
© 2013. Bagais A., Junaidu S. B. & Abdullahi M.. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Neural & Artificial Intelligence
Volume 13 Issue 1 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Proposed SAT Algorithm

 By Bagais A., Junaidu S. B. & Abdullahi M.

 Ahmadu Bello University, Zaria-Nigeria

Abstract

-

This paper reviews existing SAT algorithms and proposes a new algorithm that solves the
SAT problem. The proposed algorithm differs from existing algorithms in several aspects. First, the
proposed algorithm does not do any backtracking during the searching process that usually
consumes significant time as it is the case with other algorithms. Secondly, the searching process in
the proposed algorithm is simple, easy to implement, and each step is determined instantly unlike
other algorithms where decisions are made based on some heuristics or random

decisions. For
clauses with three literals, the upper bound for the proposed algorithm is O(1.8171n). While some
researchers reported better upper bounds than this, those upper bounds depend on the nature of the
clauses while our upper bound is independent of the nature of the propositional formula.

Keywords : propositional satisfiability, NP-complete, complexity, complete algorithms.

GJCST-D

Classification

:

F.2.1

A Proposed SAT Algorithm

Strictly as per the compliance and regulations of:

A Proposed SAT Algorithm
Bagais A.α, Junaidu S. B.σ & Abdullahi M.ρ

Abstract - This paper reviews existing SAT algorithms and
proposes a new algorithm that solves the SAT problem. The
proposed algorithm differs from existing algorithms in several
aspects. First, the proposed algorithm does not do any
backtracking during the searching process that usually
consumes significant time as it is the case with other
algorithms. Secondly, the searching process in the proposed
algorithm is simple, easy to implement, and each step is
determined instantly unlike other algorithms where decisions
are made based on some heuristics or random decisions. For
clauses with three literals, the upper bound for the proposed
algorithm is O(1.8171n). While some researchers reported
better upper bounds than this, those upper bounds depend on
the nature of the clauses while our upper bound is
independent of the nature of the propositional formula.
Keywords : propositional satisfiability, NP-complete,
complexity, complete algorithms.

I. Introduction

ropositional satisfiability (SAT) is one of the
classical problems in Computer Science. The
importance of SAT comes from the fact that a

large class of real-world problems can be expressed in
terms of a SAT instance and that it was the first problem
proven to be NP-Complete (Cook, 1971). The SAT
problem has a wide range of practical real world
applications (Barbour, 1992; Crawford & Baker, 1994;
Devadas, 1989; Kauts & Selman, 1992; Larrabee, 1992).
Many algorithms, categorized into complete and
incomplete algorithms, were proposed to solve this
problem efficiently over the last decades.

Complete algorithms can state whether a SAT
instance is satisfiable giving the satisfying assignments

or unsatisfiable giving a ‘no’ answer. Incomplete
algorithms can only give an answer of ‘yes’ for
satisfiable SAT instances only but cannot give an
answer for unsatisfiable instances.

This paper proposes a new complete algorithm
that differs from the ones in the literature in the following
aspects:

• No backtracking during the searching process that
usually consumes significant amount of time.

• Has a simple, deterministic and easy to implement
search process, unlike other algorithms where
decisions are either made randomly or based on
some heuristics.

The remainder of the paper is structured as
follows. Section 2 describes the proposed algorithm
with the aid of an example. Section 3 captures the
algorithm in pseudo code while Section 4 presents the
complexity analysis of the algorithm. We present related
work in Section 5. Sections 6 and 7 summarize and
provide references, respectively.

II. Illustrating the Proposed
Algorithm

Unlike other algorithms that make a decision on
a single value (true/false) for a variable x , the proposed
algorithms takes into consideration all satisfying
assignments for a clause C and use them for the next
clauses so that backtracking is avoided.

Consider the following formula: 4 1 5 31 3 2 2 4() () ()F x x x x x x x x x= ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨

The first clause can be satisfied by any of the

following assignments 1 3 4, , .x true x true x false= = =

The algorithm tries to find assignments for all variables
in clause while preserving at least one of the given
assignments for 1 3,x x , or 4x

in the first clause.

In general, the process starts from the first
clause 1c

and produces the set of assignments that

satisfy 1c

which

obviously

are the literals in that clause.

Author α : Department Information and Computer Science, King Fahd
University of Petroleum and Minerals, Dahram-Saudi Arabia.
E-mail : bagais2008@gmail.com
Author σ ρ : Department of Mathematics, Ahmadu Bello University,
Zaria-Nigeria. E-mails : abuyusra@gmail.com, muham08@gmail.com

If the clause has k

literals, then k

assignments

can satisfy it (as in the previous formula, the first clause
has three assignments). In the next step, the set of
assignments that satisfy the set of previous clause(s)
are checked with all the literals of the next clause. The
process continues until all the clauses in the formula are
covered, after which the resulting set of assignments
each satisfies the formula.

When a set of assignments from previous
clause(s) is checked with the literals of the current
clause, each literal may agree, disagree

or be neutral

to

the assignment. A literal agrees with an assignment
when the assignment includes the literal. A literal
disagrees with an assignment when the assignment
includes a negation of the literal. A literal is neutral to an

P

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

7

(
DDDD DDDD

)
Y
e
a
r

01
3

2
D

assignment when the assignment neither agrees nor
disagrees with the literal.

4 1 5 31 3 2 2 4() () ()F x x x x x x x x x= ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨

Figure 1

:

Assignment Production

In the first step, the satisfying assignments for
the first clause are its literals. The assignments
produced for the first clause are shown in the top-left
rectangle in Figure 1. Each of these assignments is
checked with the literals of the second clause,

1 52()x x x∨ ∨ . The assignment of 1x

disagrees with

the first literal of the second clause, 1x

resulting in no

assignment produced. The same assignment, 1x

is

checked with the second literal,

2x . Since this literal is

neutral to 1x , a new assignment is produced by

combining 1x

and 2x , as shown in the middle rectangle

in Figure 1. Next, 1x

is checked with 5x , giving 51x x ,

since 5x

is neutral to

1x

. Similarly, the assignments

3x and 4x

are checked with the literals of the second

clause leading to six additional assignments as shown
in

the middle rectangle of Figure 1. To complete this

example, the literals of the third clause are checked with
these eight assignments producing the 18 new
assignments in the right-most rectangle of Figure 1.
Note that each of these 18 assignments satisfies the
given formula.

Note that when an assignment agrees with the
clause in consideration, the process might produce
shorthand for 1 2x x∨

etc. We will illustrate this with the

pair of clauses:

1 2 3

1 4 5

()
()
x x x
x x x
∨ ∨
∨ ∨

The satisfying assignments for this pair of clauses are:

1 1 1 2 1 3 1

1 4 2 4 3 4

1 5 2 5 3 5

()x x or x x x x x
x x x x x x
x x x x x x

From this group, it can be seen that the

assignments }{ 1 4 1 5 2 1 3 1, , ,x x x x x x x x

are subsumed in

the first assignment 1x . This is because each of these

assignments produces the same result as 1x .

Thus, these assignments can be dropped to
avoid redundancy. Therefore, Figure 1

can now be

redrawn without the subsumed assignments as shown
in Figure 2.

41 3()x x x∨ ∨

1 52()x x x∨ ∨

32 4()x x x∨ ∨

1 2

51

13

3 2

53

4 1

4 2

4 5

x x

x x

x x
x x

x x

x x

x x

x x

31 2 1 2 1 2 4

5 5 3 51 2 1 1 4

1 13 2 3 4 3 2

5 53 2 4 3 2 3 4

4 1 4 1 3 42 2

4 3 4 5 4 5 32 2

x x x x x x x x

x x x x x x x x x

x x x x x x x x

x x x x x x x x x

x x x x x x x x

x x x x x x x x x

1

3

4

x
x

x

A Proposed SAT Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

8

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
D

 Figure 2 : Satisfying assignments without redundancies

Since the subsumed assignments are produced
from clauses that have a literal in common, the
proposed algorithm starts by extracting all clauses that
do not share a literal. For a satisfiability formula with n

literals each clause containing exactly k literals, the

minimum number of clauses in which no two clauses

have a common literal is 2n
k

 .

4 1 3 2 6 5 6 51 2 3 4 1 6 5 4 2 3() () () () () ()F x x x x x x x x x x x x x x x x x x= ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨

For example, we need at least 4 clauses to have
the 12 literals in the following formula. But because of
the distribution of literals, we need 5 for that purpose.
Therefore, the algorithm will extract the clauses that do
not have common literals. There are two advantages in
doing so:

1.

The algorithm will save the time to check the
existence of subsumed assignments which is a
process that consumes an amount of time equal to
the number of assignments.

2.

The time complexity of the algorithm becomes
easier to prove (see Section 4).

Theorem 1

Consider a satisfiability formula with m clauses
each of k

literals. An agreement between an

assignment and a literal in the thi

clause produces

at

least
2(1) ; 2

(1) ; 3

m i

m i

k k i
k k i m

−

−

 − =

− ≤ ≤
redundant assignments.

Proof: (By induction).

Base Case

The base case is when i m=

and the total
number of redundant assignments will

be 0(1) (1) (1)m mk k k k k−− = − = − . Clearly, the
theorem holds for i m= .

Inductive Hypothesis

Suppose the theorem holds for 2,3,4,...,i p=

for some clause 2 p m≤ < . The total redundant

assignments will be
2(1) ; 2

(1) ; 3

m p

m p

k k p
k k p m

−

−

 − =

− ≤ <
. If a literal

with which an assignment agrees is in 1p +

clause,

then the total redundant assignments will be

1 (1)

1 (1)

2(1) 2(1) 2(1) ; 2

(1) (1) (1) ; 3

m p
m p m p

m p
m p m p

k k k k k k i
k

k k k k k k i m
k

−
− − − +

−
− − − +

 −
= − = − =

− = − = − ≤ ≤

That is, the theorem holds for 1p+ . By
induction on p , the theorem is true for all values of

i .

Theorem 2

Consider a satisfiability formula with m clauses
each of k

literals. A disagreement between an

assignment and a literal in the thi

clause reduces the

number of assignments by at least by ; 2m ik i m− ≤ ≤ .

1 2

51

13

3 2

53

4 1

4 2

4 5

x x

x x

x x
x x

x x

x x

x x

x x

5 3 51 2 1 1 4

1 53 4 3 2 3 4

4 1 3 4 4 5 32

x x x x x x x x

x x x x x x x x

x x x x x x x x

1

3

4

x
x

x

41 3()x x x∨ ∨

1 52()x x x∨ ∨

32 4()x x x∨ ∨

A Proposed SAT Algorithm

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

9

(
DDDD DDDD

)
Y
e
a
r

01
3

2
D

.

Base Case

The base case is when i m=

and the total
number of assignments will be reduced

by 0 1m mk k− = = . Clearly, the theorem holds for i m= .

Inductive Hypothesis

Suppose the theorem holds for 2,3,4,...,i p=

for some clause 2 p m≤ < . The total assignments will

be reduced by m pk − . If a literal with which an
assignment agrees with is in 1p +

clause, then the
total assignments will be reduced

by 1 (1)
m p

m p m pk k k
k

−
− − − += = . That is, the theorem holds

for 1p+ . There by induction on p , the theorem is true
for all values of i .

III.

The Proposed

Algorithm
Pseudocode

The most important step in any complete or
incomplete SAT algorithm is the decision over the value

of a given variable in the formula. If the decision on that
variable is wrong, the algorithm will waste its time
searching for a solution before it discovers that the value
assigned to the variable does not lead to a satisfying
assignment and consequently a backtrack is done to
change that value. The problem with making a decision
for a variable x

using the heuristics is that they do not
consider how this decision or assignment will affect
other related variables that appear in the same clauses
as the variable x . If the search process keeps all
possible assignments that satisfy a clause before
moving forward, then no backtrack is needed. Instead,
these assignments can be used to determine the values
of variables that satisfy the next clauses. In the case that
none of the variables in the current clause agrees with
all the assignments, then the formula is unsatisfiable.
This leads to the main idea of the proposed algorithm
for assigning values to the variables.

The Algorithm

Input:

F[m]; //formula with m clauses

Output : A[km]; //Possible assignment satisfying m clauses.

1.

getDistinctClauses(F[m]);

2.

For i = 1 to disticntclauses.length –

1;//number of distinct clauses

For j = 1 to k //k is the number of literals in a clause

LIT[i][j] := disticntclauses[i];

End for

 End for

3.

For i = 1 to k

A[i] := LIT[1][i]; //literals of the first clause(initial set of satisfying substitutions)

End for

4.

For i = 2 to disticntclauses.length;//number of distinct clauses

For j = 1 to k

generateAssignment(LIT[i][j], A[], temp[]);

//A[] contains the set of satisfying substitutions from previous clauses

//temp[] contains assignments formed by combining assignments in A[] with a literal LIT[i][j]

End for

A[] := A[] + temp[];

 End for

5.

For i = distinctclauses.length + 1 to m;//number of distinct clauses

For j = 1 to k //k is the number of literals in a clause

LIT[i][j] := nondistinctclauses[i];

End for

 End for

For i = distinctclauses.length to m

For j=1 to k

A Proposed SAT Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

10

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
D

Proof: (By induction)

generateAssignment(LIT[i][j], A[], temp);
End for
removeSubsumedAssignments(tempassignments[], arraysubsumed[]);
A[] := A[] + temp;
 End for

6. If A[] is empty

 Output “the formula is unsatisfiable”;
Else
Output the assignments in A[] as the satisfying assignments for the formula F.

Procedure getDistinctClauses(F[m])
Input: Formula with m clauses
Output: arrayofdistinctclauses and arrayofnondistinccaluses

distinctclauses[1] = clause[1];
n1:=0;
n2:=1;
distinct = true;
for i = 2 to m

 for j = 1 to distinctclauses.length – 1
 if (distinctclause[j] intersection clause[i] != empty)
 nondistinctclauses[n1++] = clause[i];
 distinct = false;
 break;
 Endif
 Endfor
 If (distinct == true)
 disticntclauses[n2++] = clause[i];
 Endif

Endfor

Procedure: removeSubsumedAssignments(tempassignments[], arraysubsumed[])
Input: list of assignments containing subsumed assignments and list of assignments subsuming the subsume assignments.
Output: list of assignments without subsumed assignments.

n:=0;
For i = 0 to tempassignments.length – 1

 For j = 0 to arraysubsumeb.length – 1
 If (arraysubsumed[j] is not contained in tempassignents[i])
 arrayassignments[n++] = tempassignment[i] ;
 Endfor

Endfor
Return arrayassignments[];

Procedure: generateAssignment(lit, A[], temp[]);
Input: a literal in a clause and a list of assignments in A[].
Output: a list of assignments stored in temp[] produced by combining lit with A[].

For i = 1 to A.length

 If lit did not conflict with the assignment then
 Combine the lit and the assignment;
 Add the combination in temp[];
 elseif lit agrees with the assignment then
 Add the assignment in temp[];
 Add the assignment in arraysubsumed[];
 Endif

Endfor
Return temp[];

Figure 3

:

The Proposed Algorithm

A Proposed SAT Algorithm

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

11

(
DDDD DDDD

)
Y
e
a
r

01
3

2
D

IV. Time Complexity of the Algorithm

a) Finding number of assignments
Whenever a clause is considered in the for-loop,

the number of assignments is multiplied by k (in the
worst case). The first clause initializes A with
k assignments (the literal in that clause). Then, the

second clause will produce at most 2k assignments,

and the third clause may generate as 3k assignments
and so on. That means the number of the assignments

is mk≤ where m is some number of clauses. In step
four, clauses in CLS could either be:

1.
2n
k

 clauses (worst case).

2. or more than
2n
k

 clauses (as explained in Section 2).

Case 1 is the worst because if more

than
2n
k

clauses are needed, then we must have

repeated literals. This can be shown easily as follows: If

we have
2 1n
k
+ clauses, then the number of literals is

2(1)n k
k
+ which gives us 2n k+ literals. That means

we have k repeated literals in these clauses.
Because of the existence of repeated literals in

Case 2, Case 1 will produce the maximum number of
assignments (see Theorem 3).

We now determine the number of possible
assignments, ()A n , in the worst case. If the clauses in

CLS have conflicting literals, () mA n k≤ .
In this case, a literal in one clause will not be

combined with a literal 1x in another clause. The
number of substitutions to be eliminated is shown by
Theorem 2.

To count the exact number of assignments, the
principle of inclusion-exclusion is used. The principle
states that the number of elements that have property 1,
property 2, property 3, …, or property n is found by the
summation.

1
1 2 3 1 2 3

1 1 1
(, , ,...,) ... (1) ...n

n i i j i j k n
i n i j n i j k n

N P P P P A A A A A A A A A A+

≤ ≤ ≤ < ≤ ≤ < < ≤

= − ∩ + ∩ ∩ − + − ∩ ∩ ∩ ∩∑ ∑ ∑

If iP is the assignment where ix and ix

appear for 1,2,3,...,i α= where nα ≤ , then the exact
number of assignments for case 1 is

2

1 2 3(, , ,...,)
n

kk N P P P Pα− .

For any satisfiability instance, the previous
quantity cannot be found. That is because unlike the
example given earlier, the arrangement of variables or
literals differs from one instance to another. However,
there is an arrangement that will produce the highest
number of variables.

b) The upper bound
At this point, we need to prove two theorems.

One that states case 1 is the worst case and the other
states the arrangement that will produce the highest
number of assignments.

Theorem 3
In step 5 of the algorithm, generating

assignments with the least number of clauses
2()n
k

that include 2n literals is the worst case.

Proof

 If more than
2n
k

clauses are needed to include

the 2n

literals then we must have literals that are
repeated. If we have one additional clause, then there
must be k literals repeated and this will make the set of
assignments to be excluded more than n. Having a
repeated literal means that we have three clauses of

this

form: 11 2 3 1 4 5 6 7x x x x x x x x x∨ ∨ ∨ ∨ ∨ ∨
.
 The two clauses that have the repeated literal

1x

will produce the unnecessary assignments. These

assignments are generated when the repeated literal is
combined with the (1)k −

literals of the other clause.

This means that the assignments that include

{ }1 4 1 5 1 2 1 3, , ,x x x x x x x x

are unnecessary. The only

useful assignment is 1x

produced from 1 1()x x . This

indicates that 2(1)k −

sets of assignments should be

discarded. In addition to these assignments, the two

repeated literals when combined with 1x

will produce

A Proposed SAT Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

12

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
D

The first three steps of the algorithm take
polynomial time of number of clauses. Steps four and
five are clearly the main contributors to the time
complexity of the whole algorithm. These two steps rely
on the number of assignments generated in each
iteration of the for-loop. For step four, that number is
determined by the clauses in CLS and for step five, that
number is determined by the end of step four. Therefore,
let us start with step four.

The proof of the principle can be found in (Rosen, 1999).

two sets of assignments of the form 11()x x that are

 also discarded from the total number of assignments
when we count them using the inclusion exclusion
principle. Therefore, a repeated literal will result to
discard 2(1) 1k − +

additional sets excluded.

 Writing the inclusion exclusion series with n sets
plus (2(1) 1)k k − + sets is hard because there will be
many possibilities for the intersection of sets. The

approach to show that 2n/k is the worst case is to
exclude the additional sets first from the total number of
assignments and compare that with the worst case. The
number of assignments of the additional sets can be
counted by:

2 21 32

2 25 2 13 1

2 2 11

1

(2(1) 1)* (,1)* (2(1) 1) * (, 2) *

(2(1) 1) * (,3)* ... (1) (2(1) 1) * (,)*

(1) (2(1) 1) (,)

n n
k k

n n kk kk k

nk ii i k

i

A k C k k k C k k

k C k k k C k k k

k C k i k

− −

− − ++

− ++

=

= − + − − +

+ − + − + − − +

= − − +∑

Excluding this from the total assignments

2 21 2 11

1
2 2 1 2 1 2()

1

(1) (2(1) 1) (,)

((1) (2(1) 1) (,))

n nk ii ik k

i
n kk k i i k ik

i

N k k C k i k

N k k k C k i k

+ − ++

=

− + + −

=

= − − − +

= − − − +

∑

∑

Evaluating 2 1 2()

1
((1) (2(1) 1) (,))

k
k i i k i

i
k k C k i k+ −

=

− − − +∑ for values of k gives quantity less than 2 1kk −

and result to a number of assignments less than
2n
kk and excluding the n sets of the form (v -v)

from N gives a value that is less than the one in the worst case.
2n
kk excld(n sets)

2 2 1 2 1 2()

1
((1) (2(1) 1) (,))

n kk k i i k ik

i
k k k C k i k

− + + −

=

> − − − +∑ excld(n sets) because

2n
kk

2 2 1 2 1 2()

1
((1) (2(1) 1) (,)).

n kk k i i k ik

i
k k k C k i k

− + + −

=

> − − − +∑
 This is for one additional clause. For i

additional clauses the limit of the summation is to ik

and this also will give the same result.
Theorem 3 tells us that step six will not generate

assignments that are more than step five. This should
make step 5 the dominant factor for time complexity.

Theorem 4

For the worst case, the upper bound is ((1))
n
kk k −

Proof

The inclusion-exclusion principle takes care of
assignments that are counted more than once by
considering the intersections between the n sets to be
excluded as seen in the summation. Therefore, the least
value of 1 2 3(, , ,...,)nN P P P P

indicates the maximum

possible number of assignments generated by the

algorithm. This occurs when each set ,x x is

intersected with the maximum possible number of other
sets. For example consider two clauses that has 1x and

1x literals:

1 2 3

1 4 5

x x x

x x x

The assignments that include 1x and 1x can

never occur with assignments that include 2x and 2x ,

3x and 3x , 4x and 4x , 5x and 5x literals. Therefore,

there is no intersection between 1x 1x assignment set

and 4 sets of assignments. The least intersection

(1)k − happens if both clauses of 5x and 1x have

literals of the same variables. For the previous example
the two clauses should look like this

A Proposed SAT Algorithm

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

13

(
DDDD DDDD

)
Y
e
a
r

01
3

2
D

3 1 21 2 3x x x x x x∨ ∨ ∨ ∨ to make the quantity

1 2 3(, , ,...,)nN P P P P the least. If this happens with all

variables, the following arrangement will produce the
maximum number of assignments.

3 1 2 4 5 6 8 7 91 2 3 6 4 5 7 9 8, , , , , ,x x x x x x x x x x x x x x x x x x∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

The number of assignments between clauses of

conflicting literals is (1)k k − . Since we need
2n
k

clauses to consider n variables and each 2 clauses have
(1)k k − assignments, then the number of assignments

will be (1)
n
kk k − .

c) Related Work
Complete algorithms for SAT satisfiability

problems include those algorithms that can state
whether or not a SAT instance is satisfiable, giving a
‘yes’ answer together with a satisfying assignment or a
‘no’ answer as the case may be. The first complete
algorithm is the Davis Putnam procedure (Davis &
Putnam, 1960). This procedure is based on resolution
rule to eliminate variables one by one till the formula is
satisfied. When a variable is eliminated in each iteration,
all resolvents are added to the set of the clauses. This
algorithm requires polynomial space. It handles CNF
formulas and it is one of the efficient SAT algorithms.
(Davis, Logemann, & Loveland, 1962) Developed a
divide-and-conquer algorithm that enhances on (Davis
& Putnam, 1960). This improved algorithm is the main
procedure for most state-of-the-art SAT solvers today.

The search space of DPLL could grow as large as 2n
which is the worst case for any complete algorithm. Due
to the possibility of consuming huge amount of time,
researchers have been focusing on mechanisms to
reduce that and came up with more reasonable time
complexities. These improvements usually come in two
aspects: the decision to branch to next literal and the
backtracking mechanism if a solution is not found in the
chosen branch. The achievements accomplished in
improving SAT algorithm in these two aspects show that
the complexity could be reduced significantly.

i. Branching Decisions
DPLL procedure chooses any literal for

branching and goes down that region in the search
space. The procedure will spend time searching for a
solution and if it discovers that the branch is not
successful, it backtracks to the other branch and
continues searching. Choosing the next literal for
branching more carefully will allow the algorithm to save
time exploring a region where a satisfying assignment
cannot be found at all and direct the searching to
regions where a solution is likely to be found. In order to
accomplish this, several heuristics have been proposed
and the most effective ones can be found in (Bruni & A.,
2003; Freeman, 1995; Hooker & Vinay, 1994; Jeroslow &

Wang, 1990; Li & Anbulagan, 1997; Moskewicz,
Madigan, Zhao, Zhang, & Malik, 2001; Pretolani, 1993).

ii. Backtracking Mechanisms
When the algorithm fails to find an answer or an

empty clause (contradiction) appears down the path of
the search tree, it backtracks to a certain point and
continues searching in another part of the tree. The DP
backtracks to the most recently untoggled
(complemented) literal and tests its complement branch.
As mentioned earlier this will cost a lot of time for DP to
discover that this part of the search space does not
have a solution and search for a solution elsewhere. For
backtracking in the DP procedure, much work has not
been done as compared to branching decision. This is
due to the fact that backtracking is an essential step in
any algorithm to prove its completeness. Nevertheless,
there are a number of proposals to improve the
backtracking in the DP procedure. (Lynce & Marques-
Silva, Building State-of-The-Art SAT Solver, 2002) tested
different backtracking strategies and the most effective
ones can be found in (Lynce & Marques-Silva, 2002;
Stallman & Sussman, 1977).

iii. Upper Bounds

The improvements made in backtracking and
branching heuristics are of practical interests. However,
the experimental analysis of these improvements
indicates that satisfiability could be solved in time less

than 2n . A number of people gave lower bounds for this
problem but most of them rely on a certain structure or
property that exists in the formula. The following are
some of the achievements made to find an upper bound
that is better than the trivial one.

a.

Autarkness Principle

The first attempt to achieve a non-trivial upper
bound for SAT was done by (Monien & Speckenmeyer,
1985). They introduced the notion of autarks

which are

partial assignments of variables. If all clauses that
include the variables in the assignment are satisfied,
then that assignment is an autark.

They proved that the

time complexity of their algorithm is log(2)kn αΟ
.

b.

2-clause

When dealing with 3-SAT problem, the clauses
with 2 literals help in reducing the search space.
Schiermeyer was the first to make use of the number of
clauses with 2 literals after the resolution step is made
(Schiermeyer, 1993). He said that for the next branch, a
2-clause is chosen such that it produces at least one
new 2-clause in every branch that follows. With the help

A Proposed SAT Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

14

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
D

of these reduced clauses, he proved an even lower

bound for 3-SAT with time complexity O(1.579 n).
(Kullmann, 1999) showed that the algorithm of
Schiermeyer can perform better through a new concept
called blocked clauses. A clause C is blocked for a
literal l if every clause C' containing l has also another
literal that is complemented with C. By making use of
these blocked clauses, Kullmann proved that the
algorithm in (Schiermeyer, 1993) can have a time

complexity of O(1.504 n).

c. Saisfiability Coding Lemma

This lemma is based on isolated assignments
which are satisfying assignments to the formula where a
change of one value of any variable will make it
dissatisfying. The lemma states that such assignments

can be encoded in a message of length ()nn
k

− and

this is where the complexity comes from. (Marques-Silva
& Sakallah, 1999) shows that through satisfiability
coding lemma their algorithm finds an answer in

2(2)
nn
k

−
Ο .

d. P-literal

(Hirsch, Two New Upper Bounds for SAT, 1998)

presented two algorithms that rely on P-literal notion.
This notion says that if a literal occurs exactly 2 times in
the clause set and at least 3 times in its negation form,
then it is P-literal. He used these special literals to
simplify the formula and came up with two algorithms

with time complexity O(0.30892 m) and
0.10537L(2)Ο respectively where m is the number of

clauses and L is the length of the formula. An
improvement was made to the second algorithm in

(Hirsch, 2000) to become O(0.10299L2).

e. Covering Codes

(Danstin, et al., 2002) proposed a deterministic
algorithm that is based on covering codes. This
algorithm can be seen as a derandomization of
(Schoning, 1999) algorithm that uses random walk
model. The search space is divided into group of
assignments say balls of some radius r. Each group or
ball represents some assignment a and all assignments
that differ with it in r variables. The algorithm checks in
each ball if there is a satisfying assignment and if there
is none in any ball then the formula is unsatisfied. The
authors of (Danstin, et al., 2002) showed that the time

complexity of this
2(2)

1k
Ο −

+
for k-SAT. For 3-SAT,

they managed to further improve the algorithm by
identifying useless branching and reduce the search

space to come up with running time O(1.481 n).

V. Conclusion and Future Work

The proposed does not require the clauses or
the formula to have any specific structure to achieve a
competitive upper bound which is a significant
advantage over the existing algorithms in the literature
where they derive their time complexity based on a
property that must exist in the formula. The algorithm
gives a new insight towards solving SAT. Most of the
other algorithms are based on the classical rule of
splitting the search space into regions and search for a
solution in each one. The new perspective of the
algorithm has the potential to design further effective
SAT algorithms that outperforms the existing ones in
theory and practice.

The implementation of the proposed algorithm
will be considered in future work. The algorithm
proposed here can also be improved. The time
complexity of the proposed algorithm is based on pre-
processing of clauses in the formula. This arrangement
is so unlikely to exist in all clauses considered. That
means that there exists a tighter upper bound for the
algorithm but to achieve that the order in which clauses
are considered should be more intelligent. To show that
such an upper bound exists, many cases have to be
covered and counted. Parallelisation of the proposed
algorithm is also a potential future work.

References Références Referencias

1. Barbour, A.E. (1992). Solutions to The Minimization
Problem of Fault-Tolerant Logic Circuits. IEEE
Transactions on Computers, 41(4), 429-443.

2. Bruni, R., & A., S. (2003). A Complete Adaptive
Algorithm for Propositional Satisfiability. Discrete
Applied Mathematics, 127.

3. Cook, S. (1971). The Complexity of Theorem
Proving Procedures. Proceedings of the 3rd Annual
ACM Symposium on Theory of Computing, (pp.
151-158).

4. Crawford, J. M., & Baker, A.B. (1994). Experimental
Results on the Application of Satisfiability Algorithms
to Scheduling Problems. AAAI-94.

5. Danstin, E., Goerdt, A., Hirsch, E. A., Kannan, R.,
Kleinberg, J., Papadimitriou, C., et al. (2002). A
Deterministic (2–2 / k+1)n Algorithm fork-SAT
based on Local Search. Theoretical Computer
Science, 69-83.

6. Davis, M., & Putnam, H. (1960). A Computing
Procedure for Quantification Theory. Journal of
Association for Computing Machinery, 201-215.

7. Davis, M., & Putnam, H. (1960). A Computing
Procedure for Quantification Theory. Journal of
Association for Computing Machinery, 201-215.

8. Davis, M., Logemann, G., & Loveland, D. (1962). A
Machine Program for Theorem Proving.
Communications of the ACM, 5, (pp. 394-397).

A Proposed SAT Algorithm

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

15

(
DDDD DDDD

)
Y
e
a
r

01
3

2
D

9. Devadas, S. (1989). Optimal Layout via Boolean
Satisfiability. Proceedings of ICCAD 89, (pp.
294-297).

10. Freeman, J. W. (1995). Improvements to
Propositional Satisfiability Search Algorithms. Ph. D.
Dissertation. Department of Computer and
Information Science, University of Pennsylvania.

11. Hirsch, E. (2000). New Worst Case Upper Bounds
for SAT. Journal of Automated Reasoning, 24, pp.
397 – 420.

12. Hirsch, E. (1998). Two New Upper Bounds for SAT.
Proceedings of 9th Annual ACM Siam Symposium
on Discrete Algorithms (pp. 521 – 530).

13. Hooker, J. N., & Vinay, V. (1994). Branching Rules
for Satisfiability. GSIA Working Paper 1994-09.
Pennsylvania: Graduate School of Industrial
Administration, Carnegie-Mellon University,
Pittsburgh .

14. Jeroslow, R. G., & Wang, J. (1990). Solving
Propositional Satisfiability Problems. Annals of
Mathematics & Artificial Intelligence, 1, 167-187.

15. Kauts, H., & Selman, B. (1992). Planning as
Satisfiability. Proceedings of the 10th European
Conference on Artificial Intelligence (ECAI 92).

16. Kullmann, O. (1999). New Methods for 3-SAT
Decision and Worst Case Analysis. Theoretical
Computer Science, 1-72.

17. Larrabee, T. (1992). Test Pattern Generation Using
Boolean Satisfiability. IEEE Transactions Computer
Aided Design, II(1), 4-15.

18. Li, C. M., & Anbulagan. (1997). Heuristics Based on
Unit Propagation for Satisfiability Problems.
Proceedings of 15th International Joint Conference
on Artificial Intelligence, 1, pp. 366-371. Nagoya,
Japan.

19. Lynce, I., & Marques-Silva, J. (2002). Building State-
of-The-Art SAT Solver. Proceedings of the European
Conference on Artificial Intelligence (ECAI) 105.

20. Lynce, I., & Marques-Silva, J. P. (2002). The Effect
of Nogood Recording in MAC-CBJ SAT Algorithms.
Technical Report RT/4/2002, INESC.

21. Marques-Silva, J. P., & Sakallah, K. A. (1999). IEEE
Transactions on Computers. GRASP-A Search
Algorithm for Propositional Satisfiability, 506 -521.

22. Monien, B., & Speckenmeyer, E. (1985). Solving
Satisfiability in less than 2n steps. Discrete Applied
Mathematics, 287-295.

23. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., &
Malik, S. (2001). Engineering an Efficient SAT
Solver. Proceedings of the Design Automation
Conference.

24. Pretolani, D. (1993). Efficient and Stability of
Hypergraph SAT Algorithms. Proceedings of
DIMACS Challenge II Workshop.

25. Rosen, K. H. (1999). Discrete Mathematics and Its
Applications (4th Edition ed.). McGraw Hill.

26. Schiermeyer, I. (1993). Solving 3-Satisfiability in less
than 1.579n. In Selected papers from Computer
Science Logic 12, LNCS 702, (pp. 379-394).

27. Schoning, U. (1999). A Probabilistic Algorithm for k-
SAT and Constraint Satisfaction Problems.
Proceedings of the 40th Annual Symposium on
Foundations of Computer Science (FOCS) (pp.
410-414). IEEE.

28. Stallman, R. M., & Sussman, G. J. (1977). Artificial
Intelligence 9. Forward Reasoning & Dependency-
directed Backtracking in A System for Computer-
aided Circuit Analysis, (pp. 135-196). Artificial
Intelligence 9.

A Proposed SAT Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

Is
su

e
I
 V

er
sio

n
I

16

(
DDDD

)

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2
D

	A Proposed SAT Algorithm
	Author's
	Keywords
	I. Introduction
	II. Illustrating the ProposedAlgorithm
	III. The Proposed Algorithm Pseudocode
	IV. Time Complexity of the Algorithm
	a) Finding number of assignments
	c) Related Work
	b) The upper bound

	V. Conclusion and Future Work
	References Références Referencias

