3. A random-based policy: a
chosen.

4. A net benefit-based policy: the geographically
closest and least loaded replica. For every replica of
the component residing at server j, we compute a
weight:

random replica is

di Economic Mode!

Service replication should be highly adaptive to
the processing load and to failures of any kind in order
to maintain high service chance. To this end, each
component is treated by the server agent as an
individual optimizer that acts autonomously so as to
ascertain the pre-specified chance guarantees and to
balance its economic fitness. Time is assumed to be
split into epochs. At every epoch, the server agent
verifies from the local routing table that the minimum
number of replicas for every component is satisfied,
thus, no global or remote knowledge is required. If the
required chance level is not satisfied and if the service is
not already running locally, the agent starts the service.
When the service has started, the server agent informs
all others by using a hierarchical broadcast to update
their respective routing tables. At each epoch, a service
pays a virtual rent r to the senvers where it is running.
The virtual rent corresponds to the usage of the server
resources, such as CPU, memory, network, disk (I/O,
space).

To avoid oscillations of a replica among servers,
the migration is only allowed if the following migration
conditions apply:

1. The minimum chance is still satisfied using the new
server,

2. The absolute price difference between the current
and the new server is greater than a threshold,

3. The usages of the current server s are above a soft
limit.

4. Replicate: if it has positive balance for the last f
epochs, it may replicate. For replication, a
component has also to verify that it can afford the
replication by having a positive balance bO for
consecutive fepochs:

A2 EvALUATION

al Cusformer Registration

Customer has to enclose their details into the
server. In this page several fields are mentioned name,
e-mail id, phone number etc.., and also to provide card
details are available and visa card, master card, one
more advantage is expiry date and cvc no standard for
card verification number in this cvc number is checking
their card details.

The main advantage login as customer they can
select their ticket details, but each ticket details are
identified by one secrete key based on that secrete key
it will process.

b} User Manager

The user manager for managing the profile of
the customers, the profiles are stored in highly scalable,
distributed, structured key value User manager login
they will monitor how many number of users are
requested the ticket. We consider many independent

components that interact together to provide you service
to the end user as SOA.

¥ In this page session is set for 60 Seconds. It beyond
60 seconds session will be expired.

v" Distributed Optimization Algorithm is used. |t
maintains the all users’ profile, also gossiping.

¥" The user manager Components are there: from, to,
date, quota, type licket, class, train number, efc.

¥v" The user manager including Sub modules: train
details, passenger details, card details finally it will
generate ticket format.

Desjgning - The four modules are using asp.net and
coding c#.

Database - Sql Server.

¢! Ticket Manager

The ticket manager for managing the amount of
available tickets of an event. In this application to
maintain how many members is ticket booking. Store
user profile and all profiles are maintained using one of
the controls is grid view control to visible in all booking
details.

Grid view is store multiple records and retrieve
through database in this control one more advantage is
paging and modification, update, delete operation are
applied.

d} E-Ticket Generator

An e-ticket generator that produces e-tickets in
PDF format, it will generate automatically all details in
report format. And how many members ficket
sanctioned to main all ticket details in this module using
grid view control.

Grid view is store multiple records and retrieve
through database in this control one more advantage is
paging and modification, update, delete operation are
applied.

i. Expenmental Sefup we employ two different test
bed settings

A single application setup consisting of 7

servers and a multi-application setup consisting of 15

servers. In the former setup, the cloud resources serve 1

application and in the latter one 3 appliances. We

assume that the components of the application may

require up to all servers in the cloud. We simulate the

behavior of a typical user of the e-ticket application of
Section Il by performing the following actions:

1) Request the main page that contains the list of
entertainment events;

2) Request the details of an event A;

3) Request the details of an event B;

4) Request again the details of the event A;

5) Login into the application and view user account;
6) Update some personal information;

7) Buy aticket for the event A;

8) Download the corresponding ticket in PDF.

113 Global Journals Inc. (1

=
5
R
—

Issue 1

X1

(Special } Volume

s

o
2

Global Journal of Computer Science and Ted

2
)

()1 3

‘

I ¢car

c
i <
-

[ssuc 1

T
1

',I‘u;-ajie!ll Volume XII1

Technoloosy (S

Science and

Global Journal of Computer

A client continuously performs this list of actions
over a period of 1 minute. An epoch is set to 15 seconds
and an agent sends gossip messages every 5 seconds.
Moreover, the default routing policy is the random-
based policy. We consider two different placements of
the components:

s A static access where each component is assigned
to a server by the system administrator.

* Adynamic access where all components are started
on a single server and dynamically migrate/
replicate/stop according to the load or the hardware
failures.

ii. Aesults Dynamic vs static replica placement

First, we employ the single-application
experimental setup to compare our access with static
placements of the components, where we consider two
cases: i) each diflerent component is hosted at a
different dedicated server,; ii) full replication, where every
component is hosted at every server. The response time
of the 95% percentile of the appeal is depicted in Figure
3. In the static placement (i), where a component runs
on its own server, the response time is lower bounded
by that of the slowest component (in our case, the
service for generating PDF tickets). Thus, the response
time increases exponentially when the server hosting
this component is overloaded. In the case of full
replication [static placement (i)], the appeal are
balanced among all servers, keeping the latency
relatively low, even when the amount of concurrent users
is meaningful. In the dynamic placement access, all
components are hosted at a single server at startup:
then, when the load increases, a busy component is
allowed to replicate, and unpopular components may
replicate to a less busy server. Our economic access
achieves better performance than full replication,
because the total amount of CPU available in the cloud
is used in an adaptive manner by the components:
processing intensive (or “heavy”) components migrate
to the least loaded servers and heavily used
components are assigned more resources than others.
Therefore, the cloud resources are shared according to
the processing needs of components and no cloud
resources are wasted by over-provisioning.

V. FUTURE ENHANCEMENT

We will continue to research on security
mechanisms that support: to maintain data securable
and highly allocated data are the most important step in
software development process. Before developing the
tool it is necessary to determine the time factor,
economy n company strength. Once these things r
satisfied, ten next steps is to determine which operating
system and language can be used for developing the
tool. Once the programmers start building the tool the
programmers need lot of external support. This support
can be obtained from senior programmers, from book or

© 2013 Globs

ounals Inc. {US)

from websites. Before building the system the above
consideration r taken into account for developing the
proposed system. Cloud computing providing unlimited
infrastructure to store and execute customer data and
program. As customers you do not need to own the
infrastructure, they are merely accessing or renting; they
can forego capital expenditure and consume resources
as a service, paying instead for what they use.

al Security a Major Concern

1. Security concerns arising because both customer
data and program are residing Provider Premises.

2. Securily is always a major concern in Open System
Architectures.

b) Data Centre Security

1. Professional Security staff ulilizing video surveil-
lance, state of the art intrusion detection systems,
and other electronic means.

2. When an employee no longer has a business need
to access datacenter his privileges to access
datacenter should be immediately revoked.

3. All physical and electronic access to data centers
by employees should be logged and audited
routinely.

4. Audit tools so that users can easily determine how
their data is stored, protected, used, and verily
policy enforcement.

¢/ Data Location

1. When user uses the cloud, user probably won't
know exactly where your data is hosted, what
country it will be stored in?

2. Data should be stored and processed only in
specific jurisdictions as define by user.

3. Provider should also make a contractual commit-
ment to obey local privacy requirements on behalf
of their customers,

4. Data-centered policies that are generated when a
user provides personal or sensitive information that
travels with that information throughout its lifetime to
ensure that the information is used only in
accordance with the policy.

In this application simulation of e-ticket it is
used to provide service to end user and data is most
securable, allocated and reduce cost, large-scale
allocated appliances offers meaningful cost savings by
rework existing service. Over come to centralize sever
and Increase response time and no chance of server
hang, Network bandwidth is increases.

VI. RELATED WORK

There is meaningful related work in the area of
economic accesses for allocated computing. In [4], an
access is proposed for the utilization of idle
computational resources in a heterogenecus cluster.
Agents assign computational tasks to servers, given the

budget constrain for each task, and compete for CPU
time in sealed-bid second-price auction held by the
latter. In a similar setting, Popcorn access [5] employs a
first-price sealed-bid auction model. Cougaar allocated
multi-agent system [6] has an adaptivity engine which
monitors load by employing periodic “health-check”
messages. An elected agent operates as load balancer
and determines the appropriate node for each agent
that must be relocated based on runtime performance
metrics, e.g. message traffic and memory consumption.
Also, a coordinator component determines potential
failure of agents and restarts them. However, cost-
effectiveness among the objectives of Cougaar, and
moreover our access is more lightweight in terms of
communication overhead. In [7], a virtual currency
{called Egg) is used for expressing a user's wilingness
to pay as well as a provider's bid for a accepting the job,
and finally is given to the winning provider as
compensation for job execution. Providers estimate their
opportunity cost for accepting a job and regularly
announce a unit price table to a central entity for a
specific period. The central Egg entity informs all
candidate providers about the new job and acquires
responses (cost estimations). However, the access in
[7] is centralized and it does not provide chance
guarantees. In [8], appliances trade computing capacity
in a free market, which is centrally hosted, and are then
automatically activated in virtual machines on the traded
nodes on-call of traffic spikes. The appliances are
responsible for declaring their required number of nodes
at each round based on usage statistics and allocate
their statically guaranteed resources or more based on
their willingness to pay and the equilibrium price; this is
the highest price at which the demand saturates the
cluster capacity. However, [8] does not deal with
chance guarantees, as opposed to our access. Also,
our access accommodates traffic spikes in a prioritized
way per application without requiring the determination
of the equilibrium price. Pautasso et al. ropose in [2] an
autonomic controller for the JOpera allocated service
composition engine over a cluster. The autonomic
controller starts and stops navigation (i.e. scheduler)
and dispatcher (i.e. execution and composition) threads
based on several load-balancing policies that depend
on the size of their respective processing queues. The
autonomic component also has self-healing capabilities.
However, proper thread placement in the cluster and
communication overhead among threads are not
considered in [9]. Also, in [10], SLA agreements for a
specific QoS level for web services are established.
However, monitoring of SLA compliance may require the
involvement of third-parties or centralized services. A
bio-networking access was proposed in [11], where
services are provided by autonomous agents that
implement basic biological behaviors of swarms of bees
and ant colonies such as replication, migration, or
death. To survive in the network environment, an agent

obtains “energy” by providing a service to the users.
Moreover, several implementation frameworks exist to
build reliable SOA-based appliances: [12] is a
mechanism for specifying fault tolerant web Service
compositions, [13] is a virtual communication layer for
transparent service replication, and [14] is a framework
for the active replication of services across sites. These
frameworks do not consider dynamic adaptation to
changing conditions, such as load spikes, or do not
provide guarantees about geographical diversity of
replicas.

Vi, CONCLUSION

A web front-end, which is the entry point of the
application and serves the HTML pages to the end user.
A user manager for managing the profiles of the
customers. The profiles are stored in a highly scalable,
eventually consistent, allocated, structured key-value
store. A ticket manager for managing the amount of
available tickets of an event. This component uses a
relational database management system. An e-ticket
generator that produces e-tickets in PDF format (print
home). The main advantage login as customer they can
select their ticket defails. but each ticket details are
identified by one secrete key. Based on that secrete key
it will process. This project is used to manage efficiently
with less cost by using secretary keys. Every transaction
is identified based on this key only.

The complete communication between
customer, user manager, ticket manager and e-ticket
generator with centralized server. Each component can
be regarded as a stateless, standalone and seli-
contained web service. Figure 1 depicts the application
architecture. A token (or a session ID) is assigned to
each customer’s browser by the web front-end and is
passed to each component along with the appeal.

REFERENCES REFERENCES REFERENCIAS

1. “The apache cassandra project,” http://cassandra.
apache.org/.

2. L. Lamport, “The part-time parliament,” ACM Trans-
actions on Computer Systems, vol. 16, pp. 133-169,
1998.

3. N.Bonvin, T. G. Papaioannou and K. Aberer, “"Cost-
efficient and differentiated data chance guarantees
in data clouds,” in Proc. of the ICDE, Long Beach,
CA, USA, 2010.

4. C. A Waldspurger, T. Hogg, B. A. Huberman, J. O.
Kephart, and W. 3. Stornetta, “Spawn: A allocated
computational economy,” |EEE Transactions on
Software Engineering, vol. 18, pp. 103-117, 1992,

5. 0. Regev and N. Nisan, “The popcomn market.
online markets for computational resources,”
Decision Support Systems, vol. 28, no. 1-2, pp.
177 — 189, 2000.

113 Global Journals Inc. (1

=
5
R
—

Issue 1

X1

(Special } Volume

s

o
2

Global Journal of Computer Science and Ted

013

p)

S

Version [

l“amiial} Volume XIIT Tssuc I

&

Science and Technologsy (S

Global Journal of Computer

10.

11.

12.

13.

14.

15.

A. Helsinger and T. Wright, “Cougaar: A robust
configurable multi agent platfiorm,” in Proc. of the
IEEE Aerospace Conference, 2005.

J. Brunelle, P. Hurst, J. Huth, L. Kang, C. Ng, D. C.
Parkes, M. Seltzer, J. Shank, and 8. Youssef, "Egg:
an extensible and Economics-inspired open grid
computing platform,” in Proc. of the GECON,
Singapore, May 2006.

J. Norris, K. Coleman, A. Fox, and G. Candea,
“Oncall: Defeating spikes with a free-market
application cluster,” in Proc. of the International
Conference on Autonomic Computing, New York,
NY, USA, May 2004.

C. Pautasso, T. Heinis, and G. Alonso, "Autonomic
resource provisioning for software business
processes,” Information and Software Technology,
vol. 49, pp. 65-80, 2007.

A. Dan, D. Davis, R. Keamney, A. Keller, R. King, D.
Kuebler, H. Ludwig, M. Polan, M. Spreitzer, and A.
Youssef, “Web services on demand: Wsla-driven
automated management,” IBM Syst. J., vol. 43, no.
1, pp. 136-158, 2004,

M. Wang and T. Suda, “The bio-networking
architecture: a biologically inspired access to the
design of scalable, adaptive, and survivable/
available network appliances,” in Proc. of the |EEE
Symposium on Appliances and the Internet, 2001.
N. Laranjeiro and M. Vieira, “Towards fault tolerance
in web services compositions,” in Proc. of the
workshop on engineering fault tolerant systems,
New York, NY, USA, 2007.

C. Engelmann, 8. L. Scott, C. Leangsuksun, and X.
He, “Transparent symmetric active/active replication
for service level high chance,” in Proc. of the
CCGirid, 2007.

J. Salas, F. Perez-Sorrosal, n-M. M. Pati and R.
Jim“enez- Peris, “Ws-replication: a framework for
highly available web services,” in Proc. of the WWW,
New York, NY, USA, 2006, pp. 357-366.

M. Wang and T. Suda, “The bio-networking
architecture: a biologically inspired access to the
design of scalable, adaptive.

GLOBAL JOURNALS INC. (US) GUIDELINES HANDBOOK 2013

WWW.GLOBALJOURNALS.ORG

	Economic Efficient for High Scalable Application
	Author's
	I. Introduction
	II. Motivation - Running Example
	III. Scarce: The Quest of Autonomic Appliances
	a) The Access
	b) Server Agent
	c) Routing Table
	d) Economic Model

	IV. Evalution
	V. Related Work
	VII. Conclusion
	References Références Referencias

