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Abstract - The electrocardiogram ECG signal plays an important role in the primary diagnosis, 
prognosis and survival analysis of heart diseases. The ECG signal contains an important amount of 
information that can be exploited in different manners. However, during its acquisition it is often 
contaminated with different sources of noise making difficult its interpretation. In this paper, a new 
approach based on Morphological Top-Hat Transform (MTHT) is developed in order to suppress 
noises from the ECG signals. The morphological operators (dilation, erosion, opening, closing) 
constitute the fundamental stage of Top-Hat transform. Method presented in this paper is compared 
with the Visu Shrink, Sure Shrink, and Bayes Shrink methods. The experimental results indicated that 
the proposed methods in this work were better than the compared methods in terms of retaining the 
geometrical characteristics of the ECG signal, SNR. Due to its simplicity and its fast implementation, 
the method can easily be used in clinical medicine. 
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ECG Signal Denoising by Morphological Top-
Hat Transform 

S.A.Taouli α & F. Bereksi-Reguig σ 

Abstract - The electrocardiogram ECG signal plays an 
important role in the primary diagnosis, prognosis and survival 
analysis of heart diseases. The ECG signal contains an 
important amount of information that can be exploited in 
different manners. However, during its acquisition it is often 
contaminated with different sources of noise making difficult its 
interpretation. In this paper, a new approach based on 
Morphological Top-Hat Transform (MTHT) is developed in 
order to suppress noises from the ECG signals. The 
morphological operators (dilation, erosion, opening, closing) 
constitute the fundamental stage of Top-Hat transform. 
Method  presented in this paper is compared with the Visu 
Shrink, Sure Shrink, and Bayes Shrink methods. The 
experimental results indicated that the proposed methods in 
this work were better than the compared methods in terms of 
retaining the geometrical characteristics of the ECG signal, 
SNR. Due to its simplicity and its fast implementation, the 
method can easily be used in clinical medicine. 
Keywords : ECG signal, denoising, mathematical 
morphology, morphological top-hat transform. 

I. Introduction 

uring its acquisition the ECG signal is corrupted 
with different types of noises. Noises such as the 
power line interference (50 Hz), the muscle 

artifact due to the EMG (electromyogram), the baseline 
wandering due to the rythmic inhalation and exhalation 
during respiration are examples of noises which corrupt 
the ECG signals [1-2]. In order to reduce the noise in 
ECG signals many techniques are available such as 
digital filters (FIR or IIR), adaptive method, wavelet 
transform thresholding and Empirical Mode 
Decomposition methods [3]. However, digital filters and 
adaptive methods can be applied to signal whose 
statistical characteristics are stationary in many cases.  

Recently the wavelet transform has been proven 
to be an useful tool for non-stationary signal analysis [4]. 
Thresholding is used in wavelet domain to smooth out 
or to remove some coefficients of wavelet transform 
subsignals of the measured signal. The noise content of 
the signal is reduced, effectively, with in the non-
stationary environment. The denoising method that 
applies thresholding in wavelet domain has been 
proposed   by  Donoho  [5-6].  It  has  been  proved  has  
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Been   proved that the Donoho’s   method   for noise  
reduction works well for a wide class of one dimensional 
and two dimensional signals. Other approaches for 
threshold value estimators can be found in [7-10]. Visu 
Shrink [9, 11] utilizes the universal threshold estimator, 

which is ( )Nlog2 for a vector id  of the detail 

coefficients of length N  . Sure Shrink is based on 
Stein’s unbiased risk estimator [12]. Sure Shrink has 
serious drawbacks in situations of extreme sparsity of 
the wavelet coefficients [13]. In [11], Bayes Shrink was 
used for the threshold estimator, which is a data-driven 
sub and adaptive technique. Others methods, which 
has also been widely used is the Least Mean Square 
adaptive algorithm (LMS) [9]. But this algorithm is not 
able to track the rapidly varying non-stationary signals 
such as ECG signal within each heart beat; this causes 
excessive low pass filtering of mean parameters such as 
QRS complex.  

This paper considers as a possible alternative, 
the application of Morphological Top-Hat Transform, 
(MTHT) based on morphological signal-processing 
concepts. Morphological signal processing comprises a 
broad collection of theoretical concepts and 
mathematical tools for signal analysis, non-linear signal 
operators, design methodologies and application 
systems that are related to Mathematical Morphology 
(MM).  

Morphological operators of opening and closing 
are simple, and the morphological Top-Hat transform 
arising from these operators, have been prove to be 
powerful tools and have been used in different 
applications, giving excellent results in areas such as 
noise reduction, edge detection and object    
recognition [14].  

In this work, we are interested in morphological 
Top-Hat transform. The filter is implemented under 
MATLAB 7 environment. The filter is evaluated using 
ECG signals from the MIT-

 
BIH universal data base [15]. 

 

    The paper is divided  into five  sections. After 
this introduction section 1, the Section 2 presents a brief 
description of basic morphological signal processing. 
Section 3 describes the morphological Top-Hat 
transform algorithm for ECG signal. In section 4, some 
experimental results are presented and discussed. 
Finally, a conclusion is

 
given in section 5. 
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II. Mathematical Morphology 

 During the last decade, mathematical 
morphology was established like powerful method for 
signal processing and became a complete 
mathematical theory. It was applied successfully in 
various disciplines, such as mineralogy, medical 
diagnosis, and histology. It found also increasing 
applications in the digital signal processing, computer 
vision and pattern recognition.  

a) Basic mathematical morphology transforms 
 The basic concept of morphological signal 

processing is to modify the shape of a signal, 
equivalently considered as a set, by transforming it 
through its interaction with another object, called 
structuring element. In practice, the structuring element 
is compact and of a simple shape than the original 
object. The basic operators of morphology transform 
include dilation, erosion, opening and closing   [16-19]. 

Let ( )nf  be the original 1-D signal, which is 
the discrete function over a domain 
( ) { }1.,..........1,0 −= Nnf . And let ( )mB  be the structuring 

element, which is the discrete function over a domain 
( ) { }1.,..........1,0 −= MmB  two basic morphological 

operators, the erosion and the dilation, can be      
defined as   

( )( ) ( ) ( ){ }mBmnfMINnBf
Mm

−+=Θ
−= 1,...0

        (1) 

( )( ) ( ) ( ){ }mBmnfMAXnBf
Mm

+−=⊕
−= 1,...0

               (2) 

Based on de dilation and erosion, two other 
basic morphological operators, the opening (  ) and the 
closing ( )•  can be further defined: 

 ( )( ) ( )( )nBBfnBf ⊕Θ=            (3)                                

( )( ) ( )( )nBBfnBf Θ⊕=•                     (4)                 

Table 1 and 2 illustrate successively the basic 
properties of dilation and erosion, closing and opening 
operations.

 

To obtain the eroded function of ( )nf ,
 

we 

attribute to ( )nf its minimal value in the field of the 

structuring element ( ) ( )0,0,0,0,0=mB   which is a line 

segment, and with each new displacement of ( )mB , the 

structuring element ( )mB   plays the same role as a 
moving window. The width of such window is chosen 
empirically 5=B . This is illustrated in Fig.1, where 
these operations are applied to an ECG signal. 

 

The illustration shows a reduction in the peaks 
of ECG signal and a widening of the valleys. Erosion is 

an operator of shrinking in which the values of Bf Θ
are always less than those of f . 

Dilataion    
 Commutative: 𝐴𝐴⊕ 𝐵𝐵 = 𝐵𝐵 ⊕ 𝐴𝐴                              
 Associative: (𝐴𝐴⊕ 𝐵𝐵) ⊕𝐶𝐶 = 𝐴𝐴⊕ (𝐵𝐵 ⊕ 𝐶𝐶)       
 Increasing:   (𝐴𝐴)𝑥𝑥 ⊕ 𝐵𝐵 = (𝐴𝐴⊕ 𝐵𝐵)𝑥𝑥            
 Duality: 𝐴𝐴⊕ 𝐵𝐵 = (𝐴𝐴𝑐𝑐 ⊖ 𝐵𝐵)𝑐𝑐  

 
Erosion    
 Non-commutative : 𝐴𝐴⊖ 𝐵𝐵 ≠ 𝐵𝐵⊖ 𝐴𝐴  
Translation Invariance : (𝐴𝐴)𝑥𝑥 ⊖ 𝐵𝐵 = (𝐴𝐴⊖𝐵𝐵)𝑥𝑥         
 Increasing:   𝐵𝐵1 ⊆ 𝐵𝐵2 ⇒ 𝐴𝐴1 ⊖𝐵𝐵2 ⊆ 𝐴𝐴⊕ 𝐵𝐵1           
 Duality: (𝐴𝐴⊖𝐵𝐵𝑐𝑐)𝑐𝑐 = 𝐴𝐴𝑐𝑐 ⊕ 𝐵𝐵  

Table 1 : Basic properties of dilation and erosion 
 

Closing    
 Extensivity: 𝐴𝐴 ⊆ 𝐴𝐴●𝐵𝐵   
Idempotence: (𝐴𝐴●𝐵𝐵)●𝐵𝐵 = 𝐴𝐴●𝐵𝐵  
Translation Invariance:   :(𝐴𝐴)𝑥𝑥●𝐵𝐵 = (𝐴𝐴●𝐵𝐵)𝑥𝑥      
Increasing: 𝐴𝐴1 ⊆ 𝐴𝐴2 ⇒ 𝐴𝐴1●𝐵𝐵 ⊆ 𝐴𝐴2●𝐵𝐵                         
 Duality: (𝐴𝐴●𝐵𝐵)𝑐𝑐 = 𝐴𝐴𝐴𝐴𝐴𝐴  

 
Opening    
Antiextensivity 𝐴𝐴𝑜𝑜𝐵𝐵 ⊆ 𝐴𝐴    
Idempotence: (𝐴𝐴𝑜𝑜𝐵𝐵)𝑜𝑜𝐵𝐵 = 𝐴𝐴𝑜𝑜𝑜𝑜   
Translation Invariance:   : (𝐴𝐴)𝑥𝑥𝑜𝑜𝑜𝑜 = (𝐴𝐴𝐴𝐴𝐴𝐴)𝑥𝑥      
Increasing: 𝐴𝐴1 ⊆ 𝐴𝐴2 ⇒ 𝐴𝐴1𝑜𝑜𝑜𝑜 ⊆ 𝐴𝐴2𝑜𝑜𝑜𝑜                          
 Duality: (𝐴𝐴𝐴𝐴𝐴𝐴)𝑐𝑐 = 𝐴𝐴●𝐵𝐵   

Table 2 :  Basic properties of closing and opening 

Similarly, the dilation can be performed by 
taking of set sums. Its complexity is the same as erosion 
and is related to convolution, where instead of doing 
summation of products, a maximum of sums is 
computed. 
                              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Erosion of  B
  

by f
 

Original ECG signal
 

  
 

   
 

  2
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ECG Signal Denoising by Morphological Top-Hat Transform



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1 :  Erosion, Dilation, Opening, Closing of ECG 
signal by structuring element 

 
This transformation fills the valleys and thickens 

the peaks. Fig. 1 shows
 
that dilation is an operation of 

expansion in which values of Bf ⊕
 
are always greater 

than those of f .
  

Morphological opening can be expressed as an 
erosion operation followed by a dilation of the eroded 
result, using the same structuring element. The dual 
operation of opening is the closing operation.  

 

Morphological closing can be expressed as a 
dilation operation followed by an erosion of the dilated 
result, using the same structuring element.

 

Figure1. shows that the opening by B
 
smooths

 

the graph off from below by cutting down its peaks. 
 

The closing smooths the graph of f from 
above by filling up its valleys (suppress peaks). 
Subtracting from f its opening or closing by B
provides respectively the peaks and valleys of f . 

 

The width of these peaks and valleys depends 
on the size of B . Therefore, opening and closing by a 
structuring element B can be used effectively to 
suppress noise in ECG signals.

 

b) Morphological structuring element (SE) 
After selecting the morphological operator, the 

SE is the next key component of the morphology 
analysis to be defined. Generally, only when the shape 
of the signal is matched to those of SE, the signal can 
be preserved. Therefore, the shape, length (domain) 
and height (amplitude) of SE should be selected 
according to the signal to be analyzed.  
 
 
 
 
 
 
 

Fig. 2 : Structuring element E of various shapes: (a) flat 
SE; (b) triangular SE; and (c) semicircular SE 

The shapes of SE can vary from regular to 
irregular curves, such as flat, triangle, semicircle, and so 
on  figure 2. illustrates some of the common SE. 

III. Algorithm of the Morphological 
Top-Hat Transform for ecg Signal 

In the morphological Top-Hat transform 
algorithm, the noise suppression is performed as follows 
(20): 

( ) ( )
( ) ( )2121 BBfffBBf

BfffBf
BfBff

oooo

oooo

oo

⊕Θ−+−Θ⊕=
−+−•=

−•=




 
oo fBf −• and Bff oo −

 
are two types of 

the morphological Top-Hat Transform [21]. The 
morphological Top-Hat transform is a high-pass filter 
with good performances. oo fBf −•

 
is called the 

Black Top-Hat transform, which is used to extract 
negative impulsive features; oo fBf −

 
is called the 

White Top-Hat transform, which is used to extract 
positive impulsive features. Thus filter can be used to 
extract the positive and negative features 
simultaneously.

 
Figure3. illustrates a bloc diagram 

describing the structure of the morphological Top-Hat 
transform of the ECG signals. It consists of three blocs: 
The first is concerned with the acquisition of ECG 
signals ( of : original ECG signal). This step is followed 

by another step which allows the detection of the noise.
 

This detection is achieved using the morphological 
operators defined in equation (5). 1B

 
and 2B

 
are 

structuring elements for opening and closing. These 
operations are used simultaneously on the original 
signal. The following step is the subtraction of the 
resulted closing and opening operations. This filtered 

 
(5) 
 

  

Opening of B by f 

Closing of B by f 

   
a                  b             c
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ECG Signal Denoising by Morphological Top-Hat Transform

Dilatation of  B  by f

(5)



a

 
 
 

ECG signal f  is the resultant signal after noise 
suppression. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 :  Bloc diagram of Top-Hat transform 

 The ( )21 , BBBpair  is selected according to the 

purpose of analysis and to the morphological properties 
of the ECG signal. 1B  is selected to be a triangular 

shape to retain the peaks and valleys and 2B is a line 
segment to remove the  noise.  

IV. Results and Discussion 

We use the MIT-BIH arrhythmia to evaluate the 
morphological Top-Hat algorithm. All the programs are 
written in Matlab 7 environment under the platform 
Pentium 4. 

 After the acquisition of ECG signal, the 
following stage is the suppression of the noise. It 
consists on the application of operators of 
Morphological Top-Hat transform. In fact, the input 
signal simultaneously is processed by the operations 
"closing" and "opening", followed by a subtraction, to 
generate at the end the filtered signal. Thus, the Top-Hat 
transform can be used to extract the positive and 
negative features simultaneously. 

It should be noted that the shape of the 
structuring element in the suppression of noise is 
different compared to that from the correction of the 
baseline. Indeed, it can take two different forms of equal 
lengths: a triangular form 1B  to maintain the peaks and 
the valleys on a straight form (segment of null 
amplitude) 2B  

 In our case the size of the structuring element 
was fixed at 5 samples units each, with values of 

( )0,1,5,1,01 =B , ( )0,0,0,0,02 =B . This value is fixed in an 
empirical way where the minimum and the maximum are 
fixed at optimal values in the stage of the suppression of 
the noise. The algorithm is applied respectively to the 
records 101, 105, 108 and 209 of the MIT-BIH data 

base. As shown in Figures. (4-5-6-7), good performance 
of suppression of the noise can be observed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 :  Results of MTHT (a) original ECG signal 101; (b) 
denoised signal 

 
 
 
 
 
 
 
 
 
 
 
 
 

    
 

 
 
 
 
 
 
 
 
 

Original input signal 

Opening
 

of  input signal
 

 
 

closing of  input 
signal

 
 

 

-
 

ECG signal after filtering
 

a 

 
 

b 

  
 

   
 

  2
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Fig.

 

6

 

:

  

Results of MTHT (a) original ECG signal 108;    
(b) denoised signal

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

Fig.

 

7

 

: 

 

Results of MTHT (a) original ECG signal 209; (b) 
denoised signal

 

a)

 

Simulation Study

 

In order to test the performance of the 
developed Top-Hat transform algorithm in suppressing 
noise, the algorithm is applied to ECG signal recordings  
of the data base "MIT-BIH Arrhythmia Database" to 
which simulated Gaussian noise of  a 5 dB level has 
been added.

 

The resulting test signal is given by:

 

( ) ( ) ( )nfnfnS S=+   

   

                

 

(6)

 

Where ( )nS

 

is the simulated Gaussian noise, 

( )nf

 

is the ECG signal recording and ( )nf S

 

is the 

noisy ECG signal.

 

Figures 8. upto 14 illustrats the results obtained 
after applying the proposed algorithm a noisy ECG 
signal recordings. As it can be noticed in each figure, 
the denoised ECG signals (c) are well resolved mainly 
the different waves, and the added noise is completed 
suppressed.
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ECG Signal Denoising by Morphological Top-Hat Transform

Fig. 5 : Results of MTHT (a) original ECG signal 105; (b) 
denoised signal

b

b

a

a

b



 
 
 
 
 
 
 
 
 

Fig.

 

9

 

:

 

Application 

 

of our denoising  

 

algorithm to a 5 
dB  noisy  ECG signal with a PVC record 108 a) Input 
ECG signal; b) with added Gaussian noise ECG signal; 
c) denoised ECG signals.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10

 

: 

 

Application of our denoi7 a) Input ECG signal; 
b) with added Gaussian noise EC

 

sing algorithm to a 5 
dB noisy ECG  signal with a PVC record 20G signal; c) 
denoised ECG signals.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig.

 

11

 

:

  

Application of our denoising

 

algorithm to a 5 
dB  noisy  ECG  signal containing a baseline wandering 
record 109: a) 

 

Input ECG signal; b) with added 
Gaussian noise ECG signal; c) denoised ECG signals.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

 
 

 

 

 

 

  
 

   
 

  2
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ECG Signal Denoising by Morphological Top-Hat Transform

Fig. 8 : Application of the proposed denoising algorithm 
to a 5 dB noisy normal sinus rhythm ECG signal record 
100. a) Input ECG signal; b) with added Gaussian noise 
ECG signal; c) denoised ECG signals.

c

b

a

b

a

c

b

a

c

b

c

a



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.

 

13

  

:

  

Application of our denoising

 

algorithm to a 5 
dB noisy ECG signal containing a various waves record.

 

 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.

 

14

 

:

  

Application Application of our denoising 
algorithm to a 5 dB  noisy ECG signal containing a 
various waves record 222: a) Input ECG 

 

signal; b) with 
added Gaussian noise ECG signal; c) denoised ECG 
signals.

 

b)

 

Evaluation criteria values

 

General comparative study was related to three 
recordings of the database ` MIT-BIH Arrhythmia 
Database' which are ` 100.dat ', ` 101.dat ', and ` 
103.dat

 

'.

 

Tables 3 and 4 summarize the values  of signal 
to noise ratio SNR (eq.7) and the Mean Squared error 
MSE (eq.8), respectively, of the application of three 
approaches of filtering (Top-Hat transform, the wavelet 
denoising utilize the Visu

 

Shrink, and low pass 
Butterworth filter [22-23] to each recording. 

 

Table

 

3:

 

The obtained output SNR (in dBs) 
values for each tested filtering method applied to the set 
of MIT-BIH arrhythmia Databases ECG records 
(‘100.dat’, ‘101.dat’ and ‘103.dat’).

 
  

 

 
 

 
 

 

 
 

  

   
  

   
   

  

 

 

 

© 2013   Global Journals Inc.  (US)

  
  
 

  

21

Y
e
a
r

01
3

2
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
III

 I
ss
ue

 V
  

V
er
sio

n 
I 

  
 

(
DDDD DDDD

)
C

ECG Signal Denoising by Morphological Top-Hat Transform

Fig. 12 : Application of our denoising algorithm to a 5 dB 
noisy ECG signal containing a baseline wandering 
record 228: a) Input ECG signal; b) with added 
Gaussian noise ECG signal; c) denoised ECG signals.

b

a

c

b

a

c

a

c

b

One note that the average values of the average 
quadratic error and the signal report/ratio on noise are, 
in fact, calculated for various successive segments of 
4096 samples.

Table 4: The obtained MSE (in dBs) values for 
each tested filtering method applied to the set of MIT-
BIH arrhythmia Databases ECG records (‘100.dat’, 
‘101.dat’ and ‘103.dat’).



 

( )( )

( )( )∑

∑

=

=

−
= N

n
dS

N

n
S

fnf

nf
SNR

1

2

1

2

log10

  

     (7)

 ( ) ( )( )
1001

2

×
−

=
∑
=

N

nfnf
MSE

N

n
dS

  

     (8)

 

Where Sf

 

denotes the reference ECG signal 

and df represents the constructed denoised ECG 

signal. Whereas N is the length of the data segment.

 

Values SNR and MSE obtained of the general 
comparative study (of tables 3 and 4) show, the    
superiority of performance of the algorithm Top-Hat 
transform.

 

Table

 

5:

 

Presents the SNR between the 
denoised ECG signal and the clean ECG signal, as 
obtained for each method. The ECG signal was 
corrupted by adding white Gaussian noise. The noise 
level was adjusted to specific values in such a way as to

 

obtain the different SNRs. Top-Hat transform was used 
by the proposed algorithm in Table 5.

 

Table 6:

  

Lists the SNR of the proposed method 
and the other methods for the ECG signals (MIT-BIH 
database record 103) corrupted with electrode motion 
artifact noise. 

 

Table

 

7:

 

Presents the SNR of the proposed 
method and the other methods for the ECG signals 
(MIT-BIH

 

database record 103) corrupted with muscle 
artifact noise.

     
 

  Table

 

8:

 

Lists the SNR of the proposed 
method and the others for the ECG signals (MIT-BIH 
database record 109) corrupted with electrode motion 
noise.

 

The results clearly indicate that the proposed 
method has stronger denoising abilities than the others 
methods. Although the other methods removed the 
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Table 5 : The performance (SNR) of the proposed 
method and others for the ECG signal (MIT-BIH 
database record 103) corrupted with Gaussian noise.

Table 6 : The performance (SNR) of the proposed 
method and others for the ECG signal (MIT-BIH 
database Record 103) corrupted with electrode motion 
noise.

Table 7 : The performance (SNR) of the proposed 
method and others for the ECG signal (MIT-BIH 
database record 103) corrupted with muscle artifact 
noise.

102 : a) Input ECG signal; b) with added Gaussian noise 
ECG signal; c) denoised ECG signals

Method 
record

Input 
SNR 
(dB)

Top-Hat 
transform

Low pass 
Butterworth 

filer
VisuShrink

100 dat 5 0.0005*10
5−

0.0015*10
5−

0.00098*10
5−

101 dat 5 0.0002*10
4−

0.0016*10
4−

0.0011*10
4−

103 dat 5 0.008*10 4− 0.0016*10
4−

0.0012*10
4−

Table 3 : The obtained output SNR (in dBs) values for 
each tested filtering method applied to the set of MIT-
BIH arrhythmia Databases ECG records (‘100.dat’, 
‘101.dat’ and ‘103.dat’).

Table 4 : The obtained MSE (in dBs) values for each 
tested filtering method applied to the set of MIT-BIH 
arrhythmia Databases ECG records (‘100.dat’, ‘101.dat’ 
and ‘103.dat’).

Method
record

Input 
SNR 
(dB)

Top-Hat
transform

Low pass 
Butterworth 

filer

VisuShrin
k

100 dat 5 13.2025 5.4718 4.8539
101 dat 5 12.5645 6.7585 6.8030
103 dat 5 12.9845 9.1075 7.9001

Input 
SNR

Output 
SNR                            

Proposed 
method

Output 
SNR for 

VisuShrink

Output 
SNR for 

SureShrink

Output 
SNR for 

ayesShrink

6.8 12.08 10.50 10.82 10.54
9.29 13.88 12.73 13.24 12.88

12.81 17.80 15.84 16.57 15.99
15.83 20.73 18.31 19.25 18.33

Input 
SNR

Output 
SNR                            

Proposed 
method

Output 
SNR for 

VisuShrink

Output 
SNR for 

SureShrink

Output 
SNR for 

ayesShrink

6.8 11.30 9.45 10.85 10.72
9.29 13.45 11.65 13.27 13.05

12.81 16.70 15.74 16.60 16.14
15.83 19.60 17.34 19.31 18.48

Input 
SNR

Output 
SNR                            

Proposed 
method

Output 
SNR for 

VisuShrink

Output 
SNR for 

SureShrink

Output
SNR for 

ayesShrink

6.8 13.20 11.15 12.88 12.68
9.29 15.76 13.24 15.26 14.91

12.81 18.92 16.28 18.48 17.79
15.83 21.49 18.74 21.02 19.85



morphological operators which are closing and opening. 
These operators are used as structuring element SE. 
Such SE was chosen as a triangular shape to maintain 
the peaks and the valleys on a straight form. The 
algorithm was implemented and evaluated a same ECG 
signals for the MIT-BIH data base. The experimental 
application of this algorithm

 

result is better than Visu

 

Shrink,   Sure

 

Shrink,

 

Bayes

 

Shrink   and   Low passes 

  

Butterworth filer, particularly, in ECG signal denoising.
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V. Conclusion
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