
© 2013. Muhammad Shahid Khan, Naveed Khan, Muhammad Abid Khan & Muhammad Ahmed Javed. This is a research/review
paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License
http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium,
provided the original work is properly cited.

Global Journal of Computer Science and Technology
Software & Data Engineering
Volume 13 Issue 7 Version 1.0 Year 2013
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A New Approach for Reducing the Testing Effort
 By Muhammad Shahid Khan, Naveed Khan, Muhammad Abid Khan

& Muhammad Ahmed Javed
Gandhara University, Pakistan

Abstract - In-Process testing metrics has been used from some years and its usage is frequently
increasing. There are different metrics for software testing i.e. to measure testing progress, Mean
time between arrival of error, density of errors, fixation of errors, failure rate, test execution
Productivity, cost of defects, Test efficiency and efficiency checking and so on. But all these metrics
are independent and have no relation with each other. There are some attributes of testing metrics
which are very much homogenous and interrelated with interdisciplinary measurement. It is quit
natural to inter-relate all these metrics into a single metric which should provide overall functionality of
some of existing selected metrics and also depicts some new approach of testing measurement. So
the derived frame work modeled a new metric. This new metric covers the measurement of major
quality attributes such as Correctness, Reliability, Efficiency, Flexibility, Inter-operability, Usability and
Maintainability. The derived new metric possess higher level of reliability, early predication of testing
progress, less cost of correctness in maintenance phase, effectiveness in error exploration, efficient
approach of measuring testing process, Compatibility of different existing metrics, reduce the
corrective maintenance effort, less cost of corrective maintenance, a new stander for measuring
corrective maintenance effort, high degree of flexibility and interoperability of different Tools.

GJCST-C Classification : D.2.5

A New Approach for Reducing the Testing Effort

 Strictly as per the compliance and regulations of:

A New Approach for Reducing the Testing Effort
Muhammad Shahid Khan α, Naveed Khan σ, Muhammad Abid Khan ρ & Muhammad Ahmed Javed Ѡ

Abstract - In-Process testing metrics has been used from
some years and its usage is frequently increasing. There are
different metrics for software testing i.e. to measure testing
progress, Mean time between arrival of error, density of errors,
fixation of errors, failure rate, test execution Productivity, cost
of defects, Test efficiency and efficiency checking and so on.
But all these metrics are independent and have no relation
with each other. There are some attributes of testing metrics
which are very much homogenous and interrelated with
interdisciplinary measurement. It is quit natural to inter-relate
all these metrics into a single metric which should provide
overall functionality of some of existing selected metrics and
also depicts some new approach of testing measurement. So
the derived frame work modeled a new metric. This new metric
covers the measurement of major quality attributes such as
Correctness, Reliability, Efficiency, Flexibility, Inter-operability,
Usability and Maintainability. The derived new metric possess
higher level of reliability, early predication of testing progress,
less cost of correctness in maintenance phase, effectiveness
in error exploration, efficient approach of measuring testing
process, Compatibility of different existing metrics, reduce the
corrective maintenance effort, less cost of corrective
maintenance, a new stander for measuring corrective
maintenance effort, high degree of flexibility and
interoperability of different Tools.

I. Introduction

he metrics are used to measure the software i.e.
software metric is a measure of some property of a
piece of software or its specifications (Class et

al.1994). The different metrics are used to measure the
different phases of software in order to determine the
progress of software development process.

The different testing metrics are used
independently to covers different aspects of software
testing process. Some of these testing metrics are as
below Cost of finding a defect in testing (CFDT): Test
Case Adequacy: Test Case Effectiveness: Effort
Variance : Schedule Variance: Schedule Slippage:
Rework Effort Ratio: Review Effort Ratio: Requirements
Stability Index: Requirements Creep: Weighted Defect
Density (Jaana Lindroos, 2005).

A software will remain in the market for a long
time if it is developed with disciplined approach such
type of software are easier to use and easily modifiable.
Such software is the result of good effort. A type of
software, may not modify and difficult to use. Such
software should be the result of unsuccessful efforts and

Author α : Gandhara University, Peshawar, Pakistan.
E-mail : shahidkhan123@gmail.com
Author σ : E-mail : naveediit@gmail.com
Author ρ : E-mail : engrabid08@gmail.com
Author Ѡ : E-mail : ahmed.javed725@gmail.com

undisciplined approach. For the development of the
software required effort is divided into two parts.

In system software errors and failures are
increase the negative impact due to this the failure cost
of the software is also increase (Beheshti et al., 1995).

Recent research on the quality of the software
has resulted in the wide range of software metrics and
analysis techniques (Prather, 1995).

Software metrics, such as the MTBF, are
designed to provide objective criteria for management
decisions. Precision instruments are not necessary to
calculate most metrics. Simple counting or subjective
estimation has been used. Most software metrics define
a standard way of using attributes such as size, cost,
defects, complexity, and environment to measure quality
parameters such as completeness, conciseness,
portability, consistency, usability, and structure.

A variety of metrics can assist in identifying risks
early in the test process. Nonparametric statistical
principles have been used to evaluate the effectiveness
of metrics in identifying these risks, as well as other
validity criteria.

These validity criteria include association,
consistency, discriminative power, predictability, and
tracking. The use of metrics in debugging software can
more effectively reduce the scope of error when
structured

and modular programs are employed in

software development. Metrics do not always provide
useful information. Some metrics are designed for a
particular purpose and may not reveal the existence of
errors of which the user is unaware. The lack of an
omnibus

metric to detect all types of errors has spurred

interest in the development of additional metrics.

(Rubin et al., 1995) have developed metrics with
a mechanism termed “software process flight
simulation” to allow IS professionals to explore their
mental

models of the software process. They emphasize

choosing the right metrics for the modeling process.
They evaluated the metrics: software size; software
reliability; test session efficiency; test focus; and
software maturity. Inputs for evaluating these metrics
included: discrepancy report count, impact and
subsystem charged; scheduled test time; effective test
time; and test session rating. By tracking test results of
these metrics, significant insight was gained on software
quality, cost allocation, and test scheduling.

Effectively managing process improvement for
software-quality can challenge any project manager.
There are programs available to perform a quality check
on programs sold by manufacturers. However, many of

T

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
II

V
er
sio

n
I

39

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

these types of programs are at least three times as long
as the programs that they are designed to check.
Despite efforts to detect software errors, some
information specialists report at least one mistake per
5,000 lines of code (Beheshti et al., 1995).

II. Proposed Methodology

This chapter will cover proposed technique,
working of the model, the derived frame work as a new
metric and formulae for inter-related metrics.

a) Proposed Technique
In proposed methodology a new frame work is

introduced for measuring software testing process. This
framework has combined different metrics of testing
projects and derived a new metric which covers different
testing aspects.

Figure 1 : Proposed Model for derived framework
b) Working of the Model

A project or system is taken to perform testing
on it. At first the test cases are generated and then
proper planning is done for each test case. Then the
further steps will be taken to have different measures for

same project such as C.D stands for Error on Customer
side, E.D stands for Error Detection, E.C for Error
Correction, T stands for Time taken by each test case,
P.S stands for Program size tested.

c) The Derived Framework as a New Metric

Test
cases

Id
 Time

Error

Customer
side Error

Corrected

Error Cover

In %

MTBF

FR

Size

Efficiency

 In %
 DD

1 12 1 1 1 100 12 .083 85 50 1.18

2 10 3 4 2 66.67 3.34 .3 78 60 3.84

- - - - - - - - - -

- - - - - - - - - -

d) Formulae for Inter-Related Metrics

Plan for
Test

Cases

Project

Testing
Test Case

 is generated

E.D E.C T P.S

C.D

Efficiency Error
Coverage

MTBF &
FR

Defect
Density

A New Approach for Reducing the Testing Effort

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
II

V
er
sio

n
I

40

(
DDD D DDDD

)
Y
e
a
r

01
3

2
C

i) MTBF =
 No. of Error

Time

ii) Failure Rate = No. of Error
Time

iii) Error Coverage = No. of Corrected Error

No. of Errors
*100

III.

Implemented Proof and Results

This chapter will give you the practical approach
of the system I proposed.

The system was implemented using VB.NET
and SQL. The results were generated using P-IV with 2.8
GHz processor, 1GB of memory running windows XP
2003. The experiments were performed on a selected
project which was developed in VB.NET and SQL server
2003. The accuracy of the system was checked by
applying different values in different attributes.

a)

Experiments and Results

We have selected a project for implementation
of testing metrics. And twenty four (24) test cases are
generated for the selected project. Where three
operations such as insertion, deletion and updation test
cases are generated for each of this operation of
individual form of project.

Black box testing method is

used to check that weather the particular operation is
giving the required output from specific input. If the
particular operation is not performing its functionality
then white box testing is performed. In white box testing
method the code is tested and errors of code are
detected.

Table 1 : Name and ID of Test Case

In the figure-1, 8-Test Cases have its own
identification number for a specific (insertion, deletion,
Updation) operation.

b) S-Curve Testing Plan

Test cases are made according to S-curve each
test case is planned and attempted. In this way
progress of the testing process is traceable and error
exploration is performed more efficiently.

Each test case is passed Through S-curve plan
because every test case will be planned in detail.

i.

S-Curve Plan for Insertion Operation

For more error

exploration from the selected
project, different test cases are applied on the insertion
operation.

In insertion operation, all of eight (8) test
cases of are attempted but four (4) are successful as

shown in the figure-2. And graph of the insertion
operation is illustrated as shown in the figure-2.

Table 2 : Plan for insertion operation

Figure 2

:

Graph for insertion Operation

ii.

S-Curve Plan for Deletion Operation

In deletion operation, all of eight (8) test cases
are attempted but five (5) are successful as shown in the
figure-4. And graph of deletion operation is illustrated in
figure-5.

Table 3 : Plan for deletion operation

Test Case

Name

Insertion

Deletion

Update

Test Case

ID
 Test Case

ID
 Test Case

ID

Item Detail 1 9 17

Item Price 2 10 18

Ware House 3 11 19

Sale Detail 4 12 20

Receipt Detail 5 13 21

Good Return 6 14 22

Good Returns

from customer

7

15 23

Demand Detail 8 16 24

Test Cases

Name

Test Case

Planed

Attemted

Successful

Systems

8

8

4

Item

2

2

1

Ware House

1

1

1

Sale

1

1

0

Receipt

1

1

1

Return Goods

2

2

1

Demand

1

1

0

Test Cases

Name
 Test Case

Planed
 Attempted Successful

Systems

8

8

5

Item

2

2

2

Ware House

1

1

1

Sale

1

1

0

Receipt

1

1

0

Return Goods

2

2

1

Demand

1

1

1

A New Approach for Reducing the Testing Effort

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
II

V
er
sio

n
I

41

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

iv) Defect Density = No. of Errors
 Program Size Tested

 *100

v) Efficiency = No. of Error
 (No. of Error + Customer Side Error)

* 100

Figure 3 :

iii.

S-Curve Plan for Updation Operation

In Updation operation, all test cases are
attempted eight (8) but five (5) were successful as
shown in the figure-6. And graph of Updation operation
is illustrated in figure-7.

Table 4 :

Plan for Updation Operation

Figure

4 : Graph for Updation Operation

Over all result of test plan of all operations

IV.

Comparative Study of Single
Project

a)

Without single framework

In selected project there are total 24-Test cases
but due to lack of proper planning the system named
“Goods Returns from customer” are left from testing.
There are two (2) test cases of system “Goods Returns
from customer” and there are three (3) operation of
“Good Returns from customer” system so

2*3=6

i.e six (6) test cases are left to be tested. So the errors of
these six (6) test cases are thirty eight (38) which are left
from fixing at developer side, i.e 27,

5 and 6 errors of
insertion, deletion and updation respectively. The errors
detected on developer side without single framework is
50,15 and 26 for insertion, deletion and updation
respectively.

While using single framework there is a plan for
testing via s-curve and the error are explored at big
ration.

The following graph shows a clear picture of
detecting errors at high ratio via using single framework.
Where Error1 line shows the error detection of particular
project without using single frame work and Error2 line

A New Approach for Reducing the Testing Effort

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
II

V
er
sio

n
I

42

(
DDD D DDDD

)
Y
e
a
r

01
3

2
C

Test Cases
Name

Test Case
Planed Attempted Successful

Systems 8 8 5
Item 2 2 2

Ware House 1 1 1
Sale 1 1 0

Receipt 1 1 0
Return Goods 2 2 1

Demand 1 1 1

Graph for Deletion Operation

shows the error detection of particular project with using
single frame work.

Error Detection Report

Operations With Single
Frame Work

Without Single
Frame Work

Insertion 77 50
Deletion 20 15
Updation 32 26

b)

Impact on Efficiency

The less exploration of errors and has a direct
impact on software testing efficiency. Because those all
errors which are left on developer side would be
appeared on customer side.

The customer side error with single frame work
is 21,10,15 for insertion, deletion and updation
respectively.

The customer side error without single frame

work is 48,15 and 21 for insertion deletion and updation
respectively as shown below:

21+27= 48, 10+5= 15, 15+6= 21.

Average Efficiency Report

Operations

With Single
Frame Work

Without Single
Frame Work

Insertion

78.549

58.099

Deletion

64.791

50.208

Updation

67.247

52.188

A New Approach for Reducing the Testing Effort

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
II

V
er
sio

n
I

43

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Impact on corrective maintinance effort

V.

Conclusion

This new frame work provides a proper way of
measuring different aspects of testing process. There is
a number of software testing metrics such as Failure
Rate, MTTF, MTBF, Defect Density, Test Plan, Testing
Efficiency, Error fixation etc. These metrics are
independent and have no link with each other, but some
these have homogeneous attributes with inter-
disciplinary measurement. Some of these homogeneous
attributes metrics has been integrated into single frame
work. So from this single frame work some major
measurement of testing process such that plan for
testing, error detection and correction efficiency,
program size tested, testing efficiency, execution time
take by each test case, the reliability measurement
using MTTF and FR can be performed. This derived
frame provides the measurement of software testing
process at different stages, from which the effect of
each step taken in software testing is determined. The
derived metric also provides the higher degree of
flexibility where different metrics are combined in a
single frame work to be used more effectively and also
provides the compatibility of different metrics. The term
plan testing is also included in new derived metric which
is helpful in exploring more errors, and this reduces the
corrective maintenance cost. From this derived metric
more reliable and efficient product

can be achieved with
low cost of maintenance. It has a direct impact on
product quality because this new metric provides the
measurement of some basic attributes of quality such
that Correctness, Reliability, Efficiency, Usability and
Maintainability. This new metric is applied on different
tools such that VB.Net and SQL and provides the
interoperability of different tools.

References Références Referencias

1.

Beheshti, H.M. and Worley, J.K. (1995), “Automated
systems and reliability”, Industrial Management &

Data Systems, Vol. 95 No. 1, pp. 5-9.

2.

Chan, F.T., Chen, T.Y., Mak, I.K. and Yu, Y.T. (1996),
“Proportional sampling strategy: guidelines for

8.

Fenton, N. (1994), “Software measurement: a
necessary scientific basis”, IEEE Transactions on
Software Engineering, Vol. 20 No. 3, pp. 199-206.

9.

Foody, M. (1995), “When is software ready for
release?”, Unix Review, Vol. 13 No. 3, pp. 35-41.

10.

http://www.freetutes.com/systemanalysis/sa2-error-d
istribution-with-phases.html

11.

http://en.wikipedia.org/wiki/Software_metric.

12.

Jaana Lindroos. Feb 2005 the Role of Program
Structure in Software Maintenance, University of
Helsinki.

13.

Kvanli, A.H., Guynes, C.S. and Pavur, R.J. (1996),
Introduction to Business Statistics, West Publishing
Co., New York, NY.

14.

Littlewood, B. and Strigini, L. (1993), “Validation of
ultrahigh dependability for software-based
systems”, Communications of the ACM, Vol. 36 No.
11, pp. 69-73.

15.

Nesi, P. and Campanai, M. (1996), “Metric
framework for object-oriented real-time systems
specification languages”, Journal of Systems and
Software, Vol. 34 No. 1, pp. 43-65.

16.

Nunamaker, J.F., Chen, M. and Purdin, T.D.M.
(1990), “Systems development in information
systems

research”, Journal of Management
Information Systems, Vol. 7 No. 3, pp. 89-106.

A New Approach for Reducing the Testing Effort

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
II

V
er
sio

n
I

44

(
DDD D DDDD

)
Y
e
a
r

01
3

2
C

software testing practitioners”, Information and
Software Technology, Vol. 38 No. 12, pp. 775-82.

3. Classe, A. (1994), “Down with downtime”,
Accountancy, Vol. 114 No. 1212, pp. 57-60.

4. Cole, B. (1996), “Embedded top priority: reliability”,
Electronic Engineering Times, No. 932, p. 57.

5. Dhillon, B.S. (1987), Reliability in Computer System
Design, Norwood, NJ.

6. E. Simmons, "When Will We be Done Testing?
Software Defect Arrival Modeling Using the Weibull
Distribution," presented at Pacific Northwest
Software Quality Conference, Portland, OR, 2000.

7. Feigenbaum, A.V. (1983), Total Quality Control,
McGraw Hill, New York, NY.

17. Omdahl, T.P. (1988), Reliability, Availability, and
Maintainability, ASQC Quality Press, Milwaukee.

18. Prather, R.E. (1995), “Design and analysis of
hierarchical software metrics”, ACM Computing
Surveys, Vol. 27 No. 4, pp. 497-518.

19. Prof. Stafford. December 2003 Software
Maintenance As Part of the Software Life Cycle,
Tufts University.

20. Putnam, L.H. and Myers, W. (1992), Measures for
Excellence, Prentice-Hall, Upper Saddle River, NJ.

21. Ross, P.E. (1994), “The day the software crashed”,
Forbes, Vol. 153 No. 9, pp. 142-56.

22. Rubin, H.A., Johnson, M. and Yourdon, E. (1995),
“Software process flight simulation: dynamic
modeling tools and metrics”, Information Systems
Management, Vol. 12 No. 3, pp. 40-52.

23. Schmidt, D., Fayad, M. and Johnson, R. (1996),
“Software patterns”, Communications of the ACM,
Vol. 39 No. 10, pp. 36-9.

24. Schneidewind, N.F. (1992), “Methodology for
validating software metrics”, IEEE Transactions on
Software Engineering, Vol. 18 No. 5, pp. 410-22.

25. Schneidewind, N.F. (1993), “Software reliability
model with optimal selection of failure data”, IEEE
Transactions on Software Engineering, Vol. 19 No.
11, pp. 1095-104.

26. Stark, G.E., Durst, R.C. and Pelnik, T.M. (1992),
“Evaluation of software metrics for NASA’s Mission
Control Center”, Software Quality Journal, Vol. 1 No.
2, pp. 115-32.

27.

Van Genuchten, M. (1993), “Analysis and
improvement of software engineering

processes”,
Information & Management, Vol. 25, pp. 43-9.

28.

Vogel, D.R. and Wetherbe, J.C. (1984), “MIS
research: a profile of leading journals and
universities”, Data Base, Vol. 16 No. 3.

29.

Zhu, H.(1996), “A formal analysis of the subsume
relation between software test adequacy criteria”,
IEEE Transactions on Software Engineering, Vol. 22
No. 4, pp. 248-55.

A New Approach for Reducing the Testing Effort

© 2013 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
III

 I
ss
ue

 V
II

V
er
sio

n
I

45

(
DDDD DDDD

)
Y
e
a
r

01
3

2
C

Global Journals Inc. (US)

Guidelines Handbook

www.GlobalJournals.org

	A New Approach for Reducing the Testing Effort
	Author's
	I. Introduction
	II. Proposed Methodology
	a) Proposed Technique
	b) Working of the Model
	c) The Derived Framework as a New Metric
	d) Formulae for Inter-Related Metrics

	III. Implemented Proof and Results
	a) Experiments and Results
	b) S-Curve Testing Plan

	IV. Comparative Study of Single Project
	a) Without single frameworkIn selected
	b) Impact on Efficiency

	V. Conclusion
	References Références Referencias

