
© 2013. N.K. Sharma & Dr. R.C. Jain. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 5 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Efficient Distributed Algorithm using Association Rule Mining
for Large Database

 By N.K. Sharma & Dr. R.C. Jain
S.A.T.I. Engineering College, India

Abstract - Day by day data is increasing due to effectively computerization, implementation, and
digitization in various sectors i.e. science, research, industry, business and many other areas. Data
mining is the process of extracting valuable and useful information from this very large database.

Association rule is a concept in which buyer usually by a specific combination of different
products together while association rule mining is an important technique to show relationship
between various items stored in the database. In this paper we take one master tree called root and
various branches process the database rather than a multiple FP-tree.

Keywords : knowledge discovery, FP-tree, a-priori, association rule(s), parallel processing and
frequent item set.

GJCST-C Classification : H.2.8

Efficient Distributed Algorithm using Association Rule Mining for Large Database

Strictly as per the compliance and regulations of:

Efficient Distributed Algorithm using Association
Rule Mining for Large Database

N.K. Sharma α & Dr. R.C. Jain σ

Abstract - Day by day data is increasing due to effectively
computerization, implementation, and digitization in various
sectors i.e. science, research, industry, business and many
other areas. Data mining is the process of extracting valuable
and useful information from this very large database.

Association rule is a concept in which buyer usually
by a specific combination of different products together while
association rule mining is an important technique to show
relationship between various items stored in the database. In
this paper we take one master tree called root and various
branches process the database rather than a multiple FP-tree.

Keywords : knowledge discovery, FP-tree, a-priori,
association rule(s), parallel processing and frequent
item set.

I. Introduction

tilization of information technology in various
sectors, the database is increasing day by day.
Computerization of land records, registration of

vehicles, a collection of various taxes and conduction of
any competitive examination etc. require certain
attention. Research has been performed on serial data
mining but it is not suitable for huge data. In this
situation parallel data mining is the viable solution [1] [2]
[3] [4]. In parallel data mining available work is to be
divided in various processors to get a solution as fast as
possible. There are three components to the work i.e.
computation, access to the data set and communication
between the processor. .Access to the data set is most
costly, followed by communication, with computation
being relatively cheap [5] [7] [8].

There are three basic strategies [16] [17] [18]
for parallelization:

1. Each processor has access to the whole data set,
but each processors place in a different part of the
search space, starting from a randomly chosen
initial position and this strategy is termed as
independent search.

2. Each processor restricts itself to generate a
particular subset of the set of possible concepts. It
completes in two stages. On the first stage, each
processor generates complete concepts, but with
restriction on the variable values in the same
position. (Examine only a subset of the rows of the

Author α : Assistant Professor, Government Engineering College
Ujjain, M.P., India. E-mail : nksharma070965@gmail.com
Author σ : Director, S.A.T.I. Engineering College Vidisha, M.P., India.
E-mail : dr.jain.rc@gmail.com

data set) In the second stage, each processor
generates partial concepts but the variables can
take any values (examine a subset of the columns)
and this strategy is termed as parallelized
sequential data mining algorithm.

3. Each processor makes on a partition of the data set
(rows) and executes a sequential algorithm. So it
builds entire concepts locally not globally and this
strategy is termed as replicated sequential data
mining algorithms.

Parallel Algorithms provide scalability to large
data sets and hence improve response time. Its
execution time depends on input size and also on the
architecture of the parallel computer. All the algorithms
proposed for parallel in shared nothing architecture can
also be implemented for distributed architecture
because many large databases are distributed in nature.

Apriori algorithms generate candidate item sets
and scan databases as many times as the length of the
longest frequent item sets whereas in FP-tree algorithms
database scan only twice.

a) Existing Strategies
Research has been conducted by various

researchers while dealing with large database. Out of
which parallel system is found as one of a good
strategy. Marfuz (2003) introduced two kinds of
methods, parallel association rule mining (PARM) and
distributed association rule mining (DARM). In, PARM
divides a database into several local databases, and
uses parallel multiprocessor shared-nothing environ-
ment to mine local databases [19]. The processors
need to communicate with each other for the global
counts. In case of DARM, association rules discovered

from the geographically distributed data sets. The main
drawback of DARM is the communication cost.

b) Our Strategies

In this paper, huge database divided into
several small databases as per number of processors.
The processors have access to only their local
database. Processors can generate initial P tree local to
their partition. The sequential process of database
scanning is divided among the ‘n’ processors. In one
scan, all the information about the transactions local to
the processor store in their memory in the form of local
P tree data structure and local counts of each item can
be simultaneously calculated. Items which have the

U

© 2013 Global Journals Inc. (US)

33

Y
e
a
r

01
3

2
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V

V
er
sio

n
I

(
DDDD DDDD

)
C

support count more than the minimum support are to be
included in the subsequent generation of FP tree and
the support count stored at each processor is its local
count. The local counts of each processor are summed
up to get the global counts and the processor can
simultaneously prune its infrequent items to get the
frequent item set. No information lost is possible in
generating FP tree as the FP tree generated at each site,
if combined together will exactly replicate the global FP
tree. In sequential algorithm, the conditional FP tree of
each item present in the header table generates one
after the other while in parallel mining, total items in the
header table says m; can be divided among n total
processors in the distributed environment. This division
of work should be such that the amount of processing
for generating the patterns at each processor is
comparable. The division of items among the
processors should be in such a way that the processor
which gets the item least support count also gets the
item with the highest support count. The items with
lower support counts should be equally divided among
the nodes. The next step is to calculate the global
conditional pattern base of the item. If local conditional
FP trees of an item are collected from all the processors
and send to the destination processor, the global
conditional FP tree can be generated. Hence the
conditional FP tree can be sent in the form of conditional
pattern base from which it is generated.

II. Work Already Done

Count Distribution (CD), Data Distribution (DD),
Candidate Distribution, Intelligent data distribution (IDD)
and Hybrid distribution (HD) algorithm briefly described
[13] [14] [15] below:

a) Count Distribution (CD)
In which all processors generate the entire

candidate set from Lk-1. Each processor can thus
independently get partial support of the candidates from
its local database partition and sum up to get global
counts by exchanging local counts with other
processors. Once global frequent sets have been
determined, next candidate item sets can be determined
in parallel at all processors. The focus is on minimizing
communication. It does so even at the expense of
carrying redundant computations in parallel. The
aggregate memory of the system is not exploited
effectively.

b) Data Distribution (DD)
Uses the total system memory by generating

disjoint candidate sets on each processor. However, to
generate the global support, each processor must scan
the entire database in all iterations. In DD algorithm
Contention is a major problem due to this processor
may remain idle at the time of communication.

c) Candidate Distribution
Algorithm partitions the candidates during

iteration l, so that each processor can generate disjoint
candidates independent of other processors. The
partitioning uses heuristics based on support, so that
each processor gets an equal amount of work. The
choice of the redistribution pass involves a tradeoff
between decoupling processor dependence as soon as
possible and waiting until sufficient load balance can be
achieved. No local data send, only global values
exchanged and data are received asynchronously and
the processors do not wait for the complete pruning
information to arrive from all the processors but
repartitioning is expensive.

d) Intelligent Data Distribution (IDD)

The locally stored portions of the DB can be
sent all the other PEs by using the linear-time ring-based
all-to-all broadcast. Although DD divides the candidates
equally among the processors, it fails to divide the work
done on each transaction. IDD algorithms switch to CD
once the candidates fit in the memory. Instead of a
round-robin candidate partitioning, IDD performs a
single-item, prefix based partitioning. Pseudo code for
data movements using sending Buffer (SBuf) and
receiving Buffer (RBuf).

Hybrid distribution (HD) algorithm combines CD
and IDD. It partitions the P processors into G equal –

sized groups, where each group is considered a super
processor. Count Distribution is used among the G
super processors, while the P/G processors in a group
use Intelligent Data Distribution. The database is
horizontally partitioned among the G super processors,
and the candidates are partitioned among the P/G
processors in a group.

The advantages of this algorithm are:

i.

Provide good load balance.

ii.

Handle much larger databases as compared to CD.

iii.

Provide enough computation work by maintaining
a minimum number of Candidates per PE cut down
the amount of data movement to 1/G of the IDD.

iv.

Keep processors busy, especially during later
iterations.

e)

FP-Growth Algorithm

FP stands for Frequent Patterns. This algorithm
[6] makes use of an FP-tree structure, which is an
extended prefix-tree structure for storing compressed,
crucial information about frequent patterns. FP-Growth
is an efficient method for mining complete set of
frequent patterns by pattern fragment growth. Efficiency
of mining is achieved with three techniques. First, a
large database is compressed into a highly condensed,
much smaller data structure, which avoids costly
repeated database scans. Second, FP tree-based
mining adopts a pattern fragment growth method to
avoid the costly generation of a large number of

 2

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2

 34

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V

V
er
sio

n
I

(
DDDD DDDD

)
C

Efficient Distributed Algorithm using Association Rule Mining for Large Database

candidate sets. And third, a partitioning based, divide
and conquer method is used to decompose mining task
into a set of smaller tasks for mining confined patterns in
conditional databases, which dramatically reduces the
search space. FP-Growth is efficient for mining both
long and short frequent patterns.

It avoids the costly candidate generation and it
has better performance and efficiency than Apriori like
algorithms but it takes two complete scans of the
database and it uses a recursive routine to mine
patterns from a conditional pattern base.

f) P-Tree Algorithm
A Pattern Tree [9] [10], unlike FP Tree, which

contains the frequent items only, contains all the items
that appear in the original database. We can obtain a P-
tree through one scan of database and get the
corresponding FP-tree from the P-tree later. An FP tree
is a sub-tree of the P-tree with a specified support
threshold, which contains those frequent items that
meet this threshold and hereby excludes infrequent
items. We do this by checking the frequency of each
node along the path from root to leaves. It uses the
same mining process as used by FP-Growth algori-
thm [6].

It scans the original database only once and in
case support threshold changes, we need not re-scan
the database but it uses a recursive mining process.

g) Inverted Matrix Algorithm
This association rule-mining algorithm is based

on the conditional pattern concept [6]. The algorithm
[11] [12] is divided into two main phases. The first one,
considered pre-processing, requires two full I/O scans
of the dataset and generates a data structure called
Inverted Matrix. In the second phase, the Inverted Matrix
is mined using different support levels to generate
association rules. The mining process might take in
some cases less than one-full I/O scan of the data
structure in which only frequent items based on the
support given by the user are scanned and participate in
generating the frequent patterns. The Inverted Matrix
layout combines the horizontal and vertical layouts with
the purpose of making use of the best of the two
approaches and reducing their drawbacks as much as
possible. The idea of this approach is to associate each
item with all transactions in which it occurs (i.e. An
inverted index), and to associate each transaction with
all its items using pointers.

For computing frequencies, it relies first on
reading sub-transactions for frequent items directly from
the Inverted Matrix [6]. Then it builds independent
relatively small trees for each frequent item in the
transactional database. Each such tree is mined
separately as soon as they are built, with minimizing the
candidacy generation and without building conditional
sub-trees recursively.

It uses a simple and non-recursive association
rule mining process and the inverted matrix can be
made disk resident, so it performs well for large data
sets but it makes two scans of the original database and
the complexity of developing an inverted matrix is a bit
high.

III. Proposed Methodology

a) Mining Process

To find out frequent itemsets having minimum
support and to generate strong rules having minimum
confidence, Apriori algorithm is a bottom – up search
based algorithm in which any subset of large item set
must also be large.

b) Proposed Assumptions

- Horizontally partitioned database.

- Sites communication through message passing
which reduce the number of messages passed and
confine substantial amount of processing at local
sites.

Select database and then arrange it in required
proper format.

Generate the initial P-Tree and find out the local
counts of the items.

Generate global counts of items by exchanging the
local counts at each site.

Generate a FP -

Tree at each processor using its

local data

Distribute the frequent items such that comparison
of computation required

at each site is comparable

Generate the pattern base for each item and start
sending them to the corresponding processor

Generate conditional FP-Trees using the data
received from all the sites and those generated
locally

At the allocated processor mine frequent patterns
for the corresponding items.

V.

Implementation Example Database

To expound the effectiveness of the approach
specified above a Student counseling data set (SCDS)
has been considered, in which a separate agency has
conducted an examination and

on the basis of merit

candidates have filled online choices of institutions and
branches. The total number of combination of the
choices was around 1200 and the total filled choices for
institution were around 25 lakhs. To process such large
data sequentially, it will roughly take 10 to 15 minutes.
Hence for quick response it becomes necessary to use
distributed architecture. We have taken Student
counseling data set (SCDS), with three attributes,
namely RollNo, Choice_Sequence and Branch_ID.
Similarly Branch_ID consists of branch ID and college

© 2013 Global Journals Inc. (US)

35

Y
e
a
r

01
3

2
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V

V
er
sio

n
I

(
DDDD DDDD

)
C

Efficient Distributed Algorithm using Association Rule Mining for Large Database

IV. Proposed Algorithm

Root

A:6 C:4

D:4 B:2

C:1

D:1

D:1

name. Following Tables show Student Admission Data
Set (SADS). Relational view of the same is being
illustrated below.

Student Choice Data

Roll No Student Choice_
Sequence

Branch_ ID

1001 1 4
1002 2 2
1003 3 6
1004 4 11
1005 5 7
1006 6 9

Table 1 : Student Choice Data

Branch ID Generation
Branch_ ID College_Name Branch

1 C1 CS
2 C1 IT
3 C1 EC
4 C2 CS
5 C2 IT

Table 2 : Branch ID Generation

Above specified data is then treated with the
proposed approach and transactional data set is
obtained for the above given data which is expounded
in Table 3.

Transactional Data Set

Transaction_ID A B C D
T1 1 1 1 1
T2 1 0 1 1
T3 1 1 0 1
T4 1 0 1 1
T5 1 0 1 1
T6 1 0 1 1

Table 3 : Transactional Data Set for Student Choice
Data of Table 1

VI. Tree Generated

On the basis of data mentioned in table 3, a
tree is generated by the software

VII.

Rules Generated and Result
Analysis

a)

Rules Generated

Rules are generated by taking minimum support
is 75% and minimum confidence is 80%. The generated
rules are shown in Table 4.

Rule

Confidence

C1 -> C3 83.33333

C3 -> C1 100

C1 -> C4 100

C4 -> C1 100

C3 -> C4 100

C4 -> C3 83.33333

C1, C3 -> C4 100

C4 -> C1, C3 83.33333

C1 -> C3 ,C4 83.33333

C3, C4 -> C1 100

Table 4 : Rules Generated

b) Result Analysis

Depending on the number of transactions the
run time is calculated using Sequential FP–Tree
algorithm as well as by using the proposed distributed
approach and the comparison is expounded in Table 5.

S.No.

No. of Transactions

Run Time using Seq. FP -Tree
(in seconds)

 Run Time using Proposed Distributed
approach (in seconds)

1

1000

5

6

2

5000

9

8

3

7500

16

11

4

10000

23

15

Table 5

:

Result Analysis

Scale up shows that the proposed algorithms
handles larger problem sets when more processors are
available. Scales up experiments were performed where
the size of the database was increased in direct
proportion to the number of nodes in the system. The
speedup gives decrease in the response time with the

increase of number of processors. All the experiments
are performed on a Xeon 2.8 GHz machine with 4 GB
RAM running on Windows 7 platform. All the programs
are written in JAVA platform.

 2

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2

 36

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V

V
er
sio

n
I

(
DDDD DDDD

)
C

Efficient Distributed Algorithm using Association Rule Mining for Large Database

VIII. Conclusion

The main focus of the paper is to design a
mining algorithm for distributed environment using just a
single database scan and distributing the computation
work equally within the processors. The proposed
algorithm allows efficient mining of patterns as ‘n’ items
are considered for finding patterns simultaneously,
where n is the number of processors. Computation time
is reduced as the workload is divided amongst various
processors. A processor receives the patterns from
each processors one after the other and if one machine
is slow other machines are also effected. Hence the
process should be improved by the simultaneous
construction of conditional pattern tree along with the
improvement in the receive operation.

Acknowledgements

Our sincere thanks to our colleague Mr. Manoj
Yadav, Software Consultant in Bhopal, Madhya Pradesh,
India for the immense support you have provided us for
publishing this paper.

References Références Referencias

1. R. Agrawal, T. Imienski and A. Swamy, “Database
Mining: A Performance Perspective, IEEE Tran. On
Knowledge and Data Engg.” December, 1991.

2. R. Agrawal, T. Imielinski, and A. Swami, “Mining
association rules between sets of items in large
databases”, In Proc. of the ACM SIGMOD
Conference on Management of Data, Washington,
D.C., May 1993.

3. Margaret H. Dunham, Yongqiao Xiao, Southern
Methodist University, Dallas, Texas and Le
Gruenwald, Zahid Hossain, University of Oklahoma,
Norman, UK, “A Survey of Association Rules”.

4. Jong Soo Park, Ming-Syan Chenand Philip S. Yu,
“An effective hash-based algorithm for mining
association rules,” In Proceedings of 1995 ACM-
SiGMOID international Conference on Management
of Data, 1995.

5. Mohammed J. Zaki, Rensselaer Polytechnic
Institute, “Association Mining: A Survey”, IEEE
Concurrency, 1999.

6. Jiawei Han, Jian Pei, and Yiwen Yin, “Mining
frequent patterns without candidate generation”,
Technical Report CMPT99-12, School of Computing
Science, Simon Fraser University, 1999.

7. Mohammad El-Hajj and Osmar R. Zaiane, “Parallel
Association Rule Mining with Minimum Inter-process
Communication”, In Proc. of IEEE Int. Conf. On
Database and Expert Systems Applications, 2003.

8. R. Agarwal and J. Shafer, “Parallel Mining of
Association Rules,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 8, No. 6,
December 1996.

9. D. W. Cheung, V.T. Ng, A.W. Fu and Y Fu, “Efficient
Mining of Association Rules in Distributed
Databases”, IEEE Tran. On Knowledge and Data
Engg. December, 96.

10. A.Y. Zomya, T.E. Ghazawi and O. Frieder, “Parallel
and Distributed Computing for Data Mining”, IEEE
Concurrency, Oct./Nov. 1999.

11. Skillicorn, “Strategies for Parallel Data Mining”, IEEE
Concurrency, Nov. 1999.

12. A. Mueller, “Fast and Sequential Algorithms for
Association Rule Mining.” A comparison, Tech
Report CS-TR-3515, Univ. of Maryland, College
Park. Md. 1995.

13. Margaret H. Dunham and Yongqiao Xiao, Southern
Methodist University, Dallas, Texas and Le
Gruenwald, Zahid Hossain, University of Oklahoma,
Norman UK, “ A survey of Association Rules.”

14. Mohammed J. Zaki, Rensselaer Polytechnic
Institute, “Parallel and Distributed Association
Mining: A Survey”, IEEE Concurrency 1999.

15. E.H. Han, G. Karypis, and V. Kumar, “Scalable
Parallel Data Mining for Association Rules,” IEEE
Transactions on Knowledge and Data Engineering,
Vol. 12, No. 3, May/June 2000.

16. T. Shimomura and S. Shibusawa, “Performance
Evaluation of Distributed Algorithms for Mining
Association Rules on Workstation Cluster”, IEEE
2000.

17. Hao Huang, Xindong Wu and Richard Relue,
“Association Analysis with One Scan of Databases”,
IEEE 2002.

18. O.R. Zaiane, M.E. Hajj, “Parallel Association Rule
Mining with Minimum Inter-Processor
Communication”, 2003 IEEE, 14th International
Workshop on Database and Expert Systems
Applications.

19. Fan Wu, Ya-Han Hu, Tz Ke Wu, “A Novel and
Efficient Distributed Data Mining Algorithm Based
on Frequent Pattern-Tree”, Int’l Conf. Data Mining
| DMIN’09 |.

© 2013 Global Journals Inc. (US)

37

Y
e
a
r

01
3

2
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V

V
er
sio

n
I

(
DDDD DDDD

)
C

Efficient Distributed Algorithm using Association Rule Mining for Large Database

This page is intentionally left blank

 2

© 2013 Global Journals Inc. (US)

Y
e
a
r

01
3

2

 38

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V

V
er
sio

n
I

(
DDDD DDDD

)
C

Efficient Distributed Algorithm using Association Rule Mining for Large Database

	Efficient Distributed Algorithm using Association Rule Mining for Large Database
	Author's
	Keywords
	I. Introduction
	a) Existing Strategies
	b) Our Strategies

	II. Work Already Done
	a) Count Distribution (CD)
	b) Data Distribution (DD)
	c) Candidate Distribution
	d) Intelligent Data Distribution (IDD)
	e) FP-Growth Algorithm
	f) P-Tree Algorithm
	g) Inverted Matrix Algorithm

	III. Proposed Methodology
	a) Mining Process
	b) Proposed Assumptions

	IV. Proposed Algorithm
	V. Implementation Example Database
	VI. Tree Generated
	VII. Rules Generated and ResultAnalysis
	a) Rules Generated
	b) Result Analysis

	VIII. Conclusion
	Acknowledgements
	References Références Referencias

