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Absiract - Cloud computing is mostly used for highly scalable
applications which are very catchable now a day in the world
of Internet as on primary needs. The important feature
provided to the customers’ data is done in unknown systems
will do all different transmissions remotely. Using the
transmission through remote systems of cloud computing
makes users’ scares of their data is that secured or not
specially in  some paricular categories like online
transmissions and health. These are the threats that create a
significant barrier in the cloud computing services. To tackle
this crisis, in this paper, we explored a novel highly
decentralized information accountability framework. That
maintains complete history of the usage of the registered
user's data in the cloud. In this way, we explored an object-
centered approach that creates enclosing our details of
logging history combining with the users' data. We referrers
couple of provably-secure PDP schemes which are most
accurate when compared to old ones, not only that when
compared with schemes that results less efficient than our
proposed. In particular, the overhead at the server is low as
opposed to linear in the size of the data. Researches using our
implementation verify the practicality of PDP and reveal that
the performance of PDP is bounded by disk /0 and not by
cryptographic computation.

[.  INTRODUCTION

owever, archival storage requires guarantees
about the authenticity of data on storage, namely

that storage servers possess data. It is
insufficient to detect that data have been modified or
deleted when accessing the data, because it may be
too late to recover lost or damaged data. Archival
storage servers retain fremendous amounts of data, little
of which are accessed. They also hold data for long
periods of time during which there may be exposure to
data loss from administration errors as the physical
implementation of storage evolves, e.g., backup and
restore, data migration to new systems, and changing
memberships in peer-to-peer systems. Archival network
storage presents unique performance demands.

Given that file data are large and are stored at
remote sites, accessing an entire file is expensive in 1/O
costs fo the storage server and in transmitting the file
across a network. Reading an entire archive, even
periodically, greatly limits the scalability of network
stores. (The growth in storage capacity has far
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outstripped the growth in storage access times and
bandwidth [44]). Furthermore, 1/O incurred to establish
data possession interferes with on-demand bandwidth
to store and retrieve data. We conclude that clients need
to be able to verily that a server has retained file data
without retrieving the data from the server and without
having the server access the entire file. Previous
solutions do not meet these requirements for proving
data possession. Some schemes [20] provide a weaker
guarantee by enforcing storage complexity: The server
has to store an amount of data at least as large as the
client's data, but not necessarily the same exact data.
Moreover, all previous techniques require the senver to
access the entire file, which is not feasible when dealing
with large amounts of data. We define a model for
provable data possession (PDP) that provides
probabilistic proof that a third party stores a file. The
model is unique in that it allows the server to access
small portions of the file in generating the proof; all other
techniques must access the entire file. Within this
model, we give the first provably-secure scheme for
remote data checking. The client stores a small O (1)
amount of metadata to verify the server's proof. Also,
the scheme uses O (1) bandwidth1. The challenge and
the response are each slightly more than 1 Kilobit. We
also present a more efficient version of this scheme that
proves data possession using a single modular
exponentiation at the server, even though it provides a
weaker guarantes.

Both schemes use Homomorphic verifiable
tags. Because of the Homomorphic property, tags
computed for multiple file blocks can be combined into
a single value. The client pre-computes tags for each
block of a file and then stores the file and its tags with a
server. At a later time, the client can verify that the server
possesses the file by generating a random challenge
against a randomly selected set of file blocks. Using the
queried blocks and their corresponding tags, the server
generates a proof of possession. The client is thus
convinced of data possession, without actually having to
retrieve file blocks. The efficient PDP scheme is the
fundamental  construct  underlying an  archival
intfrospection system that we are developing for the
long-term preservation of Astronomy data.
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i) \erify Server Possession

We are taking possession of multi-terakyte
Astronomy databases at a University library in order to
presence the information long after the research proects
and instruments used to collect the data are gone. The
detatase wil be replicated at multiple sites. Sites
include  resource-sharing  parners  that  exchange
storage capacity to achieve reliability and scale As
such, the system is subject to freelcading in which
partners  aftempt to use storage  resources  and
cortribute none o their own [20]. The location and
physical implementation of these replicas are managed
independertly by each parner and will evolve over time.
Partners may even out source storage to third-pearty
storage senver providers [23].

Efficient POP schemes will ensure that the
computational requirements of remote data checking do
not  unduly  burden the remote storage  sites. We
implemented cur more efficiert scheme (E-PDP) and
twe Cther remote data checking protocds and evalusted
their performance Experiments show that probabilistic
possessicn  guarantess make it practical to wverify
possession of large data sets. With sampling, E-PDP
verifies a 64MEB file in about 0.4 seconds as compared
to 1.8 seconds without sampling. Further, YO bounds
the performance of EPDP; it generates prodfs as quickly
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as the disk produces data. Finally, E-PDP is 185 times
fasterthan the previcus secure protocol on 788 KB files.

1. SYSTEAME CRRERVIFW

& Provable Dafg Possession (FO5

We describe a framework for provable data
possession. This provides background for related work
and for the specific description o our schemes. A PDP
praocol (Fig 1) checks that an outscurced storage site
retains a file, which consists of a collection of n locks.
The client C (data owner pre-processes the file,
generating a piece of metadata that is stored locally,
transmits the file to the server 5, and may delete jits |ocal
copy. The server stores the file and responds to
challenges issued by the client. Storage & the senver is
in (n and storage & the client is in O (1), conforming to
ol noticn of an outsourced storage relationship.

i Fhreg Mods!

The server S must answer challenges from the
client C; falure to do so represents a data |oss
Howewer, the server is not trusted: Even though the file
is tdtaly or partidly missing the senver may iy o
convince the client that it possesses the file. The
sepver's motivation for misbehavior can that has nd
bean o is rarely accessed (for monetary reasons), o be
diverse and includes reclaiming storage Dy discarding
data hiding a data [oss incident (due to managemeant
errors, harchware failure, compromise by outside or
inside attacks etc). The goal of a POP scheme that
achigves probabilistic proof of data possession s 1o
detect senrer mistbehavior when the server has deleted a
fraction of the file.

IIL EVALUATION

& Probabiistic Fram awork

Our PDP schemes alow the serer 1o prove
possession of select blocks of F. This "sampling” ability
creatly reduces the waorkload on the sener, while still
achieving detection of server misbehavior with high
proability. We now analyze the probabilistic guarantees
offered Iy a scheme that supports block sampling.
Assume S deletes t blocks out of the n-block file F. Let ©
e the number of different blocks for which © asks prock
ina challenge. Let X be a discrete random wvariakle that
is defined to be the number of blocks chosen by C that
metch the blocks deleted by 3. We compute P, the
procatility that & least one of the blocks picked by C
metches one of the blocks deleted by 5. We have:

Pe=P{X 21}=1




t mn—i—1—1

Sinee 21— it follows that;

n—i n—1I—

Fx indicates the probabilty that, if S deletes t
blocks of the file, then C will detect server mishehavior
after a challenge in which it asks proof for © blocks. Fig.
2 plots FX for different values of n, t, c. interestingly,
when t iz a fracion of the file, C can detect server
misbehavior with a certain probability by asking proof for
a constant amount of blocks, independently of the total
number of file blodks: eg, ift = 1% of n, then C asks
for 460 blocks and 200 blocks in order to achieve FX of
at least B9% and 95%, respectively.

8} lmplamrentation and Exparimenia’ Resulfs

We measure the performance of E-FDF and the
benefits of sampling based on our implementation of E-
FOF in Linux As a basis for comparison, we have also
implemented the scheme of Desware et al. [17] and
Filho et al. [19] (B-FOF), and the more efficient scheme
in [20] (MHT-5C) suggested by David Wagner (these
schemes are described in Appendix B). All experiments
were conducted on an Intel 2.8 GHz Pentium IV systemn
with 2 512 KB cache, an 800 MHz EPCI bhus, and 1024
MB of BAM. The system runs Red Hat Linux 8 kernel
version 2 4.22. Algorithm s use the crypto librane of Open
S50 wersion 0.9.8b with a2 modulus N of size 1024 bits
and files have 4KB blocks. Experiments that measure
digk 'O perfarmance do so by storing files on an ext3
file systern on & Seagate Barracuda 72007
(=T3s00114)  BOGE  Ultra  ATAADD  drives.  All
experimental results represent the mean of 20 trials.
Because results varied litle across trisls, we do not
present confidence intervals.

i Server Computation

The next experiments look at the worst-case
pedormance of generating a proof of possession, which
is useful for planning purposes to allow the server to
alocate enough resources. For E-PDP, this means
sampling every block in the file, while for MHT-SC this
means computing the entire hash tree. We compare the
computation complexity of E-FOF with other algorithms,
which do not support sampling. All schemes perform an
equivalent number of disk and memory accesses.

In step 3 of the Gen Froof algorithm of 3-FOF, S
has two ways of computing p: Either sum the values
ajmij (a= integers) and then exponentiation to this sum
or exponentiation gs to each value smi and then
multiphy all values. We observed that the farmer choice
takes considerable less time, as it only involves one
exponentiation to a(|mi| + € + log2ich-bit number, as
opposed to c exponentistions to a (|mi| + £)-bit
number (typically, £ = 160,

i. Fre-Frocessing

In preparing a file for outsourced storage, the
dient generates its local metadata. In this experiment,
we measure the processor time for metadata generation
only. Thiz does not indude the YO time to load data to
the client or store metadata to disk nor does it include
the time to transfer the file to the server. Fig. S(k) shows
the pre-processing time as a fundion of file size for
BFDF, MHT-3C and E-PDF. E-FOP exhibits slower
preprocessing performance. The costs grow linesarly with
the file size a 162 FKB/s E-PDF pedorms an
exponentiation on every block of the file in order to
creste the per block tags. For MHTSC, preprocessing
performance mirrors challenge performance, because
hoth protocol steps perform the same computation. It
generastes data ot about 433 KB/s on average.

I EELATED WORE

Deswarte et al. [17] and Filho et a. [15] provide
technigues to verify that a remote server stores a file
using RSA-based hash functions. Unlike other hash-
based approaches, it alows a client to perform multiple
challenges using the same metadata In this protocol,
communication and client storage complexity are both
1), The limitation of the agorthm lies in the
computational complexity & the server, which must
exponentiation the entire file, accessing the entire file's
blocks. Further, R3A over the entire file is extremely slowr
— 20 seconds per Megabyte for 1024-bit keys on a 30
GHz processor [18]. In fact, these limitations led us to
stucy algorthms that allowed for sub-file access
isampling). YWe implement this protocol for comparison
with our POP scheme and refer to it as B-FOF (basic
FOF). A description of B-FOF iz provided in Appendix B.
Shah et al. [42] use a similar technigque for third-party
audting of data stored &t online service providers and
put forth some of the challenges associated with
auditing online storage services. Schwarz and Miller [40]
propose a scheme that allows a client to wverify the
storage of mfn erasure-coded data across multiple sites
even if stes collude. The data possession guarantee is
achieved using a special construct, called an "algebraic
signature”: A function that fingerprints a hlock and has
the property that the signature of the parity block equals
the parity of the signatures of the data blocks. The
parameters of the scheme limit its applicability: The file
access and computation complexity & the server and
the communication complexity are al linear in the
nurmber of file blocks (n) per challenge. Additionally, the
security of the scheme is not proven and remains in
gu estion.

g  Comrrand Line-Based Data Frocessing

The systems described in this section are
implemented by monitoring & command line interpreter
which allows therm to passively capture and store the
information necessary to assemble a retrospective wiew
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on data processing. As defined by Merriam-Webster
[2001], an audit trail is a record of a sequence of events
{(as actions performed by a computer) from which a
history can be reconstructed, and thus serves as a form
of lineage. Becker and Chambers [1988] describe a
system for auditing data analyses steps for a particular
implementation of 8 a language and interactive
environment for statistical analysis and display. Their
intention is to provide a tool for a user to investigate the
dependencies among steps following an exploratory 3
analysis session. User-entered statements evaluated by
3, including the associated creation and modification of
data objects resulting from those statements, are
dynamically recorded in an audit file. An audit facility
parses the audit file into a linked list structure, which it
then uses to respond to ad hoc queries and generate
custom so called audit plots to display analysis step
dependencies. The prototype audit facility Becker and
Chambers describe has not been implemented in
contemporary versions of the S system such as S-Plus
[Insightful Corporation 2003].

b} Script- and Program-Based Data Processing

The systems described in this section assemble
a retrospective view on processing using information
encoded directly in user-supplied scripts or programs.
ESSW [Frew and Bose 2001] captures lineage metadata
for objects involved in scientific processing performed
with application-specific scripts as well as general
scripting languages such as Perl. ESSW uses custom
application programming interface (APl) commands
within Perl wrapper scripts—code that circumscribes the
functions, algorithms, or other data transformations of
inferest—to construct lineage. The lineage of an item is
queried through a web application, and results are
displayed diagrammatically using the Webdot Web
service inferface included with the Graphviz set of
graphing tools [AT&T 2001].

¢} WFMS-Based Data Frocessing

Extending some of the concepts in GOOSE, the
Geo-Opera extension of the OPERA kernel [Alonso and
Hagen 1997b; Alonso et al. 1998] provides a
management system for distributed geoprocessing that
incorporates  elements  of workflow management,
transaction processing, and lineage tracking for an
Earth Science example of hydrologic modeling. Data
files and transformations used by hydrologic models
reside outside of the system. Once transformations are
registered in Geo-Opera, they are tracked as task
objects internal to the system. Lineage relationships
between objects are established by defining the control
flow between internal task objects and data. When data
is located outside the system, it is registered in the
system as an extenal object. Each external object
includes a set of system-maintained attributes
supporting automated versioning, change propagation,
and lineage recording.

@ 2013 Global Jounals Inc. {US)

d) Query-Based Data Processing

Brown and Stonebraker [1995] and Woodruff
and Stonebraker [1997] propose a method for providing
detailed or finegrained lineage for scientific processing
applications. A goal of their research is delivering to
scientists, through data lineage, the ability to investigate
the source of faulty or anomalous data sets and the
ability to determine those derived data sets affected by
faulty or anomalous inputs or algorithms. Specifically,
Woodruff and Stonebraker [1997] address the problem
of recovering the origins of single elements in large
arrays of data that have undergone a series of
transformations. Creating individual metadata entries to
assist with such a task would require prohibitive effort
and storage size.

el Senice-Based Data FProcessing

The Chimera Virtual Data System (VDS)
matches the scope and ambition of the Grid, targeting
invocations of data transformations in a “distributed,
multi-user, multi-institutional environment” [Foster et al.
2003]. Chimera features a language, the Virtual Data
Language (VDL), for defining and manipulating data
derivation procedures which are stored in a Virtual Data
Catalog (VDC). The VDL serves as a general wrapper for
program execution, capable of accommodating Grid
request planning. The language is also used to query
the VDC to discover or invoke the lineage or pipeline of
computations that created a particular data object.
Chimera is described as a virtual data prototype
because it is capable of creating a directed acyclic
graph (DAG) of distributed computations that can be
submitted to the Grid to regenerate a given data object.

V. (CONCLUSION

We proposed innovative approaches for
automatically logging any access to the data in the
cloud together with an auditing mechanism. Our
approach allows the data owner to not only audit his
content but also enforce strong back-end protection if
needed. Moreover, one of the main features of our work
is that it enables the data owner to audit even those
copies of its data that were made without his
knowledge.

[n the future, we plan to refine our approach to
verify the integrity of the JRE and the authentication of
JARs [20]. For example, we will investigate whether it is
possible to leverage the notion of a secure JVM [18]
being developed by IBM. This research is aimed at
providing software tamper resistance to Java
applications. In the long term, we plan to design a
comprehensive and more generic object-oriented
approach to facilitate autonomous protection of traveling
content. We would like to support a variety of security
policies, like indexing policies for text files, usage control
for executables, and generic accountability and
provenance controls.
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