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Abstract-  Wireless sensor network design is critical and 
resource allocation is a major problem which remains to be 
solved satisfactorily. The discrete nature of sensor networks 
renders the existing skeleton extraction algorithms 
inapplicable. 3D topologies of sensor networks for practical 
scenarios are considered in this paper and the research 
carried out in the field of skeleton extraction for three 
dimensional wireless sensor networks. A skeleton extraction 
algorithm applicable to complex 3D spaces of sensor 
networks is introduced in this paper and is represented in the 
form of a graph. The skeletal links are identified on the basis of 
a novel energy utilization function computed for the 
transmissions carried out through the network. The frequency 
based weight assignment function is introduced to identify the 
root node of the skeleton graph. Topological clustering is used 
to construct the layered topological sets to preserve the nature 
of the topology in the skeleton graph. The skeleton graph is 
constructed with the help of the layered topological sets and 
the experimental results prove the robustness of the skeleton 
extraction algorithm introduced. Provisioning of additional 
resources to skeletal nodes enhances the sensor network 
performance by 20% as proved by the results presented in this 
paper. 

ρ 

Keywords:  3d, algorithm, protocol, wireless sensor 
networks, skeleton extraction, skeleton node. 

I. Introduction 

ireless sensor networks constitute sensor 
nodes that are deployed over a topological 
area. Sensor nodes are independent, low 

resource devices possessing processing units, sensing 
devices, communication bandwidth, power resources 
and radio trans-receiver systems. Network life time, 
accurate data aggregation, and overhead reduction are 
desired characteristics of sensor network deployments. 
Network design is critical to construct efficient wireless 
sensor networks.  Sensor networks are used for varied 
applications like unforeseen disaster relief [1] and [2], 
underwater sensor networks [3], monitoring activities 
[4], surveillance in military applications [5], medical 
monitoring systems [6] and many more. Network design 
is critical in sensor network deployments to achieve the 
desired goals [7]. Considering the varied application 
domain  of sensor  networks,  it  can  be stated  that  the 
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deployment methodology and the geographic 
deployment environments greatly vary. Wireless sensor 
network design, deployments of sensor nodes and 
analyzing the resources to be allocated to the sensor 
nodes is a major problem that exists. The shape of 
wireless sensor network deployments generally 
considered are usually in the shapes of a square or oval 
which is not the case in actual deployments [8].  

Moreover researchers generally consider 2D 
topologies or 3D projections schemes to model the 
surface coverage which lead to inaccuracies and 
deviations from realistic environments [9]. In real word 
applications, sensor network deployments are complex 
3D spaces. Generally researchers use a simple 2D ideal 
plane [10, 11] or a 3D full space models [12, 13] for the 
environment which are inadequate to achieve realistic 
results. A recent study conducted by Linghe Kong et al. 
[9] highlights the surface coverage problems for 
deployments of sensor networks in the idealistic world. 
In Ref. [9], the authors ascertain that the field of interest 
is neither 2D nor 3D but consists of complex surfaces, 
with the help of the Tungurahua volcano monitoring 
project [14] shown in Fig. 1. Furthermore, the authors in 
Ref. [9] define a coverage dead zone that exists in 
adopting a 2D surface coverage model described in Fig. 
2 of this paper. Let us consider a set of seven sensor 
nodes termed Node A – Node G as shown in Fig. 3. The 
sensor nodes appear to be deployed in an elevated 3D 
terrain or a hill sort of a terrain. The 2D representation of 
the similar topology is presented in Fig. 4. While 
considering 2D topologies, nonexistent or impractical 
links are established as shown by a thick grey line in the 
figure. This error generally occurs in the network and the 
physical layer modeling. 
 

 

Figure 1 :  Volcano monitoring Project from Harvard 
Sensor Networks Lab [14] 
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Figure 2 :  Coverage Problem Dead Zone that occurs 
when 2D Plane Solutions are adopted to 3D surfaces [9] 

 

Figure 3 :  A seven sensor node topology in 3D surface 

 

Figure 4 :  Network Layer/Radio Layer Error while 
applying 2D models to 3D topologies of Sensor 

Networks 

From the above mentioned examples, it is 
evident that the 2D models that currently exist may not 
be applicable to real world scenarios. In the research 
work presented, the authors propose to consider 3D 
complex surface models for modeling sensor network 
deployments. 

Skeleton extraction techniques have been 
extensively studied in the areas of image processing 
[15], medical image processing [16], computer graphics 
[17] and computer vision [18] and [19]. The use of 
skeleton extraction to represent the shape properties is 
well established. The skeleton extraction algorithms 
discussed above cannot be directly applied to wireless 
sensor network topologies as wireless sensor network 
topologies are discrete in nature and not continuous. 
Also the skeleton of wireless sensor networks depends 
on the network connectivity of the sensor nodes and not 
on the topological position alone. Wireless sensor 
networks are noisy by nature owing to the fact that the 
hop based approach is used to compute distances and 
not the Euclidean distance. The effect of noise tends to 

inaccurate skeleton extraction proved in Ref. [21]. In 
post skeleton node identification, the skeleton node 
connectivity also poses another challenge as the 
skeleton connectivity is physical layer based and not 
discrete. The use of skeleton extraction techniques to 
represent wireless sensor network topologies and thus 
enhance the performance is proposed by researchers in 
Ref.

 
[20-22]. However, the application to the 3D 

topologies is still limited. The research work presented 
here considers sensor network deployments in 3D 
complex spaces. 

 This paper introduces a skeleton extraction 
algorithm applicable to 3D wireless sensor network 
topologies where the coverage of the network is 
considered as a complex 3D function. In order to extract 
the skeleton, transmissions are initiated from each 
sensor node to all the other sensor nodes recursively 
and are modeled as transmission vectors. An energy 
utilization function is defined to identify the skeletal links. 
The skeleton is represented as a graph and the root 
node is computed using the frequency based weight 
assignment function. The skeleton nodes are extracted 
from the skeletal links.

 
The skeleton graph construction 

is achieved by layered topological sets that represent 
decomposed clusters of the topology. The distance 
function is defined to organize the position of the 
skeleton nodes in the skeleton graph.

 The remaining manuscript is organized as 
follows. The literature is reviewed in section two of this 
paper. The proposed skeleton extraction algorithm is 
presented in the third section. The experimental study is 
described in the subsequent section. The conclusions of 
the research work

 
are drawn in the last section of this 

paper.
 

II.
 

Literature Review
 

The skeleton extraction algorithms proposed by 
researchers can be broadly classified into four 
categories namely thinning and boundary propagation, 
distance field-based, geometric based, and general-
field function based methods [18]. In the thinning and 
boundary based methods, the skeleton is represented 
as a thin line describing the topology. It is usually 
achieved by recursively shrinking of objects to a core 
thin line representing the topology [23]. To reduce the 
processing time which is a major drawback

 
of the 

thinning and boundary based methods, researchers 
have also proposed parallel implementations of the 
thinning algorithms in 3D objects [24]. Most of the 
distance field based algorithms adopt a three step 
approach to extract the skeleton. The primary

 
step 

constitutes in obtaining the ridge points of the object. 
Then a pruning methodology is applied followed by the 
connectivity phase to construct the skeleton. For 
connectivity, many algorithms like the shortest path 
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technique [25, 26], minimum spanning tree [27, 28], LM 
path technique [29] or other geometric techniques are 
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 utilized. The advantage of distance field methods is that 
they are computationally lighter when compared to the 
other methods and is very effective in the case of tubular 
objects. The

 

major drawback of the distance field 
algorithms is that on application to arbitrary objects, the 
skeleton extraction is not accurate. In the geometric 
based methods of skeleton extraction the objects are 
represented as sets of scatter points or structures

 

of 
polygonal meshes. Voronoi diagram representations 
[30-32] is a popular example for geometric based 
methods for skeleton extraction. The polyhedral 
geometric method to represent 3D structures is 
discussed in Ref. [33, 34]. The drawbacks of the 
geometric

 

methods are that they are computationally 
more expensive when compared to the thinning and 
boundary based methods and they produce medial 
surfaces rather than the skeleton curve. In the general 
field generation based methods, varied functions are 
utilized

 

to represents fields and these functions are 
utilized to generate skeleton curves. Potential field 
functions [35, 36], visible repulsive force functions [37], 
electrostatic field functions [38], radial basis functions 
[39] are a few considered by researchers. The field 
generation algorithms are less sensitive to noise and 
produce better results when compared to the geometric 
methods. As the field generation functions are first or 
second order functions, they are computationally heavy 
to solve and are considered unstable. The skeleton 
extraction methodologies may not be applicable to 
wireless sensor network topologies directly, which is the 
purpose of the research work proposed here.

 
Skeleton extraction in wireless sensor networks 

pose many challenges as discussed in the previous 
section of the paper. The migration of topology shapes 
to geometrical ones and the use of a dynamic medial 
axis model to present these geometric shapes are used 
for skeleton extraction in Ref.  [40]. A medial axis based 
naming and routing protocol for wireless sensor 
networks is proposed in Ref. [21]. The methodology 
proposed in Ref. [21] consists of two protocols, namely, 
the medial axis construction protocol and the medial 
axis based routing protocol. In the medial axis 
construction

 

protocol, the skeleton nodes are identified 
and the skeleton of the wireless sensor network 
topology is constructed. The medial axis based routing 
protocol achieves efficient load distribution during 
routing through the sensor networks due to the local 
decision capacities while routing.  In Ref. [8], a 
connectivity based skeleton extraction algorithm 
applicable to wireless sensor network topologies is 
proposed. The coarse skeleton graph is extracted by 
boundary partitioning to identify the skeletal sensor 
nodes, generating the skeletal arcs, extending 
connectivity amongst the skeletal arcs. This coarse 
skeleton is finally refined to give the skeleton graph. The 

network topology. A distance transform based skeleton 
extraction algorithm for large scale wireless sensor 
networks is proposed in Ref. [22]. The algorithm 
proposed by Wenping Liu et al. [22] is more applicable 
to the practical applications as it

 

does not require 
accurate or complete boundaries of sensor network 
topologies, exhibits lower communication overheads 
and is robust to noise. In Ref. [22], the coarse skeleton 
is generated by constructing the node map based 
distance transform of the sensor network; using the 
distance map the skeleton nodes are identified and the 
arcs are connected using a controlled folding scheme. 
The coarse skeleton is refined using the shortest path 
trees to construct the skeleton graph. The drawbacks of 
the skeleton extraction algorithms for wireless sensor 
networks discussed here is that the authors have 
considered the surface coverage in only 2D topologies 
and not the complex 3D topologies of wireless sensor 
networks that practically exist and proved in Ref. [9].

 

 

 

 

 

 

 a)

 

Preliminary Notations

 
Let us consider a

 

3𝐷𝐷

 

wireless sensor topology 

 

𝒯𝒯

 

be represented as a graph 𝔾𝔾

 

(𝑁𝑁

 

, 𝐿𝐿), 
where

 

𝑁𝑁

 

represents the sensor node set and 𝐿𝐿

 

is the 
wireless link set. The location wireless sensor 
node

  

𝑛𝑛𝑎𝑎

 

∈ 𝑁𝑁

 

described by Cartesian coordinates is 
represented by

 
 

𝑝𝑝𝑛𝑛𝑎𝑎 =

 

�𝑥𝑥𝑛𝑛𝑎𝑎
 

, 𝑦𝑦𝑛𝑛𝑎𝑎
 

, 𝑧𝑧𝑛𝑛𝑎𝑎
 

�

  

(1)

 The skeleton or critical nodes to be identified in 
the sensor network topology

 

𝔾𝔾

  

is defined by a set 𝑆𝑆

 

and 
the remaining nodes are defined by the set

 

𝑅𝑅

 

.

 𝑁𝑁 = 𝑆𝑆

 

∪ 𝑅𝑅  

 

(2)

 Let the transmission radius of the sensor node 
be represented as 𝑟𝑟𝑡𝑡

 

and the sensing radius be 
represented as

 

𝑟𝑟𝑠𝑠

 

. As 3D topologies in complex spaces 
are considered, the coverage of the 𝑁𝑁

 

sensor nodes [9] 
can be defined as 
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algorithm proposed in Ref. [8] accurately preserves the 
network topology and is robust to the noisy sensor 
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III. Proposed System - Skeleton 
Extraction Algorithm For 3d 

Wireless Sensor Networks
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1 − �1 −��(𝒜𝒜𝑖𝑖 𝒜𝒜𝒯𝒯⁄ )(2𝜋𝜋2𝑟𝑟2 2𝜋𝜋(𝜋𝜋𝑟𝑟2 +  𝒜𝒜𝑖𝑖) + 2𝜋𝜋𝜋𝜋𝒜𝒜𝑖𝑖⁄ )((𝒜𝒜𝑖𝑖 +  𝒫𝒫𝑖𝑖𝑟𝑟 + 𝜋𝜋𝑟𝑟2) cos𝜃𝜃𝑖𝑖 (𝒜𝒜′
𝒯𝒯 + 𝒫𝒫𝒯𝒯𝑟𝑟 + 𝜋𝜋𝑟𝑟2)⁄ )�

𝑖𝑖

�
𝜆𝜆(𝒜𝒜′

𝒯𝒯+𝒫𝒫𝒯𝒯𝑟𝑟+𝜋𝜋𝑟𝑟2)

 

 

(3) 

Where 𝒜𝒜𝒯𝒯  represents the area  
𝒫𝒫𝒯𝒯  is the perimeter 
𝜆𝜆 is the sensor deployment intensity 
𝜃𝜃𝑖𝑖  is the angle between 𝒜𝒜𝑖𝑖  and 𝑥𝑥 𝑦𝑦 plane and 
𝒜𝒜′

𝒯𝒯 is the area of the 𝑧𝑧 plane projection of 𝒜𝒜𝑖𝑖 . 
The skeleton of the 3D wireless topology 𝒯𝒯 can 

be considered to represent a graph 𝔾𝔾 𝑆𝑆(𝑆𝑆 , 𝐿𝐿𝑆𝑆), where 
𝔾𝔾 𝑆𝑆  ⊂  𝔾𝔾 and 𝐿𝐿𝑆𝑆  is a set of skeleton links amongst 
𝑆𝑆𝐸𝐸  and 𝑆𝑆𝐶𝐶  . 𝑆𝑆𝐸𝐸  represents the set of the extreme sensor 
nodes in the topology 𝒯𝒯and  𝑆𝑆𝐶𝐶  represents the sensor 
node which is common to all the skeleton links 𝐿𝐿𝑆𝑆  . In 
order to extract the skeleton of sensor networks 
generally a transmission based scheme is adopted [41] 
[42], in which each sensor node initiates a transmission 
to the other nodes and then the response messages or 
the route reply messages are used to derive 𝔾𝔾 𝑆𝑆   and 
hence the authors of this paper adopt a similar 
mechanism. The major drawback of such mechanisms 
already adopted is that the network energy utilized 
associated with the transactions is established 
heuristically and are not applicable to 3D sensor 

networks. In order to overcome this drawback, the 
research work presented here does not consider the 
heuristic mechanism generally adopted and introduces 
a novel energy utilization function represented as  𝔢𝔢(𝑛𝑛) to 
compute the energy utilized during transmissions. The 
energy utilization function is derived in a manner such 
that if energy utilization of path between a set of sensor 
nodes is the least, then the link  𝑙𝑙 ∈  𝐿𝐿𝑆𝑆  . 

b) Energy Utilization Function 𝔢𝔢(𝑛𝑛) for Skeleton 
Extraction 

Let 𝑠𝑠 be a skeleton node and 𝑟𝑟 represent a non-
skeleton node. Let 𝔣𝔣(𝑛𝑛) represent a frequency based 
weight assignment function that assigns skeleton nodes 
with higher values than the non-skeleton nodes. In other 
words, 𝔣𝔣(𝑠𝑠) >  𝑓𝑓(𝑟𝑟). 

Let’s consider sensor node 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠   at a location 
𝑝𝑝𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝒜𝒜𝒯𝒯  transmitting some data to the sensor 
node 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑  located at 𝑝𝑝𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑 ∈ 𝒜𝒜𝒯𝒯. If the energy utilized in 
obtaining the optimal link route is defined as 

ℰ(𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 ) = 𝑚𝑚 ↓
𝐿𝐿𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠   𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑

 � 𝔢𝔢 �𝐿𝐿(𝑛𝑛)�𝑑𝑑𝑑𝑑
 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠
 

  (4) 

Where 𝐿𝐿(𝑛𝑛) ∶ [0, ∞) ⟹ 𝐿𝐿𝑛𝑛  is the function that 
computes the optimal energy route. 

𝐿𝐿𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠   𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑  is the routing table of the sensor node 
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠   to sensor node  𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑  

𝑚𝑚 ↓
𝐿𝐿𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠   𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑

represents the minimum hop route from 

sensor node 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠   to sensor node  𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑  

𝔢𝔢 represents the energy utilized 
The energy utilized in obtaining the optimal 

route can also put forth the least time interval for any 
active transmission from  𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠  to  𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑  when the physical 
radio layer transmission speed is 𝒱𝒱, i.e., 

| ∇ℰ( 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑 ) |  × 𝒱𝒱( 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑 ) = 1   (5) 

The energy utilized 𝔢𝔢 with respect to the radio layer transmission rate can be therefore defined as 

                                                                          𝒱𝒱( 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑 ) =  1 𝔢𝔢( 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑 )⁄                                                                                       (6) 

The generalized form of the above equation can be defined as 
𝒱𝒱( 𝑛𝑛) =  1 𝔢𝔢( 𝑛𝑛)⁄    (6a) 

Where 𝒱𝒱( 𝑛𝑛) is the radio layer speed function defined as   

𝒱𝒱( 𝑛𝑛) =  𝜒𝜒�𝔣𝔣(𝑛𝑛)� (7) 

The skeleton of a 3D sensor network topology 
consists of a set of nodes 𝑆𝑆 and a set of links 
connecting these skeleton nodes 𝐿𝐿𝑆𝑆  represented as a 
graph 𝔾𝔾 𝑆𝑆 ⊂  𝔾𝔾 . Let (𝑛𝑛𝑖𝑖 ,𝑛𝑛𝑗𝑗 ) represent a sensor node 

pair. The node pair �𝑛𝑛𝑖𝑖 ,𝑛𝑛𝑗𝑗 �  ∈ 𝑆𝑆 if the energy utilization 
function is defined as 

𝔢𝔢( 𝑛𝑛) =  𝑒𝑒−𝜂𝜂𝔣𝔣(𝑛𝑛) (8) 

where 𝜂𝜂 > 0 and is defined as  

𝜂𝜂 >  (1 𝛼𝛼⁄ ) ln ��(𝑑𝑑2𝑥𝑥 + 𝑑𝑑2𝑦𝑦 + 𝑑𝑑2𝑧𝑧) 𝑚𝑚 ↓ (𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑)� � 

Where 𝑑𝑑𝑑𝑑 ,𝑑𝑑𝑑𝑑 ,𝑑𝑑𝑑𝑑 is the spacing, 𝑚𝑚 ↓ is the 
minimum function and 𝛼𝛼 is the minimum value of the 

absolute difference between the neighboring sensor 
nodes.  

c) 𝑆𝑆𝐶𝐶  point computation 
In the research work presented here, the auth- 

ors adopt the contour or snake model introduced in Ref. 
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[43] to obtain the skeleton nodes of the 3D wireless sen- 
sor network topology 𝒯𝒯 . The snake or vector of the tran- 

smissions that propagate through 𝒯𝒯 can be defined as 

𝑉𝑉𝑆𝑆(𝑛𝑛) =  [ 𝑢𝑢𝑆𝑆(𝑛𝑛) 𝑣𝑣𝑆𝑆(𝑛𝑛) 𝑤𝑤𝑆𝑆(𝑛𝑛) ]𝐴𝐴 (9) 

The snake 𝑉𝑉𝑆𝑆(𝑛𝑛) minimizes the energy function 
defined as Eq. (10), yet maintaining topology features 

where 𝑓𝑓𝑆𝑆(𝑛𝑛) is the edge map derived, 𝑛𝑛 =  (𝑥𝑥,𝑦𝑦, 𝑧𝑧) and 
the parameter of regularization is represented as 𝜇𝜇 . 

ℰ𝑆𝑆(𝑉𝑉𝑆𝑆) =  �(𝜇𝜇 ( |∇𝑢𝑢𝑆𝑆(𝑛𝑛)|2 + |∇𝑣𝑣𝑆𝑆(𝑛𝑛)|2 + |∇𝑤𝑤𝑆𝑆(𝑛𝑛)|2 ) ) + ( |𝑓𝑓𝑆𝑆(𝑛𝑛)|2  |𝑉𝑉𝑆𝑆(𝑛𝑛) − ∇𝑓𝑓𝑆𝑆(𝑛𝑛)|2𝑑𝑑𝑑𝑑)  (10) 

The energy function ℰ𝑆𝑆  of the snake of the 𝑉𝑉𝑆𝑆  is 
dominated by the partial derivatives of or the primary 
term in the case where ∇𝑓𝑓𝑆𝑆(𝑛𝑛) is small. In the case 
where ∇𝑓𝑓𝑆𝑆(𝑛𝑛) is large, ℰ𝑆𝑆(𝑉𝑉𝑆𝑆) is greatly dominated by the 
second term and the energy involved can be minimized 
by assuming 𝑉𝑉𝑆𝑆 =  ∇𝑓𝑓𝑆𝑆(𝑛𝑛). The use of generalized 
diffusion equations [44, 45] is considered to find the 
solution of the snake 𝑉𝑉𝑆𝑆(𝑛𝑛) . The 𝑉𝑉𝑆𝑆(𝑛𝑛) of the  𝑛𝑛𝑡𝑡ℎ  node is 

computed from the remaining node points in the 
topology 𝒯𝒯 by utilizing a diffusion based procedure and 
these computations converge to a set of skeleton links 
𝑙𝑙 ∈  𝐿𝐿𝑆𝑆  . The diffusion based procedure is slow by nature 
and converges towards the center of the topology and 
in order to compute 𝔾𝔾 𝑆𝑆  , we define the frequency based 
weight assignment 𝔣𝔣(𝑛𝑛) as follows where 𝑚𝑚 ↑ is the max 
function and 𝑚𝑚 ↓ is the min function. 

 𝔣𝔣(𝑛𝑛) = 1 −  ((|𝑉𝑉𝑆𝑆(𝑛𝑛)| −𝑚𝑚 ↓ |𝑉𝑉𝑆𝑆| ) (𝑚𝑚 ↑ |𝑉𝑉𝑆𝑆| −  𝑚𝑚 ↓ |𝑉𝑉𝑆𝑆|)⁄ )𝜔𝜔  (11) 

The parameter 𝜔𝜔 represents the strength and is 
assigned values between 0 and 1 . The parameter 𝜔𝜔 is 
assigned empirically. The weight assignment function 
defined above enables faster computations and 
convergence. 

The  𝑆𝑆𝐶𝐶  point is a skeleton node that belongs to 
all the links defined by 𝐿𝐿𝑆𝑆  and can be obtained based on 

the frequency based weight assignment function 𝔣𝔣(𝑛𝑛) . 
The sensor node with the maximum value of 𝔣𝔣(𝑛𝑛) is set 
to be  𝑆𝑆𝐶𝐶  . The computation of  𝑆𝑆𝐶𝐶  is iteratively achieved 
and if another node whose weight is higher is obtained, 
then  𝑆𝑆𝐶𝐶  is a new sensor node. The computation of 
 𝑆𝑆𝐶𝐶  can be defined as 

 𝑆𝑆𝐶𝐶 = ��𝑚𝑚 ↑ �𝔣𝔣(𝑝𝑝)��
𝑝𝑝=𝑛𝑛

𝑝𝑝=0

 
(12) 

d) Skeleton links 𝐿𝐿𝑆𝑆  identification and skeleton node 
set 𝑆𝑆 construction 

The skeleton links 𝐿𝐿𝑆𝑆  is a set of skeleton links 𝑙𝑙𝑠𝑠 
derived from the weight assignment function 𝔣𝔣(𝑛𝑛). To 
obtain 𝐿𝐿𝑆𝑆, the singular skeleton links  𝑙𝑙𝑠𝑠 need to be 
obtained. Let us consider a skeleton node pair 
represented by (𝑆𝑆𝐶𝐶 , 𝑆𝑆𝑋𝑋).  Let the sensor node  𝑆𝑆𝐶𝐶  initiate 
a transmission signal to sensor node  𝑆𝑆𝑋𝑋 . 

Let 𝑙𝑙𝑠𝑠  represent the skeleton link that exist between the 
skeleton node pair (𝑆𝑆𝐶𝐶 , 𝑆𝑆𝑋𝑋) . The skeleton link 𝑙𝑙𝑠𝑠  is the 
minimum energy utilized link between the nodes 𝑆𝑆𝐶𝐶  and 
𝑆𝑆𝑋𝑋  based on equation (8). Let  𝑇𝑇 be the time taken for 
the transmission from  𝑆𝑆𝐶𝐶  to  𝑆𝑆𝑋𝑋 . Tracking route reply 
from 𝑆𝑆𝑋𝑋   to  𝑆𝑆𝐶𝐶 would enable the identification of 𝑙𝑙𝑠𝑠 and 
this process is defined as 

 𝑆𝑆𝑛𝑛+1 = 𝑆𝑆𝑛𝑛 − ℎ(𝑑𝑑𝑑𝑑 |𝑑𝑑𝑑𝑑|⁄ ) , 𝑆𝑆(0) =  𝑆𝑆𝑋𝑋  (13) 

where  represents the error step. Using ordinary differential equations, the above equation can be 
represented as 

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = −(𝑑𝑑𝑑𝑑 |𝑑𝑑𝑑𝑑|⁄ ) , 𝑆𝑆(0) =  𝑆𝑆𝑋𝑋  (14) 

Where 𝑟𝑟 represents the route reply path from 𝑆𝑆𝑋𝑋  to 𝑆𝑆𝐶𝐶. Adopting the Second order Range-Kutta theorem 
where the stages 𝓀𝓀1 = 𝑓𝑓(𝑆𝑆𝑛𝑛) , 𝓀𝓀2 = 𝑓𝑓(𝑆𝑆𝑛𝑛 + (ℎ 2⁄ )𝓀𝓀1)  and 𝑓𝑓(𝑆𝑆𝑛𝑛) =  −(𝑑𝑑𝑑𝑑(𝑆𝑆𝑛𝑛) |𝑑𝑑𝑑𝑑(𝑆𝑆𝑛𝑛)|⁄ ), the above equation can 
be represented as 

 𝑆𝑆𝑛𝑛+1 = 𝑆𝑆𝑛𝑛 + (ℎ × 𝓀𝓀2 ) (15) 

Having obtained a single skeleton link  𝑙𝑙𝑠𝑠 the 
process is iteratively repeated to obtain the entire 
skeleton links 𝐿𝐿𝑆𝑆  for all the remaining sensor nodes 𝑠𝑠 ∈
𝑆𝑆 | 𝑠𝑠 ≠ 𝑆𝑆𝐶𝐶 . The iterative process exhibits multiple 
overlapping links which can be eliminated by tracking 
the route reply paths. The sensor nodes that exist on the 
skeleton links are the critical or skeleton nodes and are 
represented by the set

 

𝑆𝑆

 

. 

 
e)

 

𝔾𝔾

 

𝑆𝑆

 

skeleton

 

graph construction

 
Having obtained the skeleton links

 

𝐿𝐿𝑆𝑆

 

and the 
skeleton node set

 

𝑆𝑆

 

, we shall now discuss the 
methodology adopted in constructing the skeleton 
graph

 

𝔾𝔾

 

𝑆𝑆

 

.  The skeleton graph is obtained by 

© 2013   Global Journals Inc.  (US)

constructing layered topological sets. The layered 
topological sets are constructed by decomposing the 
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 sensor network topology

 

𝒯𝒯

 

into topological clusters that 
represent the prominent 3D shape information of the 
topology. The skeleton sensor node 𝑆𝑆𝐶𝐶

 

is considered as 
the root node of the skeleton graph

 

𝔾𝔾

 

𝑆𝑆

 

. Each 
topological cluster consists of a set of regular sensor 
nodes and a skeleton node. In other terms, each 
skeleton node is used to represent a cluster and the 
skeleton links form the boundary of that cluster. The 
cluster is identified in

 

terms of the relative distance from 
the skeleton node

 

𝑆𝑆𝐶𝐶. The skeleton graph

 

𝔾𝔾

 

𝑆𝑆

 

is 
constructed from the layered topological sets, wherein 
the skeleton nodes represent a cluster and the skeleton 
links represent the boundaries. On constructing the 𝔾𝔾

 

𝑆𝑆

 

, 

it is observed that the leaf nodes of the graph can be 
used to identify the topological information of the sensor 
network

  
𝒯𝒯

 
.
 The construction of the layered topological 

clusters is critical to obtain the skeleton graph 
𝔾𝔾

 
𝑆𝑆

 
without the loss of topological information. Let 

𝑄𝑄(𝑛𝑛)
 
represent the distance function. A transmission 

with a speed parameter 
 
𝜌𝜌

 
(𝜌𝜌 > 0)

 
is propagated from 

the skeleton node
 
𝑆𝑆𝐶𝐶

 
that can be represented as a 

partial differential equation.  The solution of the partial 
differential equation results in a novel distance function 
represented as

 
𝑄𝑄′(𝑛𝑛)

 
. The speed of the transmission is 

defined as
 

𝒱𝒱(𝑛𝑛) =
 
𝑒𝑒−𝜌𝜌𝑄𝑄(𝑛𝑛)

 
(16)

 
To derive the function 𝑄𝑄(𝑛𝑛) , it is required to 

define a parameter 𝜌𝜌 . Let us consider a skeleton 
link 𝑙𝑙𝑆𝑆  ∈  𝐿𝐿𝑆𝑆  that exists between two skeleton node 
pair(𝑆𝑆𝐶𝐶 , 𝑆𝑆𝑋𝑋).  Let there exist 𝑛𝑛 regular sensor nodes 
having (𝑛𝑛 − 1) links that exist between the skeleton 

node pair

 

(𝑆𝑆𝐶𝐶 , 𝑆𝑆𝑋𝑋).  Let the skeleton transmit a packet 
from 𝑆𝑆𝐶𝐶

 to 𝑆𝑆𝑋𝑋
 with a radio speed represented as 𝜌𝜌 . If 

𝑡𝑡𝑆𝑆𝑎𝑎
 represents the time taken to transmit the packets 

amongst two adjacent sensor nodes, then the time 
taken to reach the destination can be defined as 

𝑇𝑇
 

=
 
� 𝑡𝑡𝑆𝑆𝑎𝑎

𝑛𝑛−1

𝑎𝑎=1  

(17)
 

And 𝑡𝑡𝑆𝑆𝑎𝑎  
can be defined as

 
𝑡𝑡𝑆𝑆𝑎𝑎 =

 
𝐷𝐷(𝑛𝑛𝑎𝑎−1,𝑛𝑛𝑎𝑎) 𝒱𝒱(𝑛𝑛𝑎𝑎)⁄

 
(18)

 
Let us consider time 𝑡𝑡′

 
greater than 𝑡𝑡𝑆𝑆𝑎𝑎  

, i.e., (𝑡𝑡′
 
>

 
𝑡𝑡𝑆𝑆𝑎𝑎  

) and can define 𝑡𝑡′
  
as

 
𝑡𝑡′ ≤

 
𝐷𝐷(𝑛𝑛𝑎𝑎−1,𝑛𝑛𝑎𝑎) 𝑒𝑒𝜌𝜌𝜌𝜌(𝑛𝑛𝑎𝑎 )⁄

 
(19)

 
Rearranging the terms of equation (19), 𝜌𝜌

 
can be represented as

 
𝜌𝜌

 
≤

 
(1 𝔣𝔣(𝑛𝑛𝑎𝑎)⁄ ) × (ln(𝐷𝐷(𝑛𝑛𝑎𝑎−1,𝑛𝑛𝑎𝑎) 𝑡𝑡′⁄ ))

 
(20)

 
Considering 𝔣𝔣(𝑛𝑛𝑎𝑎) =

 
𝔣𝔣𝑚𝑚↑

 
and 𝐷𝐷(𝑛𝑛𝑎𝑎−1,𝑛𝑛𝑎𝑎) = 𝑚𝑚 ↓ (𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑)

 
, the value of 𝜌𝜌

 
would result in the worst case 

scenario. Let 𝜌𝜌′
 
represent the critical value of 𝜌𝜌

 
and can be defined as

 
𝜌𝜌′

 
≤

 
(1 𝔣𝔣𝑚𝑚↑⁄ ) × (ln(𝑚𝑚 ↓ (𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑) 𝑡𝑡′⁄ ))

  
(21)

 
where 0

 
<

 
𝑡𝑡′ < 𝑚𝑚 ↓ (𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑)

 
and if 𝑡𝑡′ = 𝑚𝑚 ↓

(𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑)
 
then 𝜌𝜌′ = 0

 
, which means that the 

transmission around the 𝑆𝑆𝐶𝐶
 
skeleton is uniform and if 

𝜌𝜌′ = 0
 
, the layered topological clusters formed are not 

accurate. To avoid such scenarios, the authors consider 
0

 
<

 
𝑡𝑡′ < 𝑚𝑚 ↓ (𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑).

 
  

The time discretized version of the function 
𝑄𝑄′(𝑛𝑛)

 
is defined as

 
𝑄𝑄′(𝑛𝑛)�������

 
=

 
[𝑄𝑄′(𝑛𝑛)]

   
(22)

 
Rapid discretization is not considered as 

[𝑄𝑄′(𝑛𝑛)]   would not result in accurate layered topological 
cluster formulations. All the skeleton nodes having the 
same 𝑄𝑄′(𝑛𝑛)�������

 form a cluster provided they are not 
adjacent to one another. In 𝔾𝔾 𝑆𝑆  , the root node is the 
topological cluster containing the skeleton 
node 𝑆𝑆𝐶𝐶  followed by the clusters exhibiting increasing 
values of 𝑄𝑄

′(𝑛𝑛)��������. Two skeleton nodes in the 𝔾𝔾 𝑆𝑆  are said 
to be connected if there exists a skeleton link amongst 
them and, the two topological clusters are said to be 
adjacent if the ancestor skeleton node is common and 
there exists a skeleton link amongst them.  

The identification of the critical sensor nodes or 
skeleton nodes in the 3D topology 𝒯𝒯  is represented as 
a skeleton graph 𝔾𝔾 𝑆𝑆(𝑆𝑆 , 𝐿𝐿𝑆𝑆) consisting of skeleton 
nodes and skeletal links, which is presented in this 
section of the paper. The experimental study of the 
proposed skeleton extraction on varied 3D topologies is 
discussed in the subsequent section of the paper. 

IV. Experimental Study 
In this section of the paper, the experimental 

study
 
and the 3D topologies datasets used to evaluate 

the performance is discussed. The 3D sensor network 

© 2013   Global Journals Inc.  (US)
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viewer is developed using the Windows Presentation 
Foundation model. The algorithms are developed using 
C#.Net on the Microsoft Visual Studio platform. The 3D 
datasets are obtained from the AIM@SHAPE Shape 
Repository [46]. The points corresponding to the 3D 
data sets were considered as sensors. The radio ranges 
of the sensor nodes were varied to achieve complete 
coverage. The Energy efficient TDMA MAC [47] is 
considered for communication in the sensor network 

topology. The routing protocol is adopted from the 
paper of Ref. [48]. The experimental analysis presented 
here discusses the evaluation conducted on a set of five 
topologies shown in Table 1. 

The experimental study presented here consists 
of 2 sections, namely, skeleton graph GS

Table 1 :  Sensor Network Topologies Considered 

 construction 
and performance analysis studied on providing higher 
energy resources to the skeleton nodes.  

No Topology Name Coverage Area No Of Sensor 
Nodes 

No Of Skeleton 
Nodes 

No Of 
Links 

Radio 
Range 

1 Genoa Gulf [49] 71910 X 56700 X 1617.77 267 56 3744 7578.9 
2 Torus [50] 1 X .32 X.95 50 28 400 0.4 
3 Matterhorn [51] 46080 X 46080 X 3524.31 130 36 910 7275.8 
4 Naples Gulf [52] 5120 X 5120 X 1347 153 57 2672 1080 
5 West Sicily [53] 177570 X 112950 X1130.59 154 39 2852 18937.9 

a) 𝔾𝔾 𝑆𝑆 skeleton graph construction of wireless sensor 
network topologies considered 

A set of random sensor nodes are deployed on 
the five topologies considered. The radio range of the 
sensor nodes is varied to achieve complete coverage 
over the entire terrain. Homogenous network 
deployments are considered to construct the skeleton 
graph 𝔾𝔾 𝑆𝑆  . To construct the skeleton graph, first we 
need to identify the skeletal links 𝐿𝐿𝑆𝑆  and the skeleton 
node set 𝑆𝑆 . The skeletal link set consists of a number of 
skeleton links 𝑙𝑙 ∈  𝐿𝐿𝑆𝑆. To identify each skeletal link 
𝑙𝑙 ∈  𝐿𝐿𝑆𝑆   , each node is considered as the source and all 
the other nodes are considered as the destination. The 
energy utilized   𝔢𝔢( 𝑛𝑛) is monitored and the weights are 
assigned in accordance to the frequency based weight 
assignment function  𝔣𝔣(𝑛𝑛) . The sensor node with the 
maximum weight   𝑚𝑚 ↑ �𝔣𝔣(𝑝𝑝)�  is considered as the 
skeleton node 𝑆𝑆𝐶𝐶  . The route reply tracking on the 
skeleton links and the minimum energy utilized links 
𝑙𝑙 ∈  𝐿𝐿𝑆𝑆   enables to construct the skeleton node set 𝑆𝑆 . 
Having obtained the skeleton nodes  𝑆𝑆 and the skeletal 
links 𝐿𝐿𝑆𝑆   , the skeleton graph needs to be constructed 
based on the layered topological sets. To construct 
layered topological sets, the sensor network topology is 
decomposed into clusters such that each cluster 
contains only one skeleton node. The distance function 
  𝑄𝑄′(𝑛𝑛)�������  is computed to obtain the position and location 
of the cluster represented by the skeleton node in  𝔾𝔾 𝑆𝑆  . 
The skeleton nodes are rearranged to form the skeleton 
graph  𝔾𝔾 𝑆𝑆  centered at the skeleton node 𝑆𝑆𝐶𝐶  . 

The experimental study is conducted on varied 
topology sizes described in Table 1. The results 
obtained are shown in Table 2. The table shows the 
terrain views obtained from Ref. [46], sensor deployed, 
the wireless sensor network topology, skeleton nodes 
identified and the skeleton extracted.  

b) sensor network performance analysis with and 
without skeleton node considerations 

To study the effect of the critical nodes or 
skeleton nodes, two scenarios are considered in this 
discussion, namely, “BALANCED” and “PROPOSED 
SYSTEM” scenario. In the “BALANCED” scheme, a 
homogeneous sensor network deployment is 
considered, i.e., all the sensors are assigned with 
uniform initial power. In the “PROPOSED SYSTEM” 
scenario, the skeleton nodes identified are assigned an 
additional energy of about 35% when compared to the 
other nodes. The networks were simulated and the 
results were analyzed. The analysis was carried out to 
study the effect in terms of the network throughput, 
network overheads and network lifetime. 

The results obtained for the Genoa Gulf [49] 
topology are shown in Figure 5, 6 and 7. The average 
throughput for the balanced scheme was found to be 
around 84.9% and for the proposed scheme, it was 
around 92.7%. The network overheads measured in 
terms of the energy utilized was reduced by about 
44.3%. The efficiency in terms of the network life time is 
clearly seen in Figure 7. 
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Table 2 :  Proposed Skeleton Extraction in Wireless Sensor Network Topologies 

No
 

Topology 
Name

 

Aim@Shape 
Topology View

 

Node Deployment 
View

 

Sensor Network 
View

 
Skeleton Node View

 
Skeleton Extracted 

View
 

1
 

Genoa Gulf 
[49]

 

     

2
 

Torus [50]
 

     

3
 

Matterhorn 
[51]

 

     

4
 

Naples 
Gulf [52]

 

     

5
 

West Sicily 
[53]

 

     
To prove that the skeleton extraction algorithm 

works well with symmetric topologies, the authors have 
considered the Torus structure [50]. The results 
obtained are shown in Figure 8, 9 and 10. The 
performance improvement in terms of the network 
throughput, reduction in the network overheads and 
enhanced network life time is evident from the figures. 
The Matterhorn mountain terrain [51] is deployed with 

130 sensor nodes and the network analysis results 
obtained is shown in Figure 11-

 

13. The sensor network 
analysis obtained considering Naples Gulf [52] and the 
West Sicily [53] terrain are shown in Figure 14-19. It is 
observed that the network overhead reduction achieved 
in Matterhorn is around 22.4%, 41.6% in the case of 
Naples Gulf and around 20.9% for West

 

Sicily 
topologies. 
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Figure 5 : Network Throughput Analysis for GENOA GULF
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Figure 6
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Network Overhead Analysis for GENOA GULF
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Network Lifetime Analysis for GENOA GULF
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Figure 8 : Network Throughput Analysis for TORUS
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Figure 9 : Network Overhead Analysis for TORUS
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Figure 10

 

:

  

Network Lifetime Analysis for TORUS
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Figure 11 : Network Throughput Analysis for MATTERHORN
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Figure 12 : Network Overhead Analysis for MATTERHORN

Figure 13 : Network Lifetime Analysis for MATTERHORN
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Figure 14 : Network Throughput Analysis for NAPLES GULF
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Figure 15 :

  

Network Overhead Analysis for NAPLES GULF

Figure 16 : Network Lifetime Analysis for NAPLES GULF
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Figure 17 : Network Throughput Analysis for WEST SICILY
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Figure 18

 

:

  

Network Overhead Analysis for WEST SICILY

 

 

 

Figure 19

 

:

  

Network Lifetime Analysis for WEST SICILY

 

The average throughput of about 88.6% was 
achieved by the “PROPOSED SYSTEM” when 
compared to the average throughput of about 80.7% 
achieved by the “BALANCED” scheme. An average 
network overhead reduction of about 31.1% was 
achieved by the “PROPOSED SCHEME”. The network 
lifetime of the sensor network topology is considerably 
higher for the “PROPOSED SYSTEM” as additional 
power is assigned to the skeleton nodes identified. 
From Figure 5-19, it can be concluded that the 
“PROPOSED SYSTEM”, wherein additional power 
resources is provided to skeleton nodes identified 
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achieved better network performance in terms of 
network throughput, network lifetime and overhead 
reduction enhancing the efficiency of the wireless sensor 
network deployments.

V. Conclusion

Network design is critical to construct reliable 
wireless sensor networks. The coverage of 3D sensor 
networks is complex in nature and the 2D topologies or 
the 3D projection schemes are not applicable to achieve 
realistic results. Skeleton extraction and its significance 
applicable to areas as medical image processing, 
computer vision, computer graphics and many more are 
well understood. These skeleton extraction mechanisms 

are not applicable to complex 3D wireless sensor 
networks. Limited work has been carried out to extract 
the skeleton of 3D wireless sensor networks.  

This paper proposes a novel skeleton extraction 
algorithm applicable to 3D wireless sensor network 
topologies. The skeleton is represented as a skeleton 
graph G S (S, LS). To construct the skeleton graph each 
sensor node initiates transmission throughout the 
network and the energy utilized is monitored. A novel 
energy utilization function is e (n) is defined to identify 
the skeletal links LS. The root node skeleton graph is 
represented as SC and is computed based on the 
frequency based weight assignment function f (n). The 
skeleton nodes are extracted from the skeletal links and 
layered topological sets are constructed by adopting a 
topological clustering mechanism. Each cluster 
considered consists of one skeleton node and is a part 
of the skeleton graph. The distance function is 
computed for each cluster to determine its position in 
the skeleton node from the root node and the graph GS

A Novel Skeleton Extraction Algorithm for 3d Wireless Sensor Networks

is constructed. The skeleton extraction algorithm is 
validated on a set of varied 3D topologies. Provisioning 
of additional resources to the skeleton nodes enhances 
the sensor network performance by 20% and is proved 
through the experimental study. The results obtained 
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