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Abstract - Weeds are often one of the biggest problems 
encountered by farmer in conventional agriculture. Maximum 
productivity of crops can be achieved by proper weeds 
management. Applying excessive herbicide uniformly 
throughout the field has an adverse effect on the environment. 
An automated weed control system which can differentiate the 
weeds and crops from the digital image could be a feasible 
solution for this problem. This paper demonstrates Naïve 
Bayes, SVM (Support Vector Machine) and C 4.5 classification 
algorithm for classifying the weeds and investigates the 
performance analysis among these three algorithms. In this 
study 400 sample images over five species were taken where 
each and every species contains 80 images. The result has 
shown that Naïve Bayes classification algorithm achieve the 
highest accuracy (99.3%) among these three classifier. 
Keywords : herbicide, image processing, weed 
classification, naïve bayes, SVM, C 4.5 classifier.  
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The huge rate of herbicide in the world causes 
negative impact on the ecological environment and the 
survival of species. It has also arises some economic 
concern. In year of 2005, the total estimated cost of 
applied herbicides was $16 billion in United States [8]. 

The

   

main   cost  ineffective  and  strategic 

 

problems  in 

 
 

    

  
 

  
  

herbicides
 
system is that they are applied on the field 

uniformly. Generally the volumes of weeds are
 
more in 

some specific region but herbicides are
 

still applied 
regardless. In addition, applying

 
herbicides manually is 

very costly and time
 

consuming. Statistics has been 
shown that if same

 
kinds of herbicides are applied 

repeatedly for
 
reducing the unwanted weeds then there 

is a
 
good possibility that they become tolerant to

 
those 

types of herbicides [6]. Moreover some
 

herbicides 
contaminate the ground water even

 
though it applied in 

the soil. Thus farmers need
 

more sophisticated 
alternative weed control

 
techniques which will reduce 

the usages of
 

chemicals and provide safety for the 
overall

 
ecosystem.

 

Several researches have been done for
 

investigating fruitful solution for controlling the
 

weeds 
without collapsing down the environment.

 
The machine 

vision technique has the ability to
 
differentiate the crops 

from weeds so
 

that
 

herbicides can be applied 
effectively. In this

 
technique image are captured by a 

digital camera
 
from different parts of a crop field so that 

weeds
 
can be identified properly. Shearer, et al. [10] has

 

developed a photo sensor plant detection system
 
which 

has the ability of detecting and spraying
 
only the green 

plant. Jiang Zhengrong, et al [7]
 

has proposed 
automatic weed identification based

 
on image 

processing technology. They have
 

investigated the 
spectrum analysis, color

 
identification, texture 

assessment for weed
 
identification. In [3], weeds and 

crops are classified
 
by SVM and achieved 98% where 

using Bayesian
 
classifier achieved 95% accuracy over 

224 test
 
images. Weis et al, proposed a sensor related

 

analysis techniques of weed detection system [14]. In 
[12], comparison of different classification

 
algorithms 

has been shown for weed detection
 
based on shape 

features. For selective herbicide
 
application a model has 

been proposed [1] with
 

95% accuracy, which 
categorizes images into

 
narrow and broad classes 

based on the Histogram
 
Maxima using a thresholding 

technique. In [13]
 
calculation of various shape features 

for
 
identifying weeds in digital images has been shown. 

Active shape models can identify young
 
weed seedlings 

with the accuracy of 65% to 90%
 
[11].

 

The aim of this paper is to introduce a model
 

which will classify weeds and crops from digital
 
images  
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Feeds are those unwanted plants which grow in 

the area not belongs to them and cause more 
negative impact on economy income. It 

competes with the crop for resource such as soil, water, 
sunlight and fertilizer. So the production efficiency and 
quality of economic crops would decrease when the 
weeds are out of control. Statistics has been shown that
the worldwide estimated potential loss due to all kinds of 
pests was at 40%-80%; besides them the potential 
losses for weeds were found 34% which is the highest of 
all pests [8]. As a result, better weed control system 
must be deployed to sustain the productivity without 
hampering the environment. Currently several weed 
control policies exist e.g. removing weeds manually by
human laborers, crop rotation, mechanical cultivation, 
and chemical herbicides.
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evaluate their performance in an
 

automated weed 
control system. These three

 
classification technique are 

examined to find the
 

optimum solution. Naïve Bayes 
classifier has been

 
preferred as it is simple, effective 

and fast among
 
other classification algorithms.

 

II.
 

Methods 

a)
 

Process Flow
 

The overall procedure of this paper has shown 
in

 
Fig: 1. Images were captured by a digital camera

 
with 

4.9-24.5 mm lens. The position of camera was
 

90 
degree angle form the ground that means

 
vertically 

towards the ground. The distance
 
between camera lens 

and the ground was 1.3 feet.
 
Photo shed was used for 

keeping same light
 
intensity. 1024x768 photo resolution 

was set for
 
capturing the color image of weeds and 

crops. All
 
images were taken from the capsicum filed. 

There
 
were five species including the capsicum. Other

 

four species were considered as weed for the
 
capsicum.

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1
 
: Step by step procedure

 

b)
 

Image Preprocessing
 

The high resolution image was converted to
 

225x175 pixels in order to minimize the
 

computation 
cost. Color segmentation based

 
image-processing has 

been done for
 
distinguishing plants from background 

objects
 
where objects are one of two classes as plants 

and
 
background. The plants in the field images must

 
be 

properly segmented otherwise extraction of
 
features will 

give improper results. Each and every
 
pixel of rgb (red, 

green, blue) image an exhibitor
 
value ‘e’ was calculated 

by using color
 
component for enhancing the green plant 

in
 
compare to the background:

 

(1)
 

The rgb color plant images were converted to 
grey

 
images after calculation of e value. Binarization

 

technique with global threshold was performed on
 
these 

images to separate plants form the
 

background. 
Composite Laplacian mask was used

 
for further 

enhancement of the grey-scale image
 

[3]. As the 
sharpening procedure is sensitive to

 
noise, a linear 

smoothing method known as
 

median filter was used 
which successfully reduce

 
impulse noise [4]. Otsu’s 

method [9] an effective technique was used to select 
the proper binarization threshold value. If the pixel value 
‘p’ is smaller than threshold value‘t’ were referred as soil 
in the binary image. In binary image ‘0’ indicates the 
background where ‘1’ indicates the plant. 

To remove the noise from binary image, at first 
morphological opening has applied. In this operation, an 
erosion operation is followed by a dilation operation. It 
makes smooth the image by eliminating small pixel 
regions. The erosion and dilation were combined in 
reverse order for morphological close operation. This 
close operation fills the small holes in image [5]. 

c) Features Extraction 
Ten features were extracted from the binary 

images (Fig 2). These features were decomposed as 
shape, color and moment invariants. The shape features 
were divided into two categories: size dependent and 
size independent. Size dependent descriptors are area, 
perimeter, thickness, convex area and convex perimeter. 
The size dependent features were combined to present 
size dependent shape features: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For making the color features consistent with
 

various lighting conditions, each and every color
 

component was divided by sum of all the three
 
color 

components. Here the color features were
 
mean value 

and the standard deviation.
 
The scope of an object area 

is measured by
 
moment invariant ( 1 N , 2 N , 3 N , 4 N ) 

[2] which
 
consists of geometric transformation such as

 

scaling, translation and rotation. Here in this study
 
only 

central moments are considered.
 

d)
 

Classification using Naïve Bayes Classifier
 

The Naïve Bayes classifier is a simple but 
effective

 
classifier has been used here to minimize the

 

computation cost. Let
  

     be a vector we want to
 

classify and c be a possible class. Using Bayes
 
formula 

first we transform the probability            
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P(c) can be estimated from training data. 
Considering the conditional independence of the 
elements of a vector is decomposed as follows, 
 
 
 

Where,     is the     element of    . Now,
 
combining both 

equations we get:
 

 
 
 

From this final 

 

equation 

 

we 

 

can 

 

calculate          

 

and classify       into the class with the

 

highest            

  

A classification process in Naïve Bayes

 

classifier

 

requires first train the classifier using labeled 
data.

 

Then classify unlabeled examples with assigning

 

probabilistic labels to them. In this paper we

 

consider 
binary classification as weed and crops.

 

Let      be the probabilistic label of     

 

example

 

illustrate the probability that it belongs to weed

 

class. If 
the proportion of weed class examples in

 

unlabeled 
data is different form labeled data then

 

the probabilistic 
labels were calibrated. The main

 

theme of the calibration 
is to shift all the

 

probability values of unlabeled data to 
the scope

 

that the class distribution of unlabeled data

 

becomes alike to that of labeled data. In [15] the

 

whole 
calibration process has shown.

 

e)

 

Classification using C4.5 Classifier

 

Using the concept of information entropy, [18]

 

C4.5 builds decision trees from a set of training

 

data, in 
the same way as ID3 (Iterative

 

Dichotomiser 3). [16] The 
training data is a set S =

 

(s1, s2,..., sn) of already 
classified samples. Each

 

sample si

 

= (x1, x2, ..., xn) is a 
vector where xi

 

represent attributes or features of the 
sample. The

 

training data is augmented with a vector C 
= c1,

 

c2,..., cn

 

where ci

 

represent the class to which each

 

sample belongs. [17] C4.5 algorithm selects the

 

attribute of the data that most effectively splits its

 

set of 
samples into subsets enriched in one class

 

or the other 
at each node of the tree. The splitting

 

criterion is the 
normalized information gain

 

(difference in entropy). The 
attribute with the

 

highest normalized information gain is 
chosen to

 

make

 

the decision. The C4.5 algorithm then

 

recurses on the smaller sublists. Base case of this

 

algorithm:

 

•

 

All the samples in the list belong to the

 

same class. 
When this happens, it simply creates a

 

leaf node for 
the decision tree saying to choose

 

that class.

 

•

 

None of the features provide any

 

information gain. 
In this case, C4.5 creates a

 

decision node higher up 
the tree using the

 

expected value of the class.

 

•

 

Instance of previously-unseen class

 

encountered. 
Again, C4.5 creates a decision node

 

higher up the 
tree using the expected value.

 

f)

 

Classification using SVM

 

First task of SVM classifier requires separating 
the

 
dataset into two different parts. First one is used

 
for 

training and second one is used for testing. A
 
class 

label and the corresponding image features
 
have been 

assigned to each instance in the
 
training set. When the 

features values are
 

provided, SVM generates a 
classification model

 
which is used to predict the class 

labels of the test
 
data depending on training data. Each 

instance is
 

represented by an n-dimensional feature 
vector, V

 
= (v1, v2, … …, vn

 
) Here, ‘V’ depicts n

 

measurements made on an instance of n features.
 
The 

dataset is normalized before use because the
 
feature 

values for the dataset can have ranges that
 

vary in 
scale. The LIBSVM 2.91 [19]

 
library was

 
used to 

implement the support vector
 
classification where each 

feature value of the
 
dataset was scaled to the range of 

[0, 1]. The RBF
 
(Radial-Basis Function) kernel was used 

for both
 

SVM training and testing which mapped 
samples

 
nonlinearly onto a higher dimensional space. 

For
 

this reason, this kernel is able to handle cases
 

where nonlinear relationship exists between class
 
labels 

and  features.  A  commonly  used  radial basis
 

function 
[3] is:

 
 
 
 

Where,
 

 
 
  

Here, ‘vi’ and ‘vj’ are n-dimensional feature 
vectors. Implementation of the RBF kernel in LIBSVM 
2.91 requires two parameters: ‘γ’ and a penalization 
parameter, ‘C’ [19]. Appropriate values of ‘C’ and ‘γ’ 
should be specified to achieve a high accuracy rate in 
classification. By repeated experiments [3], C = 1.00 
and γ = 1 / n were chosen. 
 
 
 
 
 
 
 
 
 

Figure 2 :

 

Binary image after open-close operation

 

III.

 

Result and Disscussion

 

In this paper, each setting is evaluated by using

 

10-fold cross-validation procedure. 10-fold cross-
validation

 

procedure needs portioning the whole

 

training 
set into 10 subgroups. Each and every

 

subgroup has an 
equal

 

number of instances. In

 

this training process, one 
subgroup is tested with

 

the remaining nine subgroups. 
© 2013   Global Journals Inc.  (US)
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As a result, over fitting protection is ensured and smooth 
outcome for the actual computing is achieved.  

Three hundred sample image data were trained 
and one hundred sample image data were tested. The 
result of 10-fold cross-validation of Naïve Bayes 
classifier using ten features was found 99.3% accurate. 
98.24% and 97.86% accuracy has been achieved using 
10-fold cross-validation of SVM and C4.5 classifier 
consecutively. Table 1 has shown the success rate 
comparison using all features. The number of features 
has been reduced to minimize the computational 
complexity. This study has experimented on fifteen 
features and by using forward-selection and backward-
elimination methods 10 features achieved the optimum 
accuracy rate. Selected features were convexity, mean 
value of ‘r’, mean value of ‘b’, standard deviation of ‘r’, 
standard deviation of ‘b’,       of area,      of area, 

of area,            of area,          of perimeter. 
In present study the capsicum, cogon grass 

and marsh herb were successfully classified. Other two 
species had some misclassifications. Table 2 shows the 
comparative accuracy rate for each species. Here each 
and every species has trained with 60 samples and 20 
sample images were used for testing whether the 
classifier can successfully classify or not. 
 
 
 
 
 
 

 

Table 1

 

:

 

Classification result using all features

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Table 2

 
:

 
Classification result using set of best

 features 
 IV.

 

Conclusion

 Our main goal of this work is to find a solution

 
which will minimize the operating cost as well as

 
maximize the result. In this paper, three different

 
classifier including Naïve Bayes, SVM and C4.5

 

have 
been evaluated to classify the

 

weeds and

 

crops. 
Compare to SVM and C4.5, Naïve Bayes

 

classifier 

obtains highest result. The future work

 

will focus on 
wavelet transformation in image

 

preprocessing steps. 
We will also study the

 

optimization technique for these 
classifiers and

 

ensure that

 

the large training set will not 
cause

 

over fitting problem.
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