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Abstract

 

-

 

This paper reviews existing SAT algorithms and proposes a new algorithm that solves the 
SAT problem.  The proposed algorithm differs from existing algorithms in several aspects. First, the 
proposed algorithm does not do any backtracking during the searching process that usually 
consumes significant time as it is the case with other algorithms.  Secondly, the searching process in 
the proposed algorithm is simple, easy to implement, and each step is determined instantly unlike 
other algorithms where decisions are made based on some heuristics or random

 

decisions. For 
clauses with three literals, the upper bound for the proposed algorithm is O(1.8171n). While some 
researchers reported better upper bounds than this, those upper bounds depend on the nature of the 
clauses while our upper bound is independent of the nature of the propositional formula.
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A Proposed SAT Algorithm
Bagais A.α, Junaidu S. B.σ & Abdullahi M.ρ 

Abstract - This paper reviews existing SAT algorithms and 
proposes a new algorithm that solves the SAT problem.  The 
proposed algorithm differs from existing algorithms in several 
aspects. First, the proposed algorithm does not do any 
backtracking during the searching process that usually 
consumes significant time as it is the case with other 
algorithms.  Secondly, the searching process in the proposed 
algorithm is simple, easy to implement, and each step is 
determined instantly unlike other algorithms where decisions 
are made based on some heuristics or random decisions. For 
clauses with three literals, the upper bound for the proposed 
algorithm is O(1.8171n). While some researchers reported 
better upper bounds than this, those upper bounds depend on 
the nature of the clauses while our upper bound is 
independent of the nature of the propositional formula. 
Keywords : propositional satisfiability, NP-complete, 
complexity, complete algorithms. 

I. Introduction 

ropositional satisfiability (SAT) is one of the 
classical problems in Computer Science. The 
importance of SAT comes from the fact that a 

large class of real-world problems can be expressed in 
terms of a SAT instance and that it was the first problem 
proven to be NP-Complete (Cook, 1971). The SAT 
problem has a wide range of practical real world 
applications (Barbour, 1992; Crawford & Baker, 1994; 
Devadas, 1989; Kauts & Selman, 1992; Larrabee, 1992). 
Many algorithms, categorized into complete and 
incomplete algorithms, were proposed to solve this 
problem efficiently over the last decades.  

Complete algorithms can state whether a SAT 
instance is satisfiable giving the satisfying assignments 

or unsatisfiable giving a ‘no’ answer. Incomplete 
algorithms can only give an answer of ‘yes’ for 
satisfiable SAT instances only but cannot give an 
answer for unsatisfiable instances.   

This paper proposes a new complete algorithm 
that differs from the ones in the literature in the following 
aspects:  

• No backtracking during the searching process that 
usually consumes significant amount of time.  

• Has a simple, deterministic and easy to implement 
search process, unlike other algorithms where 
decisions are either made randomly or based on 
some heuristics. 

The remainder of the paper is structured as 
follows. Section 2 describes the proposed algorithm 
with the aid of an example. Section 3 captures the 
algorithm in pseudo code while Section 4 presents the 
complexity analysis of the algorithm. We present related 
work in Section 5.  Sections 6 and 7 summarize and 
provide references, respectively. 

II. Illustrating the Proposed 
Algorithm 

Unlike other algorithms that make a decision on 
a single value (true/false) for a variable x , the proposed 
algorithms takes into consideration all satisfying 
assignments for a clause C and use them for the next 
clauses so that backtracking is avoided.  

 

Consider the following formula: 4 1 5 31 3 2 2 4( ) ( ) ( )F x x x x x x x x x= ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ 

The first clause can be satisfied by any of the 

following assignments 1 3 4, , .x true x true x false= = =  

The algorithm tries to find assignments for all variables 
in clause while preserving at least one of the given 
assignments for 1 3,x x , or 4x

 
in the first clause.

 

In general, the process starts from the first 
clause 1c

 
and produces the set of assignments that 

satisfy 1c
 
which

  
obviously 

 
are the literals in that clause. 
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If the clause has k
 
literals, then k

 
assignments 

can satisfy it (as in the previous formula, the first clause 
has three assignments). In the next step, the set of 
assignments that satisfy the set of previous clause(s) 
are checked with all the literals of the next clause. The 
process continues until all the clauses in the formula are 
covered, after which the resulting set of assignments 
each satisfies the formula. 

 

When a set of assignments from previous 
clause(s) is checked with the literals of the current 
clause, each literal may agree, disagree

 
or be neutral

 
to 

the assignment. A literal agrees with an assignment 
when the assignment includes the literal.  A literal 
disagrees with an assignment when the assignment 
includes a negation of the literal.  A literal is neutral to an 

P 
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assignment when the assignment neither agrees nor 
disagrees with the literal. 

4 1 5 31 3 2 2 4( ) ( ) ( )F x x x x x x x x x= ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨

 
 

 

 

 

 

 

 

 

 

 

Figure 1
 
:
  
Assignment Production

 

In the first step, the satisfying assignments for 
the first clause are its literals. The assignments 
produced for the first clause are shown in the top-left 
rectangle in Figure 1.  Each of these assignments is 
checked with the literals of the second clause, 

1 52( )x x x∨ ∨ . The assignment of 1x
 
disagrees with 

the first literal of the second clause, 1x
 
resulting in no 

assignment produced. The same assignment, 1x
 

is 

checked with the second literal,
 

2x . Since this literal is 

neutral to 1x , a new assignment is produced by 

combining 1x
 
and 2x , as shown in the middle rectangle 

in Figure 1. Next, 1x
 
is checked with 5x , giving 51x x , 

since 5x
 
is neutral to

 

1x
 
. Similarly, the assignments 

3x and 4x
 
are checked with the literals of the second 

clause leading to six additional assignments as shown 
in

 
the middle rectangle of Figure 1. To complete this 

example, the literals of the third clause are checked with 
these eight assignments producing the 18 new 
assignments in the right-most rectangle of Figure 1. 
Note that each of these 18 assignments satisfies the 
given formula.

 

Note that when an assignment agrees with the 
clause in consideration, the process might produce 
shorthand for 1 2x x∨

 
etc. We will illustrate this with the 

pair of clauses:
 

1 2 3

1 4 5

( )
( )
x x x
x x x
∨ ∨
∨ ∨  

The satisfying assignments for this pair of clauses are:
 

1 1 1 2 1 3 1

1 4 2 4 3 4

1 5 2 5 3 5

( )x x or x x x x x
x x x x x x
x x x x x x

 

From this group, it can be seen that the 

assignments }{ 1 4 1 5 2 1 3 1, , ,x x x x x x x x
 
are subsumed in 

the first assignment 1x . This is because each of these 

assignments produces the same result as 1x .
 

Thus, these assignments can be dropped to 
avoid redundancy. Therefore, Figure 1

 
can now be 

redrawn without the subsumed assignments as shown 
in Figure 2.

 
 
 

 

 

 

 

 

 

 

41 3( )x x x∨ ∨  

1 52( )x x x∨ ∨  

32 4( )x x x∨ ∨  

1 2

51

13

3 2

53

4 1

4 2

4 5

x x

x x

x x
x x

x x

x x

x x

x x

 

 

31 2 1 2 1 2 4

5 5 3 51 2 1 1 4
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5 53 2 4 3 2 3 4

4 1 4 1 3 42 2

4 3 4 5 4 5 32 2

x x x x x x x x

x x x x x x x x x

x x x x x x x x

x x x x x x x x x

x x x x x x x x
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                                     Figure 2 :  Satisfying assignments without redundancies 

Since the subsumed assignments are produced 
from clauses that have a literal in common, the 
proposed algorithm starts by extracting all clauses that 
do not share a literal. For a satisfiability formula with n  

literals each clause containing exactly  k  literals, the 

minimum number of clauses in which no two clauses 

have a common literal is 2n
k

 . 

4 1 3 2 6 5 6 51 2 3 4 1 6 5 4 2 3( ) ( ) ( ) ( ) ( ) ( )F x x x x x x x x x x x x x x x x x x= ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨

For example, we need at least 4 clauses to have 
the 12 literals in the following formula. But because of 
the distribution of literals, we need 5 for that purpose. 
Therefore, the algorithm will extract the clauses that do 
not have common literals. There are two advantages in 
doing so:

 

1.
 

The algorithm will save the time to check the 
existence of subsumed assignments which is a 
process that consumes an amount of time equal to 
the number of assignments.

 

2.
 

The time complexity of the algorithm becomes 
easier to prove (see Section 4).

 

Theorem 1
 

Consider a satisfiability formula with m clauses 
each of k

 
literals. An agreement between an 

assignment and a literal in the thi
 
clause produces

 
at 

least
2( 1) ; 2

( 1) ; 3

m i

m i

k k i
k k i m

−

−

 − =


− ≤ ≤
redundant assignments. 

 

Proof: (By induction).
 

Base Case 
 

The base case is when i m=
 

and the total 
number of redundant assignments will 

be 0( 1) ( 1) ( 1)m mk k k k k−− = − = − . Clearly, the 
theorem holds for i m= .

 

Inductive Hypothesis 
 

Suppose the theorem holds for 2,3,4,...,i p=
 

for some clause 2 p m≤ < . The total redundant 

assignments will be
2( 1) ; 2

( 1) ; 3

m p

m p

k k p
k k p m

−

−

 − =


− ≤ <
. If a literal 

with which an assignment agrees is in 1p +
 
clause, 

then the total redundant assignments will be  

1 ( 1)

1 ( 1)

2( 1) 2( 1) 2( 1) ; 2

( 1) ( 1) ( 1) ; 3

m p
m p m p

m p
m p m p

k k k k k k i
k

k k k k k k i m
k

−
− − − +

−
− − − +

 −
= − = − =


− = − = − ≤ ≤ 

That is, the theorem holds for 1p+ . By 
induction on p , the theorem is true for all values of

 
i .

 

Theorem 2
  

Consider a satisfiability formula with m clauses 
each of k

 
literals. A disagreement between an 

assignment and a literal in the thi
 
clause reduces the 

number of assignments by at least by ; 2m ik i m− ≤ ≤ .
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51
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3 2
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4 1

4 2

4 5

x x

x x

x x
x x

x x

x x

x x

x x
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Base Case

 

The base case is when i m=

 

and the total 
number of assignments will be reduced 

by 0 1m mk k− = = . Clearly, the theorem holds for i m= .

 

Inductive Hypothesis

 

Suppose the theorem holds for 2,3,4,...,i p=

 

for some clause 2 p m≤ < . The total assignments will 

be reduced by m pk − . If a literal with which an 
assignment agrees with is in 1p +

 

clause, then the 
total assignments will be reduced 

by 1 ( 1)
m p

m p m pk k k
k

−
− − − += = . That is, the theorem holds 

for 1p+ . There by induction on p , the theorem is true 
for all values of i .

 

III.

 

The Proposed

 

Algorithm 
Pseudocode

 

The most important step in any complete or 
incomplete SAT algorithm is the decision over the value 

of a given variable in the formula. If the decision on that 
variable is wrong, the algorithm will waste its time 
searching for a solution before it discovers that the value 
assigned to the variable does not lead to a satisfying 
assignment and consequently a backtrack is done to 
change that value. The problem with making a decision 
for a variable x  

using the heuristics is that they do not 
consider how this decision or assignment will affect 
other related variables that appear in the same clauses 
as the variable x . If the search process keeps all 
possible assignments that satisfy a clause before 
moving forward, then no backtrack is needed. Instead, 
these assignments can be used to determine the values 
of variables that satisfy the next clauses. In the case that 
none of the variables in the current clause agrees with 
all the assignments, then the formula is unsatisfiable. 
This leads to the main idea of the proposed algorithm 
for assigning values to the variables. 

 

The Algorithm
 

Input:
 

F[m]; //formula with m clauses
 

Output : A[km]; //Possible assignment satisfying m clauses.
 

 

1.
 

getDistinctClauses(F[m]);
 

 

2.
 

For i = 1 to disticntclauses.length –
 

1;//number of distinct clauses
 

For j = 1 to k //k is the number of literals in a clause
 

LIT[i][j] := disticntclauses[i];
 

     
 

End for
 

      End for
 

 

3.
 

For i = 1 to k
 

A[i] := LIT[1][i]; //literals of the first clause(initial set of satisfying substitutions)
 

End for
 

 

4.
 

For i = 2 to disticntclauses.length;//number of distinct clauses
 

For j = 1 to k
 

generateAssignment(LIT[i][j], A[], temp[]);
 

//A[] contains the set of satisfying substitutions from previous clauses
 

//temp[] contains assignments formed by combining assignments in A[]  with a literal LIT[i][j]
 

End for
 

A[] := A[] + temp[];
 

   End for
 

 

5.
 

For i = distinctclauses.length + 1 to m;//number of distinct clauses
 

For j = 1 to k //k is the number of literals in a clause
 

LIT[i][j] := nondistinctclauses[i];
 

     
 

End for
 

      End for
 

 

For i = distinctclauses.length to m
 

For j=1 to k
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Proof: (By induction)



 

generateAssignment(LIT[i][j], A[], temp); 
End for 
removeSubsumedAssignments(tempassignments[], arraysubsumed[]); 
A[] := A[] + temp; 
     End for 

 
6. If A[] is empty 

 Output “the formula is unsatisfiable”; 
Else  
Output the assignments in A[] as the satisfying assignments for the formula F. 

 
Procedure getDistinctClauses(F[m]) 
Input: Formula with m clauses 
Output: arrayofdistinctclauses and arrayofnondistinccaluses 

 
distinctclauses[1] = clause[1]; 
n1:=0; 
n2:=1; 
distinct = true; 
for i = 2 to m  

 for j = 1 to distinctclauses.length – 1 
  if (distinctclause[j] intersection clause[i] != empty) 
   nondistinctclauses[n1++] = clause[i]; 
   distinct = false; 
   break; 
  Endif 
 Endfor 
 If (distinct == true) 
  disticntclauses[n2++] = clause[i]; 
 Endif 

Endfor 
 

Procedure: removeSubsumedAssignments(tempassignments[], arraysubsumed[]) 
Input: list of assignments containing subsumed assignments and list of assignments subsuming the subsume assignments. 
Output: list of assignments without subsumed assignments. 

 
n:=0; 
For i = 0 to tempassignments.length – 1 

 For j = 0 to arraysubsumeb.length – 1 
  If (arraysubsumed[j] is not contained in tempassignents[i]) 
   arrayassignments[n++] = tempassignment[i] ; 
 Endfor 

Endfor 
Return  arrayassignments[]; 

  
Procedure: generateAssignment(lit, A[], temp[]); 
Input: a literal in a clause and a list of assignments in A[]. 
Output: a list of assignments stored in temp[] produced by combining lit with A[]. 

 
For i = 1 to A.length 

 If lit did not conflict with the assignment then 
  Combine the lit and the assignment; 
  Add the combination in temp[]; 
 elseif lit agrees with the assignment then 
  Add the assignment in temp[]; 
  Add the assignment in arraysubsumed[]; 
 Endif 

Endfor 
Return temp[];

Figure 3
 

:
 

The Proposed Algorithm
 

A Proposed SAT Algorithm
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IV. Time Complexity of the Algorithm 

 

a) Finding number of assignments 
Whenever a clause is considered in the for-loop, 

the number of assignments is multiplied by k  (in the 
worst case). The first clause initializes A with 
k assignments (the literal in that clause). Then, the 

second clause will produce at most 2k assignments, 

and the third clause may generate as 3k  assignments 
and so on. That means the number of the assignments 

is mk≤  where m  is some number of clauses. In step 
four, clauses in CLS could either be: 

1. 
2n
k

 clauses (worst case). 

2. or more than 
2n
k

 clauses (as explained in Section 2). 

Case 1 is the worst because if more 

than
2n
k

clauses are needed, then we must have 

repeated literals. This can be shown easily as follows: If 

we have 
2 1n
k
+  clauses, then the number of literals is 

2( 1)n k
k
+  which gives us 2n k+  literals. That means 

we have k repeated literals in these clauses. 
Because of the existence of repeated literals in 

Case 2, Case 1 will produce the maximum number of 
assignments (see Theorem 3).  

We now determine the number of possible 
assignments, ( )A n , in the worst case. If the clauses in 

CLS have conflicting literals, ( ) mA n k≤ . 
In this case, a literal in one clause will not be 

combined with a literal 1x  in another clause. The 
number of substitutions to be eliminated is shown by 
Theorem 2. 

To count the exact number of assignments, the 
principle of inclusion-exclusion is used. The principle 
states that the number of elements that have property 1, 
property 2, property 3, …, or property n is found by the 
summation. 

1
1 2 3 1 2 3

1 1 1
( , , ,..., ) ... ( 1) ...n

n i i j i j k n
i n i j n i j k n

N P P P P A A A A A A A A A A+

≤ ≤ ≤ < ≤ ≤ < < ≤

= − ∩ + ∩ ∩ − + − ∩ ∩ ∩ ∩∑ ∑ ∑

 

If iP  is the assignment where ix  and ix  

appear for 1,2,3,...,i α=  where nα ≤ , then the exact 
number of assignments for case 1 is 

2

1 2 3( , , ,..., )
n

kk N P P P Pα− .
 

For any satisfiability instance, the previous 
quantity cannot be found. That is because unlike the 
example given earlier, the arrangement of variables or 
literals differs from one instance to another. However, 
there is an arrangement that will produce the highest 
number of variables. 

b) The upper bound 
At this point, we need to prove two theorems. 

One that states case 1 is the worst case and the other 
states the arrangement that will produce the highest 
number of assignments. 

Theorem 3 
In step 5 of the algorithm, generating 

assignments with the least number of clauses 
2( )n
k

 

that include 2n literals is the worst case. 

Proof

 If more than 
2n
k

 

clauses are needed to include 

the 2n
 

literals then we must have literals that are 
repeated. If we have one additional clause, then there 
must be k literals repeated and this will make the set of 
assignments to be excluded more than n. Having a 
repeated literal means that we have three clauses of

 

this 

form: 11 2 3 1 4 5 6 7x x x x x x x x x∨ ∨ ∨ ∨ ∨ ∨
.
 The two clauses that have the repeated literal 

1x
 
will produce the unnecessary assignments. These 

assignments are generated when the repeated literal is 
combined with the ( 1)k −

 
literals of the other clause. 

This means that the assignments that include 

{ }1 4 1 5 1 2 1 3, , ,x x x x x x x x
 

are unnecessary. The only 

useful assignment is 1x
 

produced from 1 1( )x x . This 

indicates that 2( 1)k −
 
sets of assignments should be 

discarded. In addition to these assignments, the two 

repeated literals when combined with 1x
 
will produce 
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The first three steps of the algorithm take 
polynomial time of number of clauses. Steps four and 
five are clearly the main contributors to the time 
complexity of the whole algorithm. These two steps rely 
on the number of assignments generated in each 
iteration of the for-loop. For step four, that number is 
determined by the clauses in CLS and for step five, that 
number is determined by the end of step four. Therefore, 
let us start with step four.

The proof of the principle can be found in (Rosen, 1999).

two sets of assignments of the form 11( )x x that are 



 

 also discarded from the total number of assignments 
when we count them using the inclusion exclusion 
principle. Therefore, a repeated literal will result to 
discard 2( 1) 1k − +

 

additional sets excluded.

 Writing the inclusion exclusion series with n sets 
plus (2( 1) 1)k k − + sets is hard because there will be 
many possibilities for the intersection of sets. The 

approach to show that 2n/k is the worst case is to 
exclude the additional sets first from the total number of 
assignments and compare that with the worst case. The 
number of assignments of the additional sets can be 
counted by: 

2 21 32

2 25 2 13 1

2 2 11

1

(2( 1) 1)* ( ,1)* (2( 1) 1) * ( , 2) *

(2( 1) 1) * ( ,3)* ... ( 1) (2( 1) 1) * ( , )*

( 1) (2( 1) 1) ( , )

n n
k k

n n kk kk k

nk ii i k

i

A k C k k k C k k

k C k k k C k k k

k C k i k

− −

− − ++

− ++

=

= − + − − +

+ − + − + − − +

= − − +∑

Excluding this from the total assignments
 

2 21 2 11

1
2 2 1 2 1 2( )

1

( 1) (2( 1) 1) ( , )

( ( 1) (2( 1) 1) ( , ) )

n nk ii ik k

i
n kk k i i k ik

i

N k k C k i k

N k k k C k i k

+ − ++

=

− + + −

=

= − − − +

= − − − +

∑

∑

Evaluating 2 1 2( )

1
( ( 1) (2( 1) 1) ( , ) )

k
k i i k i

i
k k C k i k+ −

=

− − − +∑  for values of k gives quantity less than   2 1kk −
   

and result  to  a  number  of  assignments  less  than   
2n
kk       and  excluding  the  n  sets  of  the  form    (v -v)    

from N gives a value that is less than the one in the worst case.  
2n
kk    excld(n sets)  

2 2 1 2 1 2( )

1
( ( 1) (2( 1) 1) ( , ) )

n kk k i i k ik

i
k k k C k i k

− + + −

=

> − − − +∑             excld(n    sets)            because 

2n
kk

2 2 1 2 1 2( )

1
( ( 1) (2( 1) 1) ( , ) ).

n kk k i i k ik

i
k k k C k i k

− + + −

=

> − − − +∑
 This is for one additional clause. For i  

additional clauses the limit of the summation is to ik  

and this also will give the same result. 
Theorem 3 tells us that step six will not generate 

assignments that are more than step five. This should 
make step 5 the dominant factor for time complexity. 

Theorem 4  

For the worst case, the upper bound is ( ( 1))
n
kk k −  

Proof
 

The inclusion-exclusion principle takes care of 
assignments that are counted more than once by 
considering the intersections between the n sets to be 
excluded as seen in the summation. Therefore, the least 
value of 1 2 3( , , ,..., )nN P P P P  

indicates the maximum 

possible number of assignments generated by the 

algorithm. This occurs when each set ,x x is 

intersected with the maximum possible number of other 
sets. For example consider two clauses that has 1x  and 

1x  literals: 

1 2 3

1 4 5

x x x

x x x
 

The assignments that include 1x  and 1x  can 

never occur with assignments that include 2x  and 2x , 

3x  and 3x , 4x  and 4x , 5x  and 5x  literals. Therefore, 

there is no intersection between 1x 1x  assignment set 

and 4 sets of assignments. The least intersection 

( 1)k −  happens if both clauses of 5x  and 1x  have 

literals of the same variables. For the previous example 
the two clauses should look like this 
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3 1 21 2 3x x x x x x∨ ∨ ∨ ∨  to make the quantity 

1 2 3( , , ,..., )nN P P P P  the least. If this happens with all 

variables, the following arrangement will produce the 
maximum number of assignments. 

3 1 2 4 5 6 8 7 91 2 3 6 4 5 7 9 8, , , , , ,x x x x x x x x x x x x x x x x x x∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ 

The number of assignments between clauses of 

conflicting literals is ( 1)k k − . Since we need 
2n
k

 

clauses to consider n variables and each 2 clauses have 
( 1)k k −  assignments, then the number of assignments 

will be ( 1)
n
kk k − . 

c) Related Work 
Complete algorithms for SAT satisfiability 

problems include those algorithms that can state 
whether or not a SAT instance is satisfiable, giving a 
‘yes’ answer together with a satisfying assignment or a 
‘no’ answer as the case may be. The first complete 
algorithm is the Davis Putnam procedure (Davis & 
Putnam, 1960). This procedure is based on resolution 
rule to eliminate variables one by one till the formula is 
satisfied. When a variable is eliminated in each iteration, 
all resolvents are added to the set of the clauses. This 
algorithm requires polynomial space. It handles CNF 
formulas and it is one of the efficient SAT algorithms. 
(Davis, Logemann, & Loveland, 1962) Developed a 
divide-and-conquer algorithm that enhances on (Davis 
& Putnam, 1960).  This improved algorithm is the main 
procedure for most state-of-the-art SAT solvers today.  

The search space of DPLL could grow as large as 2n  
which is the worst case for any complete algorithm. Due 
to the possibility of consuming huge amount of time, 
researchers have been focusing on mechanisms to 
reduce that and came up with more reasonable time 
complexities. These improvements usually come in two 
aspects: the decision to branch to next literal and the 
backtracking mechanism if a solution is not found in the 
chosen branch. The achievements accomplished in 
improving SAT algorithm in these two aspects show that 
the complexity could be reduced significantly. 

i. Branching Decisions 
DPLL procedure chooses any literal for 

branching and goes down that region in the search 
space. The procedure will spend time searching for a 
solution and if it discovers that the branch is not 
successful, it backtracks to the other branch and 
continues searching. Choosing the next literal for 
branching more carefully will allow the algorithm to save 
time exploring a region where a satisfying assignment 
cannot be found at all and direct the searching to 
regions where a solution is likely to be found. In order to 
accomplish this, several heuristics have been proposed 
and the most effective ones can be found in (Bruni & A., 
2003; Freeman, 1995; Hooker & Vinay, 1994; Jeroslow & 

Wang, 1990; Li & Anbulagan, 1997; Moskewicz, 
Madigan, Zhao, Zhang, & Malik, 2001; Pretolani, 1993).  

ii. Backtracking Mechanisms  
When the algorithm fails to find an answer or an 

empty clause (contradiction) appears down the path of 
the search tree, it backtracks to a certain point and 
continues searching in another part of the tree. The DP 
backtracks to the most recently untoggled 
(complemented) literal and tests its complement branch. 
As mentioned earlier this will cost a lot of time for DP to 
discover that this part of the search space does not 
have a solution and search for a solution elsewhere. For 
backtracking in the DP procedure, much work has not 
been done as compared to branching decision. This is 
due to the fact that backtracking is an essential step in 
any algorithm to prove its completeness. Nevertheless, 
there are a number of proposals to improve the 
backtracking in the DP procedure. (Lynce & Marques-
Silva, Building State-of-The-Art SAT Solver, 2002) tested 
different backtracking strategies and the most effective 
ones can be found in (Lynce & Marques-Silva, 2002; 
Stallman & Sussman, 1977).  

iii. Upper Bounds  

The improvements made in backtracking and 
branching heuristics are of practical interests. However, 
the experimental analysis of these improvements 
indicates that satisfiability could be solved in time less 

than 2n . A number of people gave lower bounds for this 
problem but most of them rely on a certain structure or 
property that exists in the formula. The following are 
some of the achievements made to find an upper bound 
that is better than the trivial one.  

a.
 

Autarkness Principle
  

The first attempt to achieve a non-trivial upper 
bound for SAT was done by (Monien & Speckenmeyer, 
1985). They introduced the notion of autarks

 
which are 

partial assignments of variables. If all clauses that 
include the variables in the assignment are satisfied, 
then that assignment is an autark.

 
They proved that the 

time complexity of their algorithm is log(2 )kn αΟ  
.
 

b.
 

2-clause
  

When dealing with 3-SAT problem, the clauses 
with 2 literals help in reducing the search space. 
Schiermeyer was the first to make use of the number of 
clauses with 2 literals after the resolution step is made 
(Schiermeyer, 1993). He said that for the next branch, a 
2-clause is chosen such that it produces at least one 
new 2-clause in every branch that follows. With the help 
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of these reduced clauses, he proved an even lower 

bound for 3-SAT with time complexity O(1.579 n ). 
(Kullmann, 1999) showed that the algorithm of 
Schiermeyer can perform better through a new concept 
called blocked clauses. A clause C is blocked for a 
literal l  if every clause C' containing l   has also another 
literal that is complemented with C. By making use of 
these blocked clauses, Kullmann proved that the 
algorithm in (Schiermeyer, 1993) can have a time 

complexity of O(1.504 n ).   

c. Saisfiability Coding Lemma 

This lemma is based on isolated assignments 
which are satisfying assignments to the formula where a 
change of one value of any variable will make it 
dissatisfying. The lemma states that such assignments 

can be encoded in a message of length ( )nn
k

−  and 

this is where the complexity comes from. (Marques-Silva 
& Sakallah, 1999) shows that through satisfiability 
coding lemma their algorithm finds an answer in 

2(2 )
nn
k

−
Ο . 

d. P-literal  

(Hirsch, Two New Upper Bounds for SAT, 1998) 

presented two algorithms that rely on P-literal notion. 
This notion says that if a literal occurs exactly 2 times in 
the clause set and at least 3 times in its negation form, 
then it is P-literal. He used these special literals to 
simplify the formula and came up with two algorithms 

with time complexity O( 0.30892 m ) and 
0.10537L(2 )Ο respectively where m is the number of 

clauses and L is the length of the formula. An 
improvement was made to the second algorithm in 

(Hirsch, 2000) to become O( 0.10299L2 ). 

e. Covering Codes  

(Danstin, et al., 2002) proposed a deterministic 
algorithm that is based on covering codes. This 
algorithm can be seen as a derandomization of 
(Schoning, 1999) algorithm that uses random walk 
model. The search space is divided into group of 
assignments say balls of some radius r. Each group or 
ball represents some assignment a and all assignments 
that differ with it in r variables. The algorithm checks in 
each ball if there is a satisfying assignment and if there 
is none in any ball then the formula is unsatisfied. The 
authors of (Danstin, et al., 2002) showed that the time 

complexity of this 
2(2 )

1k
Ο −

+
for k-SAT. For 3-SAT, 

they managed to further improve the algorithm by 
identifying useless branching and reduce the search 

space to come up with running time O(1.481 n ). 

V. Conclusion and Future Work 

The proposed does not require the clauses or 
the formula to have any specific structure to achieve a 
competitive upper bound which is a significant 
advantage over the existing algorithms in the literature 
where they derive their time complexity based on a 
property that must exist in the formula. The algorithm 
gives a new insight towards solving SAT. Most of the 
other algorithms are based on the classical rule of 
splitting the search space into regions and search for a 
solution in each one. The new perspective of the 
algorithm has the potential to design further effective 
SAT algorithms that outperforms the existing ones in 
theory and practice. 

The implementation of the proposed algorithm 
will be considered in future work. The algorithm 
proposed here can also be improved. The time 
complexity of the proposed algorithm is based on pre-
processing of clauses in the formula. This arrangement 
is so unlikely to exist in all clauses considered. That 
means that there exists a tighter upper bound for the 
algorithm but to achieve that the order in which clauses 
are considered should be more intelligent. To show that 
such an upper bound exists, many cases have to be 
covered and counted. Parallelisation of the proposed 
algorithm is also a potential future work. 
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