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Student’s Learning Progression through 
Instrumental Decoding of Mathematical Ideas 

Stavroula Patsiomitou 

Abstract- The current study aims to focus on mathematical 
tasks for students’ mathematical literacy and problem solving 
literacy. Excerpts are presented from dynamic hypothetical 
learning paths [DHLP] s and students’ learning progression. 
The excerpts center around activities aimed to develop the 
students’ geometrical thinking through the development of 
their ability to solve real-world problems. The students 
cooperated in class or worked individually to represent the 
images using their static or dynamic means and tools (e.g. 
compass and ruler, a computing environment, interactive 
boards, dynamic geometry software). My further aim was the 
students to utilize transformation processes for 
representations by instrumentally decoding their ideas on 
static and dynamic objects. An important role for the students’ 
cognitive development was the design of propositions and 
theorems (e.g the Pythagorean Theorem), through Linking 
Visual Active Representations (LVAR). Especially for the latter 
option an essential role has played the dynamic geometry 
software, Geometer’s Sketchpad. Furthermore, the paper 
provides examples that contain rich mathematical material; 
therefore, student’s mathematical modeling through 
instrumental decoding of mathematical ideas is the means of 
reinforcing students’ conceptual knowledge.   
Keywords: linking visual active representations, learning 
progression, ‘dynamic’ hypothetical learning path, 
teaching cycle. 

I. Introduction 

he current study aims to focus on mathematical 
tasks for students’ development of geometrical 
thinking “in the process of developing and refining 

a learning progression to build a coherent [geometry] 
curriculum [connected with the other areas of 
mathematics] and the associated instructional 
materials” (Krajcik, Shin, Stevens & Short, 2009, p.27). 
For this, the paper describes excerpts from predicted 
[hypothetical] learning paths (/trajectories) “through 
which the learning might proceed. [The learning 
trajectories are hypothetical as it was not] knowable in 
advance” (Simon, 1995, p.135). Furthermore these 
learning paths are dynamic, as instructional DG 
(Dynamic Geometry) -- as The Geometer’s Sketchpad 
(Jackiw, 1991) -- activities are incorporated. Therefore, 
they could be defined as Dynamic Hypothetical 
Learning Paths (DHLPs). I have initially been designed 
and modified the paths as a result of interactions with 
the students that  participated,  adding  the  destinations  
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that were not known in advance to me (Simon, 1995, 
p.137).  

The learning paths “are subsets of [a] learning 
progression […] as it requires developing and testing an 
entire series of learning [paths] that describe specifically 
how to move students toward conceptual understanding 
of the big idea[s] in [mathematics and particularly in 
geometry]” (Krajcik, Shin, Stevens & Short, 2009, p.27).  

Furthermore, Simon (ibid.) developed the idea 
of a teaching cycle and created a diagram in order to 
represent the way that a learning trajectory is an 
ongoing modification of three components: “(a) the 
learning goal that defines the direction, (b) the learning 
activities and (c) the hypothetical learning 
process”(Simon, 1995, p. 136). Mathematics tasks are 
related to the teacher’s mathematical and pedagogical 
knowledge. According to Simon (1995) “the ingredient 

Furthermore, teacher’s knowledge about effective 
mathematical pedagogy influences their instructional 
practices (e.g., Simon & Shifter, 1991; Carpenter, 
Fennema, Peterson, Chiang, & Loef, 1989).  

The DHLPs incorporated real-world problems or 
simulations of problems in the DGS environment that 
had been analyzed and designed in terms of (a) the 
students’ van Hiele (vH) levels of thinking, starting from 
the lower vH levels to elicit higher vH levels, (b) their 
sequential conceptual content, and (c) the student’s 
comprehension of the links between representations 
and mathematical meanings conceptually and 
procedurally. 

Points of departure for the anticipation of the 
DHLPs were the questions:  

• Do students understand the mathematical 
components of modeling when they see real-world 
environments’ images [-representations]?  

• What mental activities will the students develop 
when they participate in these learning [/ 
instructional] activities?  

• What mathematical representations are most 
appropriate for student learning?  

• How important is the role of a dynamic geometry 
program to reorganize students’ mental 
representations?  

• Does students’ actual learning correspond with 
what was anticipated?  

T 
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pedagogy      ” (p. 115, italics in original manuscript). 
necessary in order to initiate mathematics learning is 



• How effective is the teaching and learning process 
using linking visual active representations (LVARs) 
(e.g., Patsiomitou, 2008 a, b, c, d, 2009, 2010a, b, 
2011, 2012a, b, 2013; Patsiomitou & Koleza, 2008, 
2009; Patsiomitou & Emvalotis, 2009 a, b, c, d,  
Patsiomitou & Emvalotis 2010 a, b; Patsiomitou, 
Barkatsas, & Emvalotis, 2010) to overcome 
cognitive obstacles and develop understanding of 
the mathematical concepts?  

• Which mathematical competencies are developed 
through the DHLP? 

• What is the need for students’ learning and 
understanding in upper-class curriculum processes 
for innovative learning when new practices and 
ideas (i.e., fractal activities) are incorporated? 

The paper provides a link between “learning 
with actions” and the implementation of mathematics in 
educational and pedagogical contexts, answering the 
question of if we could incorporate real world 
mathematics into everyday school practices.    
Mathematics is part of every day children’s lives. The 
mathematics is obvious to them or not, sometimes is not 
perceived as they are implicit. On the other hand  

“School courses and books have presented 
‘mathematics’ as a series of apparently meaningless 
technical procedures. […]. Just as a phrase loses 
meaning or acquires an unintended meaning when 
removed from its context, so mathematics detached 
from its rich intellectual setting in the culture of our 
civilization and reduced to a series of techniques has 
been grossly distorted” (Kline, 1990, p.15-16).   

Moreover, the fractal approach that is presented 
here reflects Kaput’s (1992) writing on the importance of 
technology in mathematics education, concerning the 
feasibility of innovative practices emanating from 
technological advents, which were otherwise 
impracticable. Ferrara, Pratt, & Robutti (2006) also, 
suggest that “what promotes change is the curricular 
project in which technology is inserted, and in particular, 
the didactic sequences planned by the teachers in order 
to introduce […] concepts, which use technology as a 
support.” (p. 258). 

The article does not intend to present the 
extended results of the research process but rather the 
theoretical perspective that underpins the teaching cycle 
(Simon, 1995) and the role of dynamic LVAR in students’ 
cognitive development. 

In the next sections, the article will begin with an 
articulation of the constructivist perspective that 
underpins the student learning process and my decision 
for the selection of activities. A review will be provided of 
mathematical competencies and the role of modeling 
processes in the DGS environment with the utilization of 
LVARs. 
 
 

II. Theoretical Underpinning 

a) Student’s cognitive development  
During the past several decades, researchers 

were concerned about the difficulties their students have 
faced when attempting geometry problems (e.g., Hoffer, 
1981; Usiskin, 1982). This consistent result comes about 
through students’ difficulty releasing their thoughts from 
a concrete frame (White & Mitchelmore, 2010, p. 206), 
and failure to develop the deductive reasoning (Peirce, 
1998/1903) required. This prevents them from engaging 
in the abstract process (e.g., Skemp, 1986; White & 
Mitchelmore, 2010) that is required for the study of the 
conceptual structure of geometry. 

According to Piaget (1937/1971), students’ 
cognitive development depends on their biological 
maturity. That students’ cognitive development depends 
on the teaching process was argued by Dina van Hiele-
Geldof and Pierre van Hiele in their dissertations in 1957 
(Fuys, Geddes & Tischler, 1988). Dina van Hiele-Geldof 
(Fuys, Geddes & Tischler, 1984) in her dissertation had 
the objective to investigate the improvement of learning 
performance by a change in the learning method. 
Central to this model, is the description of the five levels 
of thought development which are: Level 1 (recognition 
or visualization), Level 2 (analysis), Level 3 (ordering), 
Level 4 (deduction) and Level 5 (rigor).  

Battista uses “constructivist constructs such as 
levels of abstraction to describe students' progression 
through the van Hiele levels” (Battista, 2011, p.515). He 
“has elaborated the original van Hiele levels to carefully 
trace students’ progress in moving from informal 
intuitive conceptualizations of 2D geometric shapes to 
the formal property-based conceptual system used by 
mathematicians” (Battista, 2007, p.851).  

He separated each phase in subphases 
(Battista, 2007). I briefly report Battista’s first three levels 
elaboration, which are the most pertinent to secondary 
students, below:   

Level 1 (Visual-Holistic Reasoning) is separated 
into sublevel 1.1. (prerecognition) and sublevel 1.2 
(recognition). (p.851).  

Level 2 (Analytic-Componential Reasoning) is 
separated into sublevel 2.1 (Visual-informal 
componential reasoning), sublevel 2.2 (Informal and 
insufficient-formal componential reasoning) sublevel 2.3 
(Sufficient formal property-based reasoning). According 
to Battista (2007) “Students [acquire through instruction] 
a) an increasing ability and inclination to account for the 
spatial structure of shapes by analyzing their parts and 
how their parts are related and b) an increasing ability to 
understand and apply formal geometric concepts in 
analyzing relationships between parts of shapes”. 
(pp.851-852).  

Level 3 (Relational –Inferential Property-Based 
Reasoning) into sublevel 3.1 (Empirical relations), 
sublevel 3.2 (Componential analysis), sublevel 3.3 
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(Logical inference) and sublevel 3.4 (Hierarchical shape, 
classification based on logical inference). According to 
Battista (2007) “Students explicitly interrelate and make 
inferences about geometric properties of shapes. […] 
The verbally-stated properties themselves are 
interiorized so that they can be meaningfully 
decomposed, analyzed, and applied to various 
shapes”. (pp. 852-853). 

Researchers have shown that students “often 
fail in the construction of a geometric configuration 
which is essential for the solution of the underlying 
geometric problem” (Schumann & Green, 1994, p.204). 
This happens because students at the lower levels 
“identify, describe, and reason about shapes and other 
geometric configurations according to their appearance 
as visual wholes” (Battista, 2007, p.851). According to 
van Hiele (1986) “when after some time, the concepts 
are sufficiently clear, pupils can begin to describe them. 
With this the properties possessed by the geometric 
figures that have been dealt with are successively 
mentioned and so become explicit. The figure becomes 
the representative of all these properties: It gets what we 
call the “symbol character”. In this stage the 
comprehension of the figure means the knowledge of all 
these properties as a unity. […].When the symbol 
character of many geometric figures have become 
sufficiently clear to the pupils, the possibility is born that 
they also get a signal character”. This means that the 
symbols can be anticipated. […]. When this orientation 
has been sufficiently developed, when the figures 
sufficiently act as signals, then, for the fisrt time 
geometry can be practiced as a logical topic” (p. 168). 

Many researchers (e.g., Guitierrez & Jaime, 
1998; Govender & De Villiers, 2002, 2004; Patsiomitou, 
2008, 2012a, b, 2013; Patsiomitou & Emvalotis, 2010 a, 
b) describe student’s processes of constructing 
definitions and justification at every van Hiele level as 
they develop geometrical thought. This evolution of 
students’ formulation of definitions, justification, and 
reasoning was adopted by this study as the 
characteristic that would indicate their movement 
through several van Hiele levels. For definitions, I 
adopted Govender and De Villiers’ (2004) clarification 
(see Patsiomitou, 2013). In addition, dynamic perceptual 
definition (e.g. Patsiomitou, 2013, p.806) is the term for 
the process by which the student informally ‘defines’ a 
geometrical object by using the tools of the software.  

b) The development of student’s mathematical 
competencies 

Another point of view suggests that the 
development of student’s geometrical thinking results 
from the development of their competencies in 
mathematical thinking and reasoning, argumentation, 
modeling etc. Therefore, if the teaching process of 
students is aimed to develop their competencies, then it 
leads to the development of their geometrical thinking. 

Many researchers (e.g, Burkhardt, 1981; Pierce & 
Stacey, 2009) have highlighted the idea of solving 
problems in the real world as essential to understanding 
and learning mathematics, as well as “a key ability for 
citizens [who are prepared to make] judgments and 
decisions” (Stacey, 2012, p.3).  

According to De Corte, Verschaffel & Greer 
(2000), the implementation of the mathematics to solve 
real world problems can be useful “as a complex 
process involving a number of phases: understanding 
the situation described; constructing a mathematical 
model that describes the essence of those elements 
and relations embedded in the situation that are 
relevant; working through the mathematical model to 
identify what follows from it; interpreting the outcome of 
the computational work to arrive at a solution to the 
practical situation that gave rise to the mathematical 
model; evaluating that interpreted outcome in relation to 
the original situation; and communicating the interpreted 
results”.(p.1). 

Through the solution of the real world problems, 
students will be assessed regarding their competency 
for horizontal and vertical mathematization (Jupri, 
Drijvers, & van den Heuvel-Panhuizen, 2012). “The 
difficulty in horizontal mathematization concerns 
students’ difficulty in going from the world of real 
phenomena to the world of symbols and vice versa. The 
difficulty in vertical mathematization concerns students’ 
difficulty in dealing with the process of moving within the 
symbolic world (Treffers, 1987; Van den Heuvel-
Panhuizen, 2003)” (Reported in http://igitur-archive. 
library.uu.nl/math/2013-0304-200631/12102012.pdf).  

As I previously mentioned, my further aims, 
were the student’s mathematical literacy and problem-
solving literacy. The latter PISA (Programme for 
International Student Assessment) definition of 
mathematical literacy is as follows (OECD, 2010):  

“Mathematical literacy is an individual’s 
capacity to formulate, employ, and interpret 
mathematics in a variety of contexts. It includes 
reasoning mathematically and using mathematical 
concepts, procedures, facts, and tools to describe, 
explain, and predict phenomena. It assists individuals 
to recognise the role that mathematics plays in the 
world and to make the well-founded judgments and 
decisions needed by constructive, engaged and 
reflective citizens.” (p. 4) 

It is very important for the students to develop 
their modeling competency in order to transform real-
world problems from the three-dimensional world to the 
two-dimensional world of the paper and pencil [or DG] 
environment. Additionally, it is important for them to be 
able to process in an abstract way. 

Epigrammatically, the students, through the 
problems that will be presented below, will be assessed 
with regard to the development of the following 
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competencies (OECD, 2006), that have been analyzed 
from Niss (1999) and his colleagues but similar 
formulations can be found  in the work of many others 
(e.g., Neubrand et al. 2001): 

Briefly, these competencies can be described 
as an individual student’s ability to (e.g., Niss, 1999, 
2003; Neubrand et al. 2001): 

Mathematical thinking and reasoning:… 
mastering mathematical modes of thought; posing 
questions characteristic of mathematics; knowing the 
kind of answers that mathematics offers, distinguishing 
among different kinds of statements; understanding and 
handling the extent and limits of mathematical concepts; 
generalizing results to larger classes of objects. 

Mathematical reasoning and argumentation: 
…knowing what proofs are; knowing how proofs differ 
from other forms of mathematical reasoning; following 
and assessing chains of arguments; having a feel for 
heuristics; creating and expressing mathematical 
arguments; devising formal and informal mathematical 
arguments, and transforming heuristic arguments to 
valid proofs, i.e. proving statements. 

Mathematical communication: … being able to 
communicate, in, with, and about mathematics; 
expressing oneself in a variety of ways in oral, written, 
and other visual form; understanding someone else’s 
work.  

Modelling competency:… being able to analyse 
and build mathematical models concerning other 
subjects or practice areas; structuring the field to be 
modeled; translating reality into mathematical 
structures; interpreting mathematical models in terms of 
context or reality; working with models; validating 
models; reflecting, analyzing, and offering critiques of 
models or solutions; reflecting on the modeling process; 
communicating about the model and its results; 
monitoring and controlling the entire modeling process. 

Problem posing and handling competency:… 
problem identifying, posing, specifying; solving different 
kinds of mathematical problems. 

Representation competency:… being able to 
handle different representations of mathematical 
entities; decoding, encoding, translating, distinguishing 
between, and interpreting different forms of 
representations of mathematical objects and situations 
as well as understanding the relationship among 
different representations; choosing and switching 
between representations. 

Symbol and formalism competency:… 
decoding and interpreting symbolic and formal 
mathematical language, and understanding its relations 
to natural language; understanding the nature and rules 
of formal mathematical systems (both syntax and 
semantics); translating from natural language to 
formal/symbolic language; handling and manipulating 
statements and expressions containing symbols and 
formulae. 

Communicating in, with, and about 
mathematics competency: …. understanding others’ 
written, visual or oral ‘texts’, in a variety of linguistic 
registers, about matters having a mathematical content; 
expressing oneself, at different levels of theoretical and 
technical precision, in oral, visual or written form, about 
such matters. 

Aids and tools competency:…being able to 
make use of and relate to the aids and tools of 
mathematics, including technology when appropriate.  

The visualization competency and the 
competency of students to develop recursive processes 
conceptually and structurally is [also] very important for 
the solution of problems with fractal constructions.  

In a paper of PME conference (Patsiomitou, 
2011) I had also distinguished the kinds of 
apprehension when selecting software objects. 
Competence in the DGS environment depends on the 
competence of the cognitive analysis which students 
bring to bear when decoding the utilization of software 
tools, based on Duval’s (1995) semiotic analysis of 
students’ apprehension of a geometric figure. During the 
development of a construction in a DGS environment, I 
believe that the student has to develop three kinds of 
apprehension when selecting software objects which 
accord with the types of cognitive apprehension outlined 
by Duval (1995, pp.145-147) namely perceptual, 
sequential, discursive, and operative apprehension. In 
concrete terms, the competence of instrumental 
decoding in the software’s constructions depends on 
(Patsiomitou, 2011, p.363):  

a) the sequential apprehension of the tools 
selection (i.e. s/he has to select point C and segment 
AB and then the command (fig. 1) meaning that s/he 
has to follow a predetermined order); b) the verbal 
apprehension of the tools selection which means the 
student has to verbalize this process, (i.e. s/he says “I 
am going to select point C and the segment AB”) and c) 
a  place way type of elements operation on the figure 
(i.e. when s/he transforms the orientation of the 
elements to apply the command selecting point B and 
the opposite side AC, for example in fig.4) due to his/her 
perceptual apprehension (fig. 2, 4). Then s/he has 
constructed the operative apprehension of the figure’s 
elements for the construction, meaning the competence 
to operate the construction.  

c) Is learning and knowledge development a cognitive 
process? The role of teacher in learning process   

Van Hiele theory has its roots in constructivist 
theories. Cognitive constructivism is connected with the 
work of Piaget’s (1937/1971) and his views as 
‘constructivist’. Bruner’s (1961, 1966) proposal of 
discovery learning [as ‘constructionist”] is based on 
prior knowledge and the understanding of a concept, 
which [through discovery] grows and deepens. 
According to Bruner (1986) “learning is a social process 
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in which children grow into the intellectual life of those 
around them” (Clements & Battista, 1990, p.6). 

The sociocultural approach has its roots in 
Vygotsky (1987) who focuses on the acquisition of 
mathematical understanding as a product of social 
interactions. Von Glasersfeld (1995) a radical 
constructivist is differentiated from the work of Piaget as 
he argues that “knowledge [does not represent an 
independent world, instead] represents something that 
[…] we can do in our experiental world” (p.6). 

Building on the concepts mentioned above, the 
concept of social constructivism is a complex process, 
while being interactive, constructivist and sociocultural 
(e.g., Yackel, Cobb, Wood, Wheatley & Merkel 1990; 
Cobb, Yackel & Wood 1992; Yackel, Rasmussen & King 
2001; Yackel & Rasmussen 2002; Jaworski, 2003). 
According to sociocultural and interactive approaches, 
learning is a part of the culture (Steffe & Gale, 1995) in 
which the students construct knowledge through their 
participation in social practices (e.g social class 
environment) (Cobb & Bauersfeld, 1995, p.4). “A social-
constructivist perspective sees discussion, negotiation 
and argumentation in inquiry and investigation practices 
to underpin knowledge growth in mathematics, in 
teaching mathematics and in mathematics teacher 
education” (e.g., Cobb & Bowers, 1999; Lampert, 1998; 
Wood, 1999 in Jaworski, 2003, p . 17).  

Besides, learning is an individual constructive 
process while knowledge is actively constructed by the 
student; it depends on the individual’s personal work 
and negotiation of mathematical ideas (e.g., Jaworski, 
2003). From the perspective of constructivist theories 
the process of mathematical knowledge and 
understanding arises as students try to solve math 
problems during the classroom (Cobb, Yackel, & Wood, 
1992; Simon & Shifter, 1991) and is instigated when 
students confront problematic situations. Knowing 
therefore is not taken passively by students but in an 
active way. Learning thus is characterized in 
Bauersfeld’s interactionism view “by the subjective 
reconstruction of societal means and models through 
negotiation of meaning in social intervention” 
(Bauersfeld, 1992, p.39).  

Vygotsky (1987) argues that "the child begins to 
perceive the world not only through his eyes [visually] 
but also through speech” (p. 32). According to Vygotsky 
(1987), learning is a complex interplay between scientific 
and spontaneous use of language. 

For this, learning is an internalization of social 
relations and understanding is a result of common 
negotiation of concepts created by students while 
interacting with other students in the class (or group) 
during the mathematical discussions developed 
(Bartolini Bussi, 1996). 

For the current study, I used the strategy of 
“thinking aloud” (Hayes & Flower, 1980; Smith & 
Wedman, 1988) in class or group discussions because I 

strongly believe “that this [action] influence[s] students’ 
own use of language”. […]. “Language is important for 
cognitive development and learning; without it, an 
individual lacks [an] efficient system for storing certain 
types of information that are needed for thinking, 
reasoning, and concept development”(Westwood,  
2004, p.141). 

Sfard also defines “learning as the process of 
changing one’s discursive ways in a certain well-defined 
manner” (Sfard, 2001, p.3). According to Sfard (2001) 
“thinking is a special case of the activity of 
communicating” […]“A person who thinks can be seen 
as communicating with himself/herself, […] whether the 
thinking is in words, in images or other form of symbols, 
[..] as our thinking is [an interactive] dialogical 
endeavour [through which] we argue…” (p.3); with 
his/her participation the student in a mathematical 
discussion s/he “learns to think mathematically” (Sfard, 
ibid., p. 4). Under this approach, the development of 
thought occurs through dialogue that develops the 
subject within himself/herself internally (intrapersonally) 
or in a group in which s/he participates. Moreover, 
learning is expanding the capacity for dialectical skills 
and solving problems that could not previously be 
solved. Furthermore “putting communication in the heart 
of mathematics education is likely to change not only 
the way we teach but also the way we think about 
learning and about what is being learned” (Sfard, 2001, 
p.1). Consequently, learning is first and foremost the 
modification / transformation of the ways we think and 
how we exchange this thought. Moreover, learning is the 
capacity of dialectical skills and of problem-solving that 
could not be solved before. 

Goos and her colleagues carried out a series of 
studies --based on sociocultural perspective-- to 
investigate the teacher’s role, the students’ discussion in 
small groups and the use of technology as a tool that 
mediates teaching and learning interactions (e.g. Goos, 
2004, Goos, Galbraith, Renshaw, & Geiger, 2003). If we 
take the role of teacher seriously as concerns the 
realisation and planning of activities then, every activity 
should be based on geometry exactly as Goldenberg 
(1999) purports it to be –a fundamental principle. The 
current study leads us, as Goldenberg (ibid.), writes “to 
select idea-editors that have supported the connections. 
Tools like Geometer’s Sketchpad present geometric 
structures in an environment that emphasizes the 
continuous nature of Euclidean space, and thus serve 
as an excellent bridge between geometry and [the other 
field of mathematics, as well as] analysis.” This is very 
important for the teaching practice because the 
construction of the meaning can not only be depended 
or is located in the tool per se, nor uniquely pinpointed 
in the interaction of student and tool, but it lies in the 
schemes of use (e.g., Trouche, 2004) of the tool itself.  

Simon (1995) has developed a view of the 
teacher’s role that includes both the psychological and 
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the social aspects. He supports that “a teacher is 
directed by his conceptual goals for his students, goals 
that are constantly being modified” (p.135). I adopted 
Simon’s view for my role as teacher-researcher for the 
current study. In the next sections it will be articulated 
the “rational for choosing the particular instructional 
design; thus I make my design decisions based on my 
guess of how learning might proceed” (Simon, 1995, 
p.135).  

d) What are Learning Progressions? What is ‘The 
Teaching Cycle’? 

Duschl, Schweingruber, & Shouse (2007) define 
learning progressions as “descriptions of the 
successively more sophisticated ways of thinking about 
a topic that can follow one another as children learn 
about and investigate a topic over a broad span of time” 
(Duschl, Schweingruber, & Shouse, 2007, p.214). A 
learning progression is also committed to the “notion of 
learning as an ongoing developmental progression. It is 
designed to help children continually build on, and 
revise their knowledge and abilities, starting from the 
initial conceptions about how the world works and 
curiosity about what they see around them” (National 
Research Council (NRC), 2010, p.2). Learning 
progressions has among others students’ assessment 
as important component that aids to “measure student 
understanding of the key concepts or practices and can 
track their developmental progress over time” 
(Corcoran, Mocher & Rogat, 2009, p.15).   

The learning progression in mathematics (or 
other disciplines, e.g language, science) has been built 
upon the concept of the Assessment Triangle 
(Pellegrino, Chudowsky & Glaser, 2001) which 
“explicate three key elements underlying any 
assessment: (1) a model of student cognition and 
learning in the domain, (2) a set of beliefs about the 
kinds of observations that provide evidence of students 
competencies and (3) an interpretation process for 
making sense of evidence” (National Research Council, 
2001, p.44). As Smith, Wiser, Anderson, & Krajcik (2006) 
argue the progress through learning progressions 
depends on instruction as well as the theory of van Hiele 
supports.  

Krajcik, Shin, Stevens & Short, (2009, p.28), 
have created an illustration of the difference between 
learning progressions and learning trajectories. As they 
support “sets of learning trajectories of instructional 
sequences that describe specific ways of supporting 
student’s learning [constitute] a learning progression” 
(p.28). Besides Battista (2011) supports that a learning 
progression differs from a learning trajectory because it 
has not been designed “to test a curriculum, based on a 
fixed sequence of learning tasks in that curriculum. 
[Instead] it is focusing on a formative assessment 
system that applies to many curricula […] based on 
many assessment tasks, not those in a fixed sequence” 
(p. 513). 

 
In the current study, the vH [learning] 

progression describes the development of students’ 
thinking through a vH instructional path, which was kept 
for a year and then repeated the next year. It focuses on 
describing the evolution of the students’ mathematical 
learning, cognitive structures, and reasoning and has 
been “developed from examining how students’ ideas 
develop by the analysis of various assessment tasks” 
(Stevens, Shin & Krajcik, 2009, p.2). I was the activities’ 
instructor as well as student’s teacher. The activities are 
“linked to [students’] curriculum and are being tested by 
collecting their work from classroom in which

 

the 
curriculum is being used to specify the expected 
achievement levels; [the current] study tend to be 
longitudinal, with changes in student thinking and ability 
tracked over the course of […] a year.” (Corcoran, 
Mocher & Rogat, 2009, p.33). According to

 

Neubrand 
(2004) mathematical achievement can be structured by 
three “types of mathematical activities,” employing only 
the techniques of modeling and problem-solving 
activities that use mathematical tools and procedures, 
call for connections, and utilize mathematical 
conceptions. 
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Figure 1 : Simon’s (1995, p.136) 
Mathematics Teaching Cycle. 

 

Figure 2 : An adaptation of Simon’s (1995) 
Mathematics Teaching Cycle, created by McGraw 

(2002, p.10). 

Simon (1995) created a diagram (Figure 1) in 
order to represent the way that a leaning trajectory is an 
ongoing modification of three components: (a) the 
learning goal, (b) the learning activities and (c) the 
hypothetical learning process. McGraw (2002, p.10) in 
her Ph.D. thesis created an adaptation on Simon’s 
(1995) teaching cycle that is represented in Figure 2, 
aiming to include the actual discussions with students 
that “occurred within the ‘interaction with students’, 
which influenced the “teacher’s knowledge”.  

What has not been examined is the use of 
technology in the teaching cycle which plays an 
important role in the development of discussions, as 
well as students’ vH level. 

e) The modeling process in a DGS environment –What 
are LVARs?  

From a representational view of learning 
mathematics the DHLP is supported theoretically by the 
concept of representation. According to Vergnaud 
(1987) “representation is an important element in the 
theory of teaching and learning of mathematics [... 
especially since they] play an important role in 
understanding the real world. Representations are 
provided to the students in different forms (Gagatsis & 
Spirou, 2000) (e.g., real-world situations, images or 
diagrams, oral or written symbols).  

Vergnaud (1998) claims that “[n] either Piaget 
nor Vygotsky realized how much cognitive development 
depends on situations and on the specific 
conceptualizations that are required to deal with them” 
(p. 181). Piaget focused on the subjectivity of 
representation and Vygotsky on a social process of 
gaining control over external “sign” forms. Children have 
difficulty to perceive the signs of the meanings in the 
images of the real world. They perceive them as a whole 

image especially at the lower van Hiele levels. When 
students move to upper van Hiele levels they increase 
their ability to transform the visual image or drawing 
(Parsysz, 1988) they perceive, into a figure with concrete 
properties. 

For most researchers, representations can help 
students to reorganize and translate their ideas using 
symbols. They are also useful as communication tools 
(Kaput, 1991) and can function as tools for 
understanding of concepts, since they help with the 
communication of ideas and provide a social 
environment for the development of mathematical 
discussion. The knowledge of supporting instruments, 
which are external representational systems for planning 
activities, allows us to choose between technological 
tools. The [external] representations facilitate the 
provision of information about the problem, capture the 
structure of the problem, and support visual reasoning. 
On the other hand, the external representations (e.g., 
formulations or figures) that students construct serve as 
an indicator of their internal representations, constituting 
their level of understanding and the developmental level 
of their geometric thinking. 

The use of a computing environment as 
dynamic geometry facilitates the teaching and learning 
of Euclidean geometry and helps students overcome 
the difficulties in translation between representations 
through automatic translation or "dyna-
linking"(Ainsworth, 1999, p. 133) since “visually encode 
causal, functional, structural, and semantic properties 
and relationships of a represented world –

 
either 

abstract or concrete (Glasgow,
 

Narayanan & 
Chandrasekran, 1995; Peterson, 1996; Card, MacKinlay 
& Shneiderman, 1999; Cheng, 2002)” (Sedig & Sumner, 
2006, p. 2).
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Dynamic geometry software has been used 
broadly in research regarding the teaching and learning 
process of geometry over the past several decades (see 
for example the articles written in Educational Studies in 
Mathematics and International Journal of Computers for 
Mathematical Learning) (Leung & Or, 2007, p. 177). 
Such research with dynamic geometry has verified that 
the software is useful in provoking cognitive conflicts 
(e.g, Hadas, Hershkowitz, & Schwarz, 2000; Giraldo, 
Belfort & Carvalho, 2004), developing students’ 
deductive reasoning (e.g, Hollebrands & Smith, 2009), 
and developing students’ geometrical thinking (e.g, 
Yousef, 1997; Almeqdadi, 2000; Sinclair, 2001; 
Patsiomitou, 2008a, 2010a, 2012a,b, 2013), according 
to the theory of van Hiele. Üstün & Ubuz (2004) consider 
that “the Geometer’s Sketchpad is an important vehicle 
of technological chance in geometry classroom. […] 
The shapes are first created and then they are explored, 
manipulated and transformed to ideal concept”. Olkun, 
Sinoplu & Deryakulu (2005) argued that “the Geometer’s 
Sketchpad is a suitable dynamic environment in which 
students can explore geometry according to their van 
Hiele levels” (p.3). The diagrams that are provided to the 
students in a DGS environment are important 
spatiovisual representations that facilitate understanding 
of the problem’s information as well as the 
conceptualization of the problem’s structure. In other 
words the ‘dynamic’ diagrams support visual reasoning, 
which aids translation from visual to verbal 
representations and the construction of meaning. 

In Geometer’s Sketchpad v4 DGS environment, 
LVAR (e.g, Patsiomitou, 2008a, b,c,d, 2009, 2010a, b, 
2011, 2012a,b, and 2013) are interpreted as a [real 
world’s or not] problem modeling process. The 
definition of LVAR (Patsiomitou, 2012, p. 76) is given 
below:  

Linking Visual Active Representations are the 
successive building steps in a dynamic representation 
of a problem, the steps that are repeated in different 
problems or steps reversing a procedure in the same 
phase or between different phases of a hypothetical 

learning path. LVARs reveal an increasing structural 
complexity by conceptually and structurally linking the 
transformational steps taken by the user (teacher or 
student) as a result of the interaction techniques 
provided by the software to externalize the 
transformational steps s/he has visualized mentally (or 
exist in his/her mind) or organized as a result of his/her 
development of thinking and understanding of 
geometrical concepts.  

Real world images (or digital images) “are 
potential representations […and] offer the heuristic part 
of learning” as they “denote something” (Kadunz & 
Straesser, 2004, p.241, 242). What is important is how 
the students perceive these potential representations of 
the environment (natural images or digital), how they 
use and communicate with each other and how they 
manage their mental mathematical structures in order to 
represent the objects. Mogeta, Olivero & Jones (1999) in 
their report “Providing the Motivation to Prove in a 
Dynamic Geometry Environment” argue that “setting 
problem solving within these environments requires a 
careful design of activities, which need to take into 
account the interaction between three elements: the 
dynamic software, as an instance of the milieu, a 
problem, and a situation, through which the devolution 
of the problem takes place (Brousseau, 1986)”. Most 
importantly, the diagrams that the students are obliged 
to translate and the relations that link the objects in the 
diagram will provide researchers and teachers insights 
to see their abilities and their weaknesses with respect 
to the mathematical knowledge that they have 
structured as a result of the teaching process in class. 
For this, the verification of students’ mistakes and 
cognitive obstacles during the construction of diagrams 
will lead us to the reinforcement of the teaching of 
mathematics in the context of real-world problems.  

Vergnaud proposed an approach for 
investigation in mathematics education, which includes 
the steps presented in the Figure 3 (Vergnaud, 1988, 
p.149 reported in Long, 2011, p.123).  
 

 

Figure 3
 
:
 
An adaptation for the current study on Vergnaud’s (1988, p.149) approach.

 

Student’s Learning Progression Through Instrumental Decoding of Mathematical Ideas

© 2014   Global Journals Inc.  (US)

  
  
 

   
 

  
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
I 
 V

er
sio

n 
I 

8

  
 

(
DDDD

)
Y
e
a
r

C
20

14



Gonzalez & Herbst (2009) have defined the 
dynamic diagram as “a diagram made with DGS and 
that has the potential to be changed in some way by 
dragging one or more of its parts” (p.154). 

According to Mariotti (2000, p.36) “the dragging 
test, externally oriented at first, is aimed at testing 
perceptually the correctness of the drawing; as soon as 
it becomes part of interpersonal activities […] it changes 
its function and becomes a sign referring to a meaning, 
the meaning of the theoretical correctness of the figure.” 
Hollebrands (2007) also supported that the students in 
her study “used reactive or proactive strategies when 
dragging, either in response to or in anticipation of the 
effects on dragging” (cited in Gonzalez and Herbst, 
2009, p.158-159). Building on Mariotti’s considerations 
and Hollebrands distinction about dragging strategies, 
in a previous study (Patsiomitou, 2011) I introduced the 
notions of theoretical dragging (i.e., the student aims to 
transform a drawing into a figure on screen, meaning 
s/he intentionally transforms a drawing to acquire 
additional properties) and experimental dragging (i.e., 
the student investigates whether the figure (or drawing) 
has certain properties or whether the modification of the 
drawing in the picture plane through dragging leads to 
the construction of another figure or drawing).  

Students execute on screen constructions using 
software’s tools and primitive geometrical objects in an 
effort to decode their mental representations into 
software actions. This sense of how the student’s 
competence at instrumental decoding affects the 
development of their ability in constructing meanings, 
may lead to an understanding of how the tools the 
students use, play a fundamental role as a non linguistic 
warrant. The construction of a figure on screen in a DGS  

 

environment is a result of a complex process on the  
student’s part. The student has first to transform the 
verbal or written formulation (“construct a parallelogram” 
for example) into a mental image, which is to say an 
internal representation recalling a prototype image (e.g., 
Hershkovitz, 1990) that s/he has shaped from a textbook 
or other authority, before transforming it into an external 
representation, namely an on-screen construction. This 
process requires the student to decode their actions 
using software primitives, functions etc. In order to 
accomplish a construction in the software the student 
must acquire the competence for instrumental decoding 
meaning the competence to transform his/her mental 
images to actions in the software, using the software’s 
interaction techniques. Furthermore, dynamic 
reinvention of knowledge (Patsiomitou, 2012b, p. 57) is 
the kind of knowledge the students could reinvent by 
interacting with the artefacts made in a DGS 
environment, “knowledge for which they themselves are 
responsible” (Gravemeijer & Terwel, 2000, p.786).  

For the representation of student’s 
argumentation I used a pseudo-Toulmin’s model 
(Patsiomitou, 2012b, p.57) --based on Toulmin’s model 
(1958)-- in which: (1) the data could be an element or an 
object of the dynamic diagram, and (2) a warrant could 
be a tool or a command that guarantees the result which 
is the claim (or the resulted formulation). So, students 
perceive the properties of the rotated segment and 
during instrumental genesis. According to Schumann 
(2004) the diagram below “presents an outline of 
methods and ways of working with DGS in the context of 
geometry teaching in lower and middle secondary 
schools; modeling in DGS is supported by all other 
methods and options”  
 

 

Figure 4 : An adaptation for the current study of Schuman’s (2004, p. 7) modeling process using LVAR 

In the figure 4, the factor “reconstructing using 
LVAR transformations” is the warrant (W) for the claim 
(static /dynamic model). This means that LVAR 
transformations guarantee the interpretation of the 

dynamic model to students’ mind into external [verbal or 
iconic] representations.  

In the next section a description will be 
presented of the DHLPs. As it has been told previously 
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the DHLPs are empirically tested parts of the learning 
progression. The students applied their mathematical 
knowledge (pre-existing or not) to solve real-world 
problems. The modeled problems have been presented 
in a dynamic geometry environment or the students had 
to manipulate the images of the real world in their minds 
in order “to bridge connections between the pure world 
of mathematics --with fixed solutions and “perfect” 
forms-- and the more messy, ambiguous, or subjective 
world of experience” (Sinclair & Jackiw, 2007). In every 
situation, the experience with a real or simulated object 
played a major role for the construction of students’ 
knowledge.  

III. A Van Hiele Learning Progression 
for Secondary Students using LVAR 

in Mathematics 

a) Methodology of the learning progression  
The current teaching experiments (Cobb & 

Steffe, 1983) are evolving as students’ van Hiele learning 
progression analyzes non-routine, real-world problems 
in addition to student assignments from the problem-
solving process. It is constituted from (a) a learning 
trajectory in quadrilaterals (b) a learning trajectory in 
fractals. The trajectory in quadrilaterals follows the 
structure of the DHLP created in my PhD thesis. The 
difference is in the objects, which in this case have been 
selected from the real world [e. g objects in museums, 
mainly archaeological, in Greece].  

The teaching experiment involved 81 students 
aged 13-14, equally separated into three classrooms. 
Every sub-class included the same number of boys and 
girls and the same number of high- or low-achievement 
students at the beginning of the year. The study 
investigated (a) ways to foster students learning by 
hypothesizing what the students might learn (e.g. 
develop real-world problem representations, reasoning 
and problem-solving, making decisions and receiving 
feedback about their ideas and strategies) working 
individually or collaboratively (b) ways in which students 
develop abstracting processes through building linking 
visual active representations and (c) ways to develop 
students’ van Hiele level.  

I was the teacher and the instructor of the 
activities. I developed the instructional activities based 
on an analysis of the results of my PhD thesis, with 
regard to students’ evolution of understanding on 
instrumental decoding when they construct 
quadrilaterals. We worked as a whole class, trying to 
develop a form of practice compatible with social 
constructivism (e.g., Wood & Yackel, 1990). I was 
actively involved with the children, encouraging small 
group cooperation both in and outside of class, without 
intently to show the process to complete the activity. I 
started the activity with a question; after the answers 
were given, I continued with sequential questions to 

clarify the explanations or to help students with the 
cognitive conflicts. Then, I asked the students to 
complete the task in the paper-pencil environment and 
collected their work to see the level of understanding 
from the correct answers. After the evaluation of the 
students’ work, I continued with follow-up activities in the 
DGS environment to help the children reconstruct the 
solution methods. After the intervention with GSP 
activities, the paper-pencil work was repeated to see the 
difference in the students’ learning and understanding of 
the concepts. Indicative of students’ wrong 
representations will be presented and a short report 
made of their mistakes and misconceptions.  

“The situations that children find problematic 
take a variety of forms and can include resolving 
obstacles or contradictions that arise when they 
attempt to make sense of a situation in terms of their 
current concepts and procedures, accounting for a 
surprising  outcome (particularly when two alternative 
procedures lead to the same result), verbalizing their 
mathematical thinking, explaining or justifying a 
solution, resolving conflicting points of view, 
developing a framework that accommodates 
alternative solution methods, and formulating an 
explanation to clarify another child's solution attempt” 
(Cobb & Steffe, 1991, p.395) 

 
• ….a detailed procedural analysis of the situations, 

the involved problems, in addition the problems’ 
conceptual analysis, instrumental decoding and 
learning targets (e.g., different solving strategies, 
formulas or figure’s decomposition). This includes 
the recognition and demonstration of 
transformations (e. g, recognition and drawing of 
symmetry lines or demonstration of reflections, 
translations and rotations) using multiple contexts 
(e.g., graphpapers, a computing environment). 
Furthermore, is described the recognition and 
utilization of properties that belong to a class of 
figures (or a subclass) and description of the 
characteristics of shapes and their relationships.   

• ….an example of a theorem’s LVAR modeling 
process (e.g an LVAR modeling for the Pythagorean 
theorem). 

Students’ uploading of assignments was 
facilitated through the free open-source Learning 
Management System Moodle (Modular Object-Oriented 
Dynamic Learning Environment) (Dougiamas, PhD 
thesis, described at http://www.moodle.org.nz/).   

i.    Presentation and analysis of problems 
For the design of activities I always had in mind: 

“What would the individual have to know in order to be 
capable of doing this task without undertaking any 
learning, but given only some instructions?” (Battista, 
2011, p. 515).  
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The complete study includes:



Case A: The problem was presented modeled 
in the dynamic environment. In the modeled dynamic 
representation, emphasis was given to the features 
associated with mathematics (e.g., the modeling of a 
kite can be done by constructing a rhomboid that 
emphasizes the verticality of the diagonals, etc.), rather 
than to other characteristics (e.g., the material, color, 
etc.). The students were able to experiment with the 
software tools on the digital image and to visualize the 
properties of the shapes that they were not able to 
perceive in the static environment.  

Case B: The problem was not presented 
modeled in the dynamic environment, but the students 
were prompted to manage the image as if it was 
perceived in the natural environment. The students had 
to construct a simulation of the problem in a static, 
digital, or other physical means as a model of the 
natural environment. They also had to manage the 
(digital or not) image to gain intuition about the 
properties of the shape. 

According to Johnson-Laird (1983) the human 
beings understand the world through the 
representations of the world they create in their minds. 
Johnson-Laird (1983) argues  

“to understand a physical system or a natural 
phenomenon one needs to have a mental model of 
this system that will allow […] the person who will 
build it to explain it and to predict about it” (p. 430). 

In essence, the image conversion of the natural 
environment in the dynamic environment is a result of a 
complex process on the student’s part. The student has 
first to transform the verbal or written formulation 
(“construct a parallelogram” for example) into a mental 
image, which is to say an internal representation 
recalling a prototype image (e.g., Hershkovitz, 1990) 
that s/he has shaped from a textbook or other authority, 
before transforming it into an external representation, 
namely an on-screen construction. The student needs to 
explore the shape of the natural environment (e.g., 
properties of shapes such as its symmetry lines, etc.) 
and then construct the scale model. The digital image 
plays a supporting role in understanding the properties 
of shape but also can bring to the surface students’ 
cognitive obstacles and, consequently, lead to errors. 
These errors are mainly due to their vH level. As a result, 
students may not have the capacity to recognize the 
figure’s properties, and, generally, to develop the 
solution with deductive reasoning. Especially for the 
fractal activities, the experimental teaching was carried 
out on 18 students at different school levels, including 
activities (on different software pages with linking 
representations) with increasing degree of difficulty 
depending on the age-related level of students. No 
student that participated had previously processed the 
software, or any other related software. As it was verified 
henceforth at many points of process the students were 

led to conclusions and formulations of definitions that 
had not been made known during their course of 
mathematics. 
ii.    S tudent’s mathematical knowledge 

In secondary high school, the students are 
taught the kinds of quadrilaterals, which they are asked 
to memorize. Most of students are able to recall only the 
basic relations regarding perpendicularity and 
parallelism of the sides of quadrilaterals. Furthermore, 
students construct parallelograms in static means using 
their traditional tools (compass or ruler), which only fulfill 
the visual criteria. In Greece, dynamic geometry is rarely 
used in high schools to facilitate the teaching and 
learning of geometry. As it is concluded the teaching of 
reflective symmetry (or symmetry by axis) and symmetry 
by centre in a DGS environment is not correlated with 
the notion of symmetry and particularly the students do 
not examine the notion of symmetry in relation to 
quadrilaterals. Furthermore, the students’ difficulties in 
constructing a figure are due to their ignorance of the 
different thought processes involved in dynamic rather 
than static means. The knowledge of a figure’s 
symmetry is essential for students. I distinguished a few 
types of obstacles due to student lack of competence in 
instrumental decoding (:i.e. this is to say an instrumental 
obstacle). In the current study, I have devoted enough 
time for the students to understand the meanings (for 
example, the notion of symmetry by axis and symmetry 
by center) through the dynamic geometry software. The 
kinds of transformations on which the activities are 
focused are reflection--which corresponds to symmetry 
by axis in static means, rotation--which corresponds to 
symmetry by center, and translation. The dynamic 
geometry system helped students to instrumentally 
decode the properties of figures, as we will see in the 
description of the activities. 

IV. Description of Activities 
a) Situation First (Visual-Holistic Reasoning -- Visual-

informal componential reasoning): Recognizing 
quadrilaterals and symmetry in real world. The aim of the activity was the recognition of 

quadrilaterals and the investigation of the symmetry 
lines of quadrilaterals in a real-world context. Our 
actions included three phases: a tour in the museum, 
the teaching in the class (including training in my e-
class: the operation of the e-class to facilitate posting 
and downloading of material), and finally, the realization 
of the activity for the students within a predetermined 
time. Briefly, the students had to construct a shape 
using the figures’ properties, in terms of its sides and 
angles. The description of the activity consisted of the 
following parts:  
1. Recognize the kinds of shapes that you observe in 

the decorative pattern of the image below (see 
Figure 5). 
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2. What kinds of symmetry do you recognize?  
3. Construct the axes of symmetry and the center of 

symmetry in every image.  
4. Construct the same image using your ruler and 

compass. 
5. Construct the same motif using a dynamic geometry 

software.  

 

Figure 5 : Traditional Greek embroidery 

The problem is important for the development 
of students’ ability to translate among different 
representational systems. An essential combination of 
visual skills, representational competency, and 
mathematical reasoning is required to solve this 
problem. A further aim of the activity was the creating of 
a diagram representing a real-world object in which the 
students can connect the abstraction, the art, and the 
timelessness of beauty.  

i.     Phase One: Visit to the Museum of Greek Folk Art  
Guides [students of History and Archaeology at 

the University of Athens] took the students to different 
areas of the museum exhibits. The exhibits included 
local folk-costumes of various parts of Greece (e.g. 
mountainous Epirus, Thessaly, and the Aegean). These 
acquired meaning through the detailed presentation of 
the guides, who aimed to underline the particular 
characteristics of the local folk-pieces. The students 
were impressed by the embroidered women’s 
costumes. Some had geometrical recurring motifs and 
expressed the inner desire of every woman [every bride] 
to have good fortune, happiness, and longevity.  

Then, the students subsequently had to capture 
a part of the entire plan on paper. 

“On the ground floor of the museum, visitors 
will see elegant examples of traditional embroidery 
from the whole of Greece. They include polychrome  

and white embroideries-laces and gold embroideries 
intended to meet the needs of dress, house and 
church. Particular interest attaches to pleated 
embroidered chemises of Crete, the relics of a female 
dress type with Renaissance roots that is found in 
other islands in the Archipelago during the period of 
Frankish rule (17th – 18th c.).Their hems are 
embroidered with alternating representations of 
gorgons, double-headed eagles, flower-vases, 
fantastic birds, and etc.  

(Excerpt from the text written in the description 
of the Folk Art museum website available at 
http://www.melt.gr). 

I asked them questions such as: “What shapes 
can you ‘see’?” “What kind of symmetry do you 
recognize in the decorative pattern?” The dominant 
feature of the costumes’ geometric motifs [converted 
into images for the students' work] was the symmetry of 
its parts. As we know, the relations between depicted 
objects in a picture or additional information concerning 
the objects (e.g. colors or other symbols that convey a 
certain message) and their style allow us to place it in 
context. However, in a picture, the data could hinder 
students’ ability to 'see'(/meaning perceive) the 
geometrical shapes/figures. For example in Figure 5, the 
symmetries in the pattern are apparent (central 
symmetry or axial symmetry). Additionally, it is also clear 
[to teachers] the symmetries of the shapes that form the 
overall motif. However, this is not true for students. 

From the work of students resulted in the 
following conclusions: Regarding the functionality of the 
e-class, there was no particular difficulty with the 
operation of asynchronous learning by students. As to 
the concepts found that: students were not aware of the 
concepts of central and axial symmetry, did not 
understand the differences between quadrilaterals and 
for this reason they didn’t 'see' the usefulness of such an 
activity, as some even use rice paper to replicate the 
project. In other words, it was found that students were 
not 'seeing' mathematics to the real environment and 
faced more difficulty in manufacturing patterns [see 
Figure 6]. Thus, I utilized this alternative way of teaching 
when I understood that students faced problems in 
understanding the concepts. 
 

 

Figure 6 : Indicative of students’ [pre-]constructions in the paper-pencil environment. 
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hase Two: Classroom [dynamic] organization  Firstly, the students recognized the parallel lines 
and parallelograms in the Figure 5. The students 
constructed the parallelograms using the “copy-paste” 
tools of the software or joined four line segments so they 
produced rectangular figures. Students make 
mechanical use of the software, which makes it 
impossible for them to understand the logic underlying 
the command options. It was my intention to familiarize 
the students with the software, “‘step by step’, in parallel 

with the corresponding theory” (Mariotti, 2000, p. 41). 
 In order to construct a parallel line using the 

software, one has to select two objects: a straight object 
(for example a line) and the point from which the line 
parallel to the initial line will be drawn. Most students at 
van Hiele level 1 were unable to understand the 
sequential apprehension of the tools selection, because 
they were unable to understand the logic of the 
sequence of actions or unable to link this logic with the 
theory of geometry. 

 

 

Figure 7 : Snapshots of the copy-paste input process in the DGS environment 

For example a student (van Hiele level 1 at the 
pre-test) faced an instrumental obstacle which 
depended on the sequential apprehension of the 
objects to be used for the construction. The student 
tried to construct a parallel line by selecting the line 
alone and then the menu command, which is to say the 
student followed an irrational sequence of actions. At 
this point, s/he faced an instrumental obstacle and 
commended in an informal way on the non-activation of 
the software’s command. Subsequently, student’s 
interaction with the software, led to a cognitive conflict 
which helped him/her to apprehend the sequence of 
actions. Therefore, is the construction that leads 
students to “shape” inadequate or alternative definitions 
regarding parallelograms. The  definitions   followed   the  
introduction of the parallelism and dragging tools of the 
software.  

Then, the students participated in the process 
of introducing the concepts of symmetry through 
dynamic geometry software. In the lesson that followed, 
transformations were introduced to students using the 
GSP software tool. For example, we focused on the 
transformations we have to apply to a triangle to 
construct a parallelogram. In the images below, a mode-
A LVAR construction in the software presented the 
translation of a triangle, the use of a coordinate plane, 
the rotation of the triangles (and the rotation angle that 
remained stable at every point in the triangles), the 
reflection of the triangles (including the visualization of 
the similarities and differences on the coordinates of the 
transformed images).  
 

 

Figure 8 : Transformations and use of coordinate planes in the DGS environment (Patsiomitou, 2010b, in Greek) 

The process of implementing the GSP software 
was simple, and students participated with great 
interest, answering my questions. Furthermore, the 
students demonstrated the capability to recognize the 
constructed parallelograms (e.g ΑΑ΄Β΄Β, ΑΑ΄Γ΄Γ

 

in the 
figures 8 a, b). They globally recognized the axes of 

symmetry of the image and the (sub) axes of symmetry 
in the subfigures (Figure 8). 
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ii.      P



 

Figure 9 : Simulation of the object in the DGS environment 

Then the students' task was to construct a 
rhombus based on the figure's symmetry (Figure 9). 
They dynamically reinvented that a single diagonal can 
divide the rhombus into two congruent isosceles 
triangles. Therefore, two congruent isosceles triangles 
can be together to form the shape of a rhombus. In 
Figure 10, the importance of the software’s tools [e.g., 
the reflection tool] for the students’ modification, or 
change their way of thinking, is represented. The most 
important indicator was that students tried to construct 
the symmetry by center of an arbitrary point on screen 
by using the reflection tool.  

The utilization of the reflection tool during the 
previous phase led students, through instrumental 
genesis, to construct a utilization scheme for the tool. In 
this case, the students used the reflection tool by 
economy (Rabardel, 1995), despite having the option to 
use the rotation tool, in order to avoid the efforts 
required to use a

 

less familiar one (Docq & Daele, 2001, 
p.200).  

 

This action led to an instrumental obstacle as 
the result of the students’ cognitive conflict with regard 
to the meanings of symmetry by center / axial symmetry.

 

 

Figure

 

10 :

  

A Pseudo-Toulmin model for the 
representation of the instrumental conflict

iii.    Phase Three: Students’ meta[-constructions]

 

The image below illustrates three indicative 
representations of students after the interaction with the 
DGS representations. The students dynamically 
reinvented meanings and the difference between terms

 

[i.e. the meaning “axis of symmetry as perpendicular 
bisector of the segment which joins the original point 
and its reflected point”, the difference between axial 
symmetry and symmetry center].  

 

Figure 11 :
  
Indicative of students’ [meta-] representations in the paper–pencil environment 

Students visualized the figure’s symmetry, 
identified the symmetry axes of the quadrilaterals, but 
their representations [still] indicate that they recognized 
the shapes holistically. For instance, they globally 
recognized the sub figures of the flowers in the pattern, 
which were different for every student.  

b) Situation Second (Visual-informal componential 
reasoning): Quadrilaterals’ transformations  

 Phase One: Visit to the museum of Ancient Agora- 
Stoa of Attalos 

Our actions included among others the visit to 
the museum of Ancient Agora. “The museum of the 

Athenian Agora is housed in the reconstructed Stoa of 
Attalos, […] Ever since, all finds from the area, together 
with the excavation archives, have been housed in the 
building, making the Stoa a significant research center 
for scholars and students of archaeology from all over 
the world” 

 
(Excerpt from the text written in the description 

of the Athenian Agora website available at 
http://www.ascsa.edu.gr/pdf/uploads/CATALOGUE_6_2
012_C_Layout_1_FINAL.pdf) 
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The archaeologists also discovered amazing 
mosaics in an ancient room. The next activity included 
students’ construction of the mosaic, using their rulers 
and compasses, and the construction of the same motif 
using dynamic geometry software. In the representation 
of the mosaic the students tried to discover the angle of 
rotation of the parallelograms but they [still] confused 
the shape of parallelograms with the shape of rhombus 
because of their orientation. They tried to construct the 
successive parallelograms, but they failed to find the 
angle of rotation. 

 Phase Second: The utilization of trace tool -
reflection tool 

The trace tool in correlation with the reflection 
tool proved essential for students’ understanding of 
concepts; it helped the students to develop 
argumentation with regard to the equal distances of the 

points (original-, reflected point-image), and the 
identification of the axis of symmetry as a perpendicular 
bisector. The construction of the figure was

 
completed 

using the reflection tool of the software. Furthermore, the 
students discovered the axes of symmetry of the shape. 
They also considered what the center of symmetry is 
and in what angle the parallelogram can be reproduced. 
Moreover, students identified that a perpendicular 
constructed from the symmetry centre crosses the 
figure. Then they (1) recognized that the interior figure 
was a rhombus (2) if a line is perpendicular to one of the 
two parallel lines, it is perpendicular to the other (3) a 
perpendicular constructed from the symmetry centre of 
a rectangle to a side of the rectangle, crosses the 
midpoints of this side and its opposite side (4) the lines 
through the midpoints of two opposite sides of a 
rectangle dissects the rectangle into four rectangles that 
are congruent to each other. 

 

 

Figure 12 : Snapshots of the process in the DGS environment of a mosaic in the Ancient Agora of Attalos  

The pseudo –Toulmin model below represents the process and the tools that led the students to 
construct the meanings.  

 

 

Figure 13 : A Pseudo-Toulmin model for the representation of the construction of the meaning 

Through visualization of the object, students are 
initially led to use empirical methods (such as trace of 
points) in order to confirm that symmetrical objects lie at 
an equal distance from the axis of symmetry. 
Consequently, the students discovered a few properties 
of the figure, meaning the symbol character of the 
figure. Therefore, we had a theoretical construct which 
derived through instrumental decoding of the dynamic 
diagram. 

c) Situation Third (Informal and insufficient-formal 
componential reasoning): Quadrilateral’s properties 
in real context. 

 Phase One: Visit to our school courtyard  
The modeling of the courtyard area of the 

school through static or dynamic means on the part of 
the students is an example of a real-world context 
modeling  problem.  The   organization   of the    activity  
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consisted of three phases: (1) the processing of the 
courtyard pattern of the school during instruction, (2) 
measuring the tiles forming the courtyard’s shape, and 
(3) modeling by students during fixed intervals. This 
problem is important for developing the capacity of 
students to convert between different representational 
systems. 

 
Figure 14 : The courtyard area of the school 

The conceptual frame mentioned was the areas 
of surfaces, the surface measurement units, conversion 
between different surface measurement units, and the 
areas of shapes. Students were required to consider the 
type of triangle formed by the diagonal of the square 
and then to justify the measurement of the formed 
angle. The measurement of the surface could occur in 
many ways (e.g., measuring the tiles forming the shape) 
in which the students had to observe the shape that 
each of them had and determine the area. The students 
used their geometric instruments (e.g., ruler, compass) 

to measure the dimensions of the tiles. The aim was to 
construct a representation of the pattern to scale.  

Skilful combination of visuospatial ability and 
representational capacity is required, as well as the 
capacity for mathematical thinking. The questions that I 
posed to students (e.g., "Is the inner quadrilateral a 
square or a rhombus?”) focused on the recognition of 
the kind of quadrilaterals representing the exterior and 
the interior shapes on the floor and to calculate the area 
of the surface covered by the red and the white tiles. 

Students’ responses led to extensive 
dialogue/debate among them and gave me feedback. 
This example illustrates Cobb, Yackel & Wood (1992) 
claim that  

“students will inevitably construct the correct 
internal representation from the materials presented 
implies that their learning is triggered by the 
mathematical relationships they are to construct 
before they have constructed them. (Cobb, 1987; 
Gravemeijer, 1991; von Glasersfeld, 1978). How then, 
if students can only make sense of their worlds in 
terms of their internal representations, is it possible for 
them to recognize mathematical relationships that are 
developmentally more advanced than their internal 
representations? (p. 5). 

 

Figure 15 : Students’ indicative constructions before the interaction with the GSP activities 

The images (Figure 15) are indicative of 
students’ representations in the paper –pencil 
environment. The students faced many difficulties 
connected with their conceptual obstacles in regards to 
the meanings of quadrilaterals. For example, many 
students perceived a rhombus rather than a square in 
the internal figure, due to the figure’s orientation. Other 
students had constructed, in the middle, a rhombus 
whose edges coincided with the midpoints of the 
external figure.   

 Phase Two: [Students’] ‘dynamic’ actions  
The figure 16 represents a draft of the 

instructional design of the activity, using the software’s 
tools. In the lesson that followed the in-class simulation, 
transformations of a lattice/grid were introduced to 
students using the GSP tool. While investigating the 
problem, the students used the rotation tool to rotate a 

congruent to each other. These properties are elements

 

of the object being built with the GSP tool.

 

The manipulation of the dynamic objects in the 
software led the students to construct the properties of 
the square, while the transformations  of the dynamic 
objects led to acquire the symbol character.
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segment by 90 degrees. Through this, they constructed 
the meaning of the right isosceles triangle. Moreover, 
the lines through the midpoints of two opposite sides of 
a square dissect the square into four squares that are 

ii.



 

Figure 16 : A draft of the instructional design of the activity 

 

Figure 17 : Snapshots of the transformations of a lattice/grid in the DGS (Patsiomitou, 2010b, in Greek) 

The modeling of the problem in the DGS 
environment of the lattice structure is of form A, while in 
the real environment, the grid is of B form. This renders 
essential the investigation of students’ capabilities to 
imagine the right figure or to construct the analogous 
mental representation. If this obstacle is overcome, then 
the students are able to move on to the next process. 

To facilitate the students, I created a custom 
tool ‘symmetry’ (see for example Patsiomitou, 2012b, p. 
68). The custom tool ‘symmetry’ could be used to 
construct the symmetry by center of an arbitrary point on 
screen. The grid’s construction in the DGS environment 
can be created by using the transformation of translation 
of congruent segments horizontally and vertically or with 
the use of the “symmetry” custom tool (Patsiomitou, 
2012b, p. 68). My aim was for students to formulate the 
relations and the conditions under which a figure is 

shaped as a square, and establish whether these 
conditions are still valid generally. The students had to 
examine the different cases of shapes arising from the 
use of dragging. The experimental sequential dragging 
(and then the theoretical one) until the angles become 
90 degrees leads to forming squares. Moreover, the 
diagonals’ constructions shape isosceles and right 
triangles.  

The students then used the custom tool 
‘symmetry’ to reverse the process. It is important that 
the students were able to connect mentally the reversed 
representations and to follow their successive structure. 
In this way, the transformations evoked in the initial 
representation were reversed through mental operations 
following a concrete order. This is better explained in the 
next situation.  

 

Figure 18 :  Snapshots of the image’s input in the Geometer’s Sketchpad dynamic geometry system 
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Phase Three: Students’ representations of the 
courtyard 

 The students used graph paper and static or 
digital material of their choice (e.g., cardboard or 
dynamic geometry software) to represent the 
construction (Figure

 
19). The application was of 

particular interest, and students were able to calculate 

the figure’s area in several ways: (1) using as a unit the 
area of a tile and then that of a square (whose side was 
made of four sides of a tile), (2) calculating the area of 
the shape of a tile and from this, the area of the whole 
shape, and (3) calculating the dimensions of the shapes 
(squares) and then using geometrical formulas for the 
total area of the figure.  

 Figure 19 :  Students’ indicative constructions after the interaction with the GSP activities
 This means that the students have developed 

thinking processes and applied skills, developing a 
mathematical model to interpret the realistic problem.

 They connected visual and formal criteria which is 
crucial for the transition from the lower levels, to the 
upper levels. Therefore, the information regarding the 
figure’s properties were transformed to a signal.

 d)
 
Situation Fourth (Sufficient formal property-based 
reasoning): Quadrilaterals’ structural analysis.  

 

 

Phase One: Museum of the Ancient Agora -Stoa of 
Attalos.

 

“Τhe Agora museum is housed in the Stoa of 
Attalos, a reconstructed building of around 150 B.C. The 

characteristic feature of the museum is

 

that the exhibits 
are all closely connected with the Athenian Democracy, 
as the Agora was the focus of the city's public life”. 
(Excerpt from the text written in the description of the 
Agora museum website available at 
http://odysseus.culture.gr/h/1/eh152.jsp?obj_id=3290). 

 

 

Figure 20 :

 

Snapshot of the Ancient Greek Geometric Pottery in the GSP dynamic geometry system.

 

The students’ activity included the 
representation of the figures of Greek geometric pottery. 
First, the students recognized the shapes, and then they 
used their geometric instruments to construct the figure, 
but they faced difficulties to analyze the figure into 
subfigures. 

 

 

Phase Two: The visualization of parallelogram’s 
diagonals in real world images 

 

Simulations of a scissor lift or Centre 
Pompidou’s designs (Figure 21) in the GSP have been 
introduced to students, in order to focus on and 
interrelate the meaning of a parallelogram with the 
bisection of its diagonals. This means that the 

parallelogram’s symbol character was completed with 
its primary properties. In the activity aforementioned, the 
students recognized the parallelogram on the screen 
from the structure of its bisected diagonals. 
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ii.



 

Figure 21 : The diagonals’ visualization in real world images 

 Phase Three: The instrumental decoding of the 
reverse process.

 The instrumental decoding of
 

the reverse 
process (i.e., the construction of a square) was more 
difficult for the students. The next step was the analysis 
of the relationships between parts of pottery’s figures in 
the DGS environment. For example, the quadrilateral 
constructed from the connection of the points that 
intersect the diameters on the circle is a square (Figure 
22). The students were not able to justify why the 
shapes were squares. They also changed the 
orientation of the diagonals in the DGS environment, 
applying the experimental dragging tool.

 
  

 

Figure 22 : Snapshots of the diagonals’ transformations 
in the DGS environment 

My questions helped them to identify the 
figure’s properties and to analyze the figure into 
subfigures. They had to reverse the process, meaning 
they had to replace the figure with its properties. In other 
words, they had to construct the square’s signal 
character. The sequence of questions led students to 
think of figure similarity. (For example, “Are squares 
similar figures?”, “Are rectangles similar figures? Explain 
your answer”). Moreover, the students had to connect 
the meaning of the symmetry by center with the 
meaning of the segment’s midpoint.  

The students constructed the figure by taking 
into account the structure of its diagonals. They 
constructed two perpendicular lines intersecting at O, 
constructed a circle with center O and connected the 
four points where the circle cut the lines. It is crucial for 
the students to recall the properties of the figure’s 
diagonals that were investigated in the previous phases 
of the research process by mentally linking the reverse 
representations in this procedure. 

The students also used the custom tool 
‘symmetry’ to reverse the process. The utilization of the 

custom tool ‘symmetry’ twice with the second 
application point at the symmetry center O, will lead to 
the construction of two segments that have the same 
midpoint. Consequently, the meaning of “diagonals are 
dichotomized” can be constructed by the students 
through the use of the custom tool. Dragging the 
construction from a point-vertex, the properties remain 
stable, meaning point O remain the midpoint of both

 

the 
segments. The students are able to recognize that: “if 
the diagonals of a quadrilateral have the same midpoint 
then the quadrilateral is a parallelogram or if the 
diagonals of a quadrilateral bisect each other then 
quadrilateral is a parallelogram”. Subsequently, the 
students are able -by using the custom tool “symmetry” 
to transform an iconic representation into a verbal one 
through mental transformations.

 
“This is a very complex process since the 

students must have both conceptual and procedural 
competence, meaning the competence to instrumentally 
decode their mental representations of a set of 
properties with actions through the use of tools. This 
means, for example, to interpret the congruency with the 
circle tool and simultaneously bisect with the custom 
tool. Furthermore, for them to construct the hierarchical 
categorization and definition of figures through their 
symmetrical properties and in accordance to their 
understanding.” (Patsiomitou, 2012b, p. 71). 
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iii.



 

Figure 23 : The utilization of the custom tool ‘symmetry’ 

The process is described in the pseudo-
Toulmin’s model above (Figure 24). The diagram 
expresses the way in which students in cooperation 
constructed the square, using the Sketchpad tools. 
Through the construction, they extended the structure of 

the intersected diagonals, including the meaning of the 
perpendicularity and the congruency: “[a square’s 
diagonals] are perpendicular and congruent segments 
intersected in a [common] midpoint.” 
 

 

Figure 24 : The instrumental decoding of the reverse process

In the Figure 25 (Patsiomitou, 2012b, p.72) we 
are able to observe the linking representations of the 
diagonals of different types of parallelograms. Dragging 
theoretically the endpoint of the diagonals of the 
parallelogram in order these to acquire the property of 
the perpendicularity leads to the structure of the 
rhombus diagonals (or a square’s diagonals). Dragging 
theoretically the endpoint of the diagonals of the 
parallelogram in order these to acquire the property of 
the congruency leads to the structure of the rectangle’s 
diagonals. The construction of two arbitrary diameters in 
a circle (i.e. the diagonals are not perpendicular to one 
another) leads to the structure of the diagonals of a 
rectangle. The construction of two diameters 
perpendicular to one another in a circle leads to the 
structure of the square’s diagonals. In this way 
conceptually and procedurally linking representations 

are created.[…]. Subsequently, this learning path can 
lead to the development of an abstract way of thought 
through the development of linking representations in 
student’s mind. . 
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Figure

 

25 :

 

Linking Visual Active Representations of  parallelogram’s diagonals (Patsiomitou, 2012b, p. 72)

 

 

 Phase One: Building structures

 

 
 
 
 

 
Figure 26 : A structuring process (Patsiomitou, 2010b, in Greek) 

The next activity was the transformation of a 
geometrical figure that was used as a building unit for 
the construction and a means by which the students 
could construct the meanings of theorems inductively 
and experimentally,  which  were  included  in their class  

curriculum. For example, in the figure 26 the rotation of a 
right triangle leads to the construction of a rectangle, then to the construction of a trapezoid, and, finally, to 
the construction of a right triangle whose sides are 
double from the sides of the initial triangle. 
 

 
Figure 27 : The structuring process of the meaning of self-similarity (Patsiomitou, 2010b, in Greek) 

In the figure 27 the rotation of a triangle leads to 
the construction of a parallelogram, then to the 

construction of a trapezoid, then to the construction of a 
triangle whose sides are double from the sides of the 
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e) Situation Fifth (Relational –Inferential Property- Based Reasoning- Empirical relations). A structural 
process

i.



initial triangle, etc. Most important is the development of 
students’ correlation of the properties (for example, 
“How is the meaning of a right and isosceles triangle 
linked with the meaning of a rectangle, and how is this 
consequently linked to the meaning of a square?”, 
“What are the similarities and differences of the 
properties of a square and a rhombus, etc., as a result 
of the different structuring of its figure?”, “How do the 
similarity of the building block’s figures affect the 
similarity of the sequential figures?”). 

The students organized their thoughts for the 
sequential steps of the construction (for example, “What 
should be the property that must have a right triangle to 
be the building unit for the construction of an equilateral 
triangle?” or “What are the properties the sequential 
figures have?” The study of the building block’s 
properties helped the students to organize the 
properties of the figure evoked from the initial figure. 
This process is in accordance with what Freudenthal 
(1973, 1983) has told that the teaching and didactic 
process must focus at the understanding of the 
structuring process and not the learning of ready-made 
structures. Moreover he argued that students could 
discover mathematics when they work with contexts and 
confront interactive and reflective activities.  

Phase Two:  The Pythagorean  Theorem through
LVAR representations  

In their calculations, the students had to use the 
Pythagorean Theorem. For this, the next activity was 
aimed to increase understanding of the application of 
the theorem in the class. 
The teaching process consisted of three items:  

• First, the visual proof of the Pythagorean Theorem 
with the utilization of linking visual active 
representations that I created using the Geometer’s 
Sketchpad.  

• Second, the meaning of the Pythagorean Theorem, 
and generalizations of the concept.  

• Third, the extension of the Pythagorean Theorem to 
fractal structures (e.g., the construction of 
Pythagorean trees), such as successive 
calculations, the areas of squares, etc. 

 
Figure 28 : Visual Pythagorean Theorem’s proofs 

(Patsiomitou, 2010b, in Greek) 
Students participated in the process of 

introducing and exploring the Pythagorean Theorem. 
The instrumental orchestration process (e.g., Trouche, 
2004) included a laptop computer and an interactive 
board. Initially, the students were guided to explore the 
Pythagorean Theorem visually. Then, I asked the 
students to construct the shape using their paper and 
pencil environment as an assignment in class to 
determine how they perceived the objects.  

 
 

  

 Figure 29 : 

 

LVAR translations of Euclid’s proof (Patsiomitou, 2010b, in Greek)  
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ii.

Then the students conducted a visual proof of 
the Pythagorean Theorem with LVAR representations 
(e.g., Patsiomitou, 2010a, b) that I was created using the 
Geometer Sketchpad software. It captured the interest 
of the students. The combination of the interaction 
techniques of the software (e.g., navigation links, 
buttons to hide/show objects) for the production of 

visual mathematical representations (VMR) (Visual 
Mathematical Representations) (Sedig & Sumner, 2006) 
can lead students to develop conjectures, analyze the 
problem, and synthesize the solution.



In the images of figure 29, we can see the 
linking representations of the Euclidean proof of the 
Pythagorean Theorem. The successive phases of the 
constructional steps have been achieved using 
transformational processes like the use of the translation 
command (Figures 29). By dragging a point of the 
original configuration or the translated images, the 
students can observe the processes that emerged 
previously being modified simultaneously. Students are 
able to directly assume or infer the properties and the 
interrelationships between figures from properties 
indicated on the diagram by conventional marks (for 
example the equality of angles, or the angles 
measurements). In the first row, four linking [translated] 
representations led the students to understand that the 
half  square  is  transformed   to  the  half  rectangle. The  
same is visually demonstrated in the second row for the 
other square. The important point from the LVAR 
constructions is that the students can transform the 
shapes simultaneously and see the same theorem from 
a different orientation. Additionally, an important point, 

segment, or shape is highlighted as the students 
develop their explanation orally. 

 

I explained to the students that this method 
provides a visual confirmation of the Pythagorean 
Theorem and pointed out the need for proofs. The 
challenge is the

 

interaction of students with LVARs to 
help them develop their level of geometric thinking. A 
pupil can develop his/her level of knowledge by 
proceeding through increasingly complex, sophisticated 
and integrated figures and visualizations to a more 
complex

 

linked representation of problem, and thereby 
moving instantaneously between two successive Linking 
Visual Active Representations only by means of mental 
consideration, without returning to previous 
representations to reorganize his/her thoughts (e.g., 
Patsiomitou, 2008a, 2010a; Patsiomitou & Koleza, 
2008). A student voluntarily presented the other students 
with the dynamic objects and the transformation of the 
shapes, which was a part of the process. If someone 
failed to provide the correct answer, the other students 
tried to help, expressing their point of view. 

 
 
  

 

 Figure 30 :
 
Student’s construction of the Euclid’s proof linking representations 

(see [2, 4])

 
The action involved the modeling of the 

Pythagorean Theorem using a cardboard. The students’ 
 understanding emerged because of their interaction with 
 

the LVAR dynamic representations within the community 
of practice in the mathematics classroom.

 

Phase Three: Transformations and calculations of geometrical objects 
 

 
  
 
 

 Figure 31 :
 
Transformations and calculations of a right and isosceles triangle

 
LVAR played a significant role in developing 

students’ deductive reasoning is clear from the fact that 
students demonstrated a shift from visual to formal 
proof. For example, in the figure 31 the rotation of a right 
and isosceles triangle leads to the construction of 
another right and isosceles triangle with concrete 
properties. Recognition of structures leads students to 
schematize and manipulate mental objects. Therefore, 

construction through sequential transformations can 
lead to the organization of the figure’s properties. This 
process is more than the synthesis and extension of 
properties.  

Phase Four: Selfsimilarity and calculations 
 The image (Figure 32) represents a work carved 

in stone from the famous workshop in Tinos Island. 
“Works carved in stone

 
by popular craftsmen are used 
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iii.

iv.



either as independent ornamental structures (fountains, 
grave monuments) or as architectural features of 
practical and decorative purpose”. (Excerpt from the text 
written in the description of the Folk Art museum website 
available at http://www.melt.gr) 

Concretely, the image mentioned above is a 
snapshot of the image’s input in the Geometer’s 
Sketchpad dynamic geometry system. The repetition of 
the square’s construction inside the figure leads to a 
fractal construction. 
 

 

Figure 32 : Snapshot of the image’s input in the Geometer’s Sketchpad dynamic geometry system 

The question was the following: “What kind of 
quadrilateral is shaped by joining the midpoints of the 
external quadrilateral?” For any quadrilateral, we can 
prove that the internal quadrilateral constructed by the 
midpoints of the sides of the external quadrilateral is a 
parallelogram. The students learn to prove this through 
a procedure of the application of the midpoint-connector 
theorem. In the image above, the interior figure is a 
square, as is the exterior figure.  

If the exterior quadrilateral becomes a 
rectangle, then the interior--constructed by joining the 
midpoints of the initial--will become a rhombus, the next 
interior constructed will become a rectangle, etc.  

The students can visualize a secondary 
property of the rectangle (for example that the axes of 
symmetry of the rectangle can be interpreted as 

diagonals of the rhombus, in other words can be 
interpreted differently and acquire a second role. Then 
the symbol of rectangle is transformed to the signal of 
rhombus.  It is what many researchers have discussed 
(e.g., van Hiele, 1986; Patsiomitou & Emvalotis, 2010a, 
b). The Toulmin’s model diagram below is a 
representation of the way students expressed their 
thoughts. They told that “If the figure is a rectangle, then 
its diagonals are congruent, so

 
these segments --that 

join the midpoints of the opposite sides--
 
are parallel 

and half the length of the diagonals”.
 

   

 
 

 

Figure 33 :

 

A pseudo-Toulmin model for the representation of the

 

way students expressed their thoughts 

 

 

Phase One: Introduction to the world of fractals 

The 6th situation led students to think about self 
similarity, which is not included in high school 

curriculum. The objective of the situation seventh was to 
awaken students in mathematics that are not included in 
their class curriculum. Moreover, because of the 
scheduled curriculum is difficult for them to explore. 
Martinez (2003) writes that “Mandelbrot coined the word 
"fractal" (from the Latin word "fractus", meaning 
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f) Situation Sixth (Componential analysis). 
Modeling fractal objects using static and dynamic 
means

i.



fractured, broken) to label objects, shapes or behaviors 
that have similar properties (self-similarity) at all levels of 
magnification or across all times, and which dimension, 
being greater than one but smaller than two, cannot be 
expressed as an integer” (reported in 
http://www.fractovia.org/art/people/mandelbrot.html ). 
The plan was to incorporate and illustrate fractal 
geometry --or facilitate the understanding of topics from 
geometry-- in already existing curriculum (e.g., fractions, 
proportion and ratio, calculations of area and volume, 
logarithms and exponentials, sequences and series, 
convergence of geometric series, geometry of plane 
transformations etc.) Furthermore, the enrichment with 
fractals into existing curriculum helps students to 
develop their imagination and apply mathematics 
outside the classroom, in real-world activities in cases 
that other students couldn’t see the relevance. For 
example, among students’ kites a highlighted one 
existed, constructed with Baravelle spirals (e.g., Chopin, 
1994; Patsiomitou, 2005) fractals, of a student 12 years-
old who participated in Fractal group. 

 

 

Figure 34 : Students’ constructions of kites 

Mathematical concepts related to the 
construction and investigations of a fractal are divided 
into geometric and algebraic segments, which cover 
almost all concepts included in the high school 
curriculum. For the fractal constructions the Geometer’s 
Sketchpad dynamic geometry software has been used 
which is the best dynamic geometry program for 
facilitating fractal constructions because of the in-depth 
iteration process that helps students gain strong 
intuition for the meanings (Patsiomitou, 2005, 2007).  
The students watched videos exploring the fascinating 
world of fractals. The videos were posted, in the Moodle 
environment. The language of the videos was English, 
which did not cause dissatisfaction or difficulty for the 
students. Moreover, it is well-known that the language of 
mathematics is common internationally, and in the 
videos, common notations for mathematical concepts 
were presented. The students could also cooperate to 
collaboratively answer questions and complete a text for 
the golden rectangle, gathering information from 
websites or creating their own constructions. 
Mandelbrot or Julia fractals fascinated the students 
because of the beauty of the objects they observed. 
Some of the students processed natural fractals (e.g., 
broccoli, cauliflower) to understand that a fractal 
structure does not change. The shape and the size of 
the object do not affect the structure and the self-
similarity of the objects. 

Phase Two: Modeling fractal objects 
The design of the activities and the experimental 

process that is reported here is an excerpt of my 
Master’s thesis (Patsiomitou, 2005). This process has 
been repeated in the students’ fractal group in the 
previous school year. For example: the construction of a 
“Pythagorean Theorem” custom tool, as well as the 
application of a “Pythagorean Theorem” custom tool 
recursively, led them to create Pythagorean fractal trees. 
Via the proposed activities we are able to investigate 
whether the construction of the fractals implementation 
or via the custom tools or of the process iteration can 
assist in investigating open–ended problems whose 
objective is the standardisation of intuitive ideas and the 
development of abstract processes. Moreover, we are 
able to investigate whether the students can be 
imported into the basic notions of infinitesimals and their 
use in calculus. 

I conceived of LVAR representations when 
creating linked pages in Sketchpad files to construct 
fractals for my Masters thesis. Here is explained the 
rationale I followed in the design process. The most 
important parts of the design and research process are 
going to be mentioned here, enriched, to explain the 
importance of linking visual active representations, 
instrumental decoding, and RVR-–as LVARs have been 
illustrated later (e.g., Patsiomitou, 2012a, b). The 
modeling and construction of an in-depth fractal 
structure is difficult or impossible with familiar geometry 
instruments (ruler and compass). Although the students' 
construction started in the paper-pencil environment, 
they felt it necessary to continue their construction in 
dynamic geometry software. The construction of the 
Sierpinski triangle fractal was one of the favorite 
subjects for the students. Moreover, the discussion 
expanded on the concept of a golden rectangle and 
golden spiral, and other spirals, such as the Fibonacci 
sequence, concepts that enriched the mathematical 
world of the students. Below I describe the way in which 
the students constructed a Sierpinski triangle in the DGS 
environment through two different ways: that of a 
custom tool (script) and thereafter application of the tool 
in (n) steps or the application of functional process of 
iteration (Steketee, 2002, Jackiw & Sinclair, 2004) to the 
initial construction (or even the composition of the two 
modes).  
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Phase Two -Part 1: The construction of the Sierpinski 
triangle via custom tools 

For the construction of the Sierpinski triangle, 
the students started with an isosceles triangle (or an 
equilateral) and the midpoint of its sides (Patsiomitou, 
2005, 2007). Then they guided to build a custom tool in 
order to continue the process. The students had to 
grasp the process in order to construct a Sierpinski 
triangle in-depth.

ii.



 
 

 

Figure 35 :  Sierpinski’s construction (Patsiomitou, 2005) via the utilization of sequential custom tools 

The process is represented in the pseudo – Toulmin diagram below 

 
Figure 36 : A pseudo-Toulmin model for the representation of the process 

From an instrumental genesis perspective, the 
students can construct an instrumented action scheme 
by using the custom tool, and then a higher order 
instrumented action scheme. Therefore, the custom tool 
‘equilateral’ acts as a building unit in the genesis of the 
higher-order scheme, exactly as Drijvers & Trouche 
(2008) argue: 

“The difference between elementary usage 
schemes and higher–order instrumented action 
schemes is not always obvious. Sometimes, it is merely 
a matter of the level of the user and the level of 
observation: what at first may seem an instrumented 
action scheme for a particular user, may later act as a 
building block in the genesis of a higher-order scheme. 
[…] a utilization scheme involves an interplay between 
acting and thinking, and that it integrates machine 
techniques and mental concepts […] the conceptual 

part of utilization schemes, includes both mathematical 
objects and insight into the ‘mathematics of the 
machine”(p. 372).  

The sequential creation of custom tools led the 
students to grasp meanings; however, most of the 
students had difficulties in understanding the structure 
of the triangle as the process evolved. 
Phase Two -Part 2: The iteration process  

In order to approach the task we constructed an 
equilateral triangle and from the midpoints of its sides 
the next equilateral and so on. The problem that we 
discussed concerned the calculation of the sum of the 
areas of the successive equilateral triangles in the 
interior of the shape. The whole iteration process can be 
demonstrated using Geometer’s Sketchpad software to 
make it understandable for children aged 13-16. If we 
build a custom tool (“Area’s sum,” for example) that 
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finds the sum of the successive triangles, divide the sum 
with the area of the initial triangle, and repeat 
continually, we will get a result (e.g. 1, 25). The structural 
repetition of the triangles in-depth, as well as of the 
calculations, will not change the results. The next figures 
(Figure 37) demonstrate the linking of the visual active 
representations of the calculations, which generalizes 
the process. The final result is equal to 1, 3333…, 
meaning that the limit of the sequence of the infinite sum 

of the areas approaches the 1, 3333…number as is 
strictly proven. The resulting sequence is formed by the 

8 tria ngles) ma de  in ea ch sum of the areas of triangles (>
iteration. This means that we finally have a sequence of 
terms equal to 1.33333. In this way, the students 
understand that the size of the triangles does not affect 
the ratio of the sum of the area, which is approximately 
(~ 1.33) and remains stable, even if we continue the 
process.

 
 

 

 

Figure 37 : Linking Visual Active Representations of Sierpinki’s iteration process 

How easy is it for a teacher or student working 
in the paper–pencil environment to create these 
representations with the software’s accuracy or to 
synthesize all these together with precision and speed? 
From a mathematical perspective, we could mention the 
following:  

If the area of the initial triangle is equal to E (the 
first term), every one of the triangles being built by 

joining its sides’ midpoints has an area equal to 
4
E  . 

This series is geometric, with the constant ratio = 1/ 4. 
The question is about the calculation of the addition of 
triangles’ areas in depth. 

Meaning, the sum of Ε+Ε/4+Ε/16 + … whose 
each successive term can be obtained by multiplying   

sum can be calculated by applying the formula 
r1−

α  

with a constant ratio between successive terms, or 
equally                                                                                                                                                      

                    
r

EE
n

n −
=∑

∞

= 140

  

    The sum is equal to 4/ 3 = 1, 33333….  
 

 
                           

 
Ph

Fractal's Group 
ase Three:  An  experimental  process  with the

 The experimental process that is reported here 
is an excerpt of the paper “Fractals as a context of 
comprehension of the sequences and the limit in a 
Dynamic Geometry environment” (Patsiomitou, 2007) 
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the  previous term by  r = 1 / 4 ( |r| <  1).This infinite

iii.



included in the Electronic Proceedings of the 8th 
International Conference on Technology in Mathematics 
Teaching (ICTMT8) which took place in Hradec Králové 
(excerpt of my Master’s thesis). The most important 
parts of the research process are going to be mentioned 

here, enriched, to explain the importance of linking 
visual active representations, instrumental decoding, 
and RVR-–as LVARs have been illustrated. This process 
has been repeated in the students’ fractal group in the 
previous school year. 

 

 

Figure 38 : The repetition of the number 1, 3333.

The team was constituted from 6 students 15-
16 years old. The students at the school had not been 
taught about the sum of infinite terms of a geometric 
progression, because it was not included in their 
curriculum. The students initially observed that the areas 
in the interior of the shape were decreased by the ratio r 
=1/4. This led them to the definition of the geometric 
progression for the areas of the shape and to the 
calculation of the sum of the infinite sequence Ε+Ε/4 
+Ε/16 + …where E is the area of the initial triangle, E/4 
the area of the next internal triangle and so on. The 
inquiry process investigated if the students could 
perceive the meaning of the limit of the sequence of the 
infinite sum of the areas (approximate result almost 
equal to 1, 33333…).  

The students through guided questions 
calculated the sums of the areas of the 2 first equilateral 
triangles and then divided it by the area of the initial 
triangle. Thereafter they calculated the sums of the 
areas of the three first triangles and divided this again by 
the area of the initial triangle. The process continued 
with the construction of the suitable custom tool that 
repeated this inductive process. When the process 
reached the 9 first steps the sum of the 9 internal 
repetitions of the areas of the equilateral  triangles within 
the shape and the calculation of the ratio was stabilised 
at 1,33333 even when the initial triangle’s shape was 
increased by dragging. Therefore, the generalisation of 
the process resulted from the process of iteration. With 
the assistance of the dilate tool and zooming into the 
depth of  the construction thus dilating the structure the 
afforded impression was that of an infinitely continuous 
structure which had in actual fact remained unaltered 

and constant. The students confirmed the repetition of 
the number 1,33333 on the table for (n) first steps of 
iterative constructional steps. In the beginning they 
applied the process and a shape resulted at the centre 
of the initial shape. Dilate tool assisted them to see into 
the centre of the shape and extend their mental 
representations. 

[…] In the latter activity we were led towards the 
construction of a branch of the Pythagorean tree using 
the modes that were mentioned before. The students 
had not comprehended the graphic representation of 
the sequence when it had been discussed with static 
means in their class during their course of mathematics. 
Their initial reaction was to connect the isolated points 
that resulted from the plotting of the areas of the 
successive squares, in order to produce a continuous 
curve. This reaction of the students was a result of 
misconception of the definition of the domain of any 
sequence which is the natural numbers, but more so the 
result of the correlation of the graphic representation of 
the functions as it has been introduced by static means. 
The female student that with certainty repeated the 
definition of the sequence, but had comprehended this 
fine  point about the graphic representation of any 
sequence, in no way displaying her misconception by 
inquiring about the fate of the intermediate points of the 
continuum.  

Student’s Learning Progression Through Instrumental Decoding of Mathematical Ideas

© 2014   Global Journals Inc.  (US)

  
  
 

   
 

  
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
I 
 V

er
sio

n 
I 

28

  
 

(
DDDD

)
Y
e
a
r

C
20

14



 

Figure 39 :
 

Multiple linking visual active representations 
The connection of the concept image with the 

concept definition of the meaning (Vinner, 1983) and 
finally the graphic representation was created through 
the environment of the software. At this point in the 
shape we have used as base for the development of the 
activity the file seqlimit.gsp. (Retrieved from 
http://www.teacherlink.org/content/math/activities/sketch
padv4.html). As it is described by the authors: “[The file 
has been designed] to help students graphically 
visualize the concepts behind the formal definition of the 
limit of a sequence. Given a value for epsilon, students 
can manipulate N to find a value for N beyond which all 
further terms of the sequence lie within the distance 
epsilon from the limit”.  

In this sketch I had created an adaptation of the 
shape of fractal Pythagorean tree (Figure 39). The 
process of animation can produce the changes in the 
tabulated measurements (calculations) that allow the 
user to examine the dynamic process. These changes 
come as result of the fluctuations in the size of an 
artefact-fractal which have the possibility of increasing 
(decreasing) and altering orientation. The students 
consequently had an environment of multiple linking 
visual active representations in which the shape of the 
fractal had been linked with the table of the 
measurements via the functional process of iteration, 
which continuously could be linked with the graphic 
representation of the sequence. […] (Patsiomitou, 2005, 
2007).  

As a result of the construction and application 
of the custom tool as much as the process of iteration 
the direct perception of the user is attained in regard to 
the steps in the development of the construction 
pertaining to (Patsiomitou, 2005, 2007):  
• The repetitions in the measurements or calculations 

of the areas of initial shapes  
• The developmental way of the construction of the 

shape and 

• Its orientation towards the sequential steps of the 
construction on the screen’s diagram or in 
successive pages of the same file.  

Through the application of the custom tool the 
possibility is given to the user to acquire an inductive 
way of thinking for the finite steps of the construction but 
the generalisation with regard to the constructional result 
can be achieved from the process of iteration which 
inductively renders the construction theoretically to 
infinity (Patsiomitou, 2005, 2007, 2008d). This function of 
the software also constitutes a certain crucial and 
essential particularity, while the construction with a 
compass and a ruler as formal tools of static geometry 
has a beginning and an end. Moreover, “a teacher is 
able to distinguish different levels of acquisition and 
mathematical engagement with a fractal topic [as] 
scripts [ / iteration command] represent an abstraction 
of his/her own work or process, and thus using them as 
"abstract" tools require one level more advanced or 
sophisticated a conceptualization than using "literal" 
tools like the compass or straightedge. ” (Personal e-
mail communication with Nicholas Jackiw on September 
29, 2005). 

In the software, via the process of iteration we 
have the potential of the constructions thus becoming 
more complex being in theory rendered inductively to 
infinity. The result of the process of iteration is the 
construction of the tables that repeat the process of 
initial measurements and calculations in dynamic 
connection with the shape, thus increasing (or 
decreasing) the level of the process of iteration while the 
software adds (or removes) the next level of 
measurements (or even calculations), whereas in the 
first column of the table the sequence of the natural 
numbers is presented. In that way through this 
operation, the environment of the software promotes the 
exploration of the sequences and of the series. The 
iteration process by functioning thus has integrated or 
embodied the meaning of sequence while there is a 
direct connection between the user’s perception and the 
abstract mathematical meaning (Patsiomitou, 2005, 
2007). Therefore, I think that The Geometer’s Sketchpad 
v4 [-v5] is the best tool to introduce fractals in 
classroom not only for aesthetic purpose rather than for 
the pursuit of their very interesting mathematics. 
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Figure 40 :  A Pseudo Toulmin model explaining the birth of the meaning ‘Linking Visual Active Representations’. 

The structures of fractals, [by applying the 
meaning of dynamic LVAR representations], aims that 
students (a) review most of theorems, (b) identify the 
potential weaknesses and cognitive obstacles that 
students face in their effort to understand the process, 
(c) develop the links between the virtual representations 
and the formulations with which students justify their 
construction, as a result of understanding the figures’ 
transformations and symmetry, and (d) develop most of 
the competencies described in the beginning of the 
article and higher–order level skills (e.g., generalize 
patterns using recursion, use algebraic formulae and 
symbolic expressions to explain mathematical 
relationships, etc.) than those that they are able to 
develop through traditional mathematics. This is very 
important for their movement through vH levels.  

V. Discussion 

a) Developing a theory on dynamic transformations 
The emphasis on construction using the 

Transform menu in GSP was shaped to facilitate the 
understanding of symmetries and strengthen the 
development of structures in the students’ minds. The 
thought that the shapes have symmetries can lead 
students to dynamically reinvent new ways of 
constructing them through the dynamic geometry 
software. 

The focus on transformations is in accordance 
to Coxford & Usiskin (1975), who report inter alia that, 
the use of different types of transformations in the 
curriculum simplifies the mathematical development (for 
example, the definitions of congruence and similarity 
cover all figures). Therefore, the proofs of many 
theorems are simpler and more accessible to all 
students. Furthermore, the authors argue that 

transformations facilitate the understanding of 
mathematical concepts for students from different 
mathematical competence and prepare the ground for 
future processing concepts of algebra and analysis. 
Transformations used by the students in the DGS 
environment can be distinguished through the following: 
• Theoretical and experimental dragging, as 

mentioned at the beginning of the article. 
• Transformation elicited from the reflection, dilation, 

rotation, or translation of the object. Dragging on 
rotated (dilated, reflected, or translated) objects 
maintain the congruency and structural relationship 
between the elements of the construction. 

• Transformations elicited from the utilization of the 
action buttons tools (for example, the hide/show 
action button, the link button, the movement button, 
or animation). 

• Transformations elicited from the annotation of the 
dynamic diagram (for example, use of colors, 
formulations, and the trace tool). Moreover, the 
combination of transformations (e.g., the trace tool 
and dragging tool, the calculations and the 
dragging of the geometrical object’s points). 

• Transformations elicited from the application of the 
custom tools. The application of custom tools 
reorganizes the external representation.  The 
application of a custom tool (or the repetition of the 
application of a custom tool) is accomplished in a 
sequence of steps directly perceived by the user. 
Consequently, custom tools operate as a referent 
point for organizing, pursuing, and retrieving 
information.    

• Transformations elicited from the synthesis of the 
dynamic diagram.  

Student’s Learning Progression Through Instrumental Decoding of Mathematical Ideas

© 2014   Global Journals Inc.  (US)

  
  
 

   
 

  
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
I 
 V

er
sio

n 
I 

30

  
 

(
DDDD

)
Y
e
a
r

C
20

14



• Combinations of transformations due to the 
synthesis of the software’s interaction techniques 
(Sedig & Sumner, 2006).  

• Complex transformations of the LVAR dynamic 
representations. 

Therefore, 
are defined as the modifications of the diagram on 
screen that result in the modification in one or more 
included geometric objects. This could be an elicitation 
from the addition, cancelation of the diagram’s elements 
that cause the rearrangement of the diagram, its 
anasynthesis, or even the modification of any object’s 

size or orientation. Moreover, it could seen as we apply 
one or more interaction techniques, or their 
combination, on the diagram’s objects. Transformations 
on prototype elements (e.g., points, line segments) led 
the students to (1) visualize the objects that were 
constructed in the first phase of the process and (2) 
perceive a few properties of the figure’s symmetry 
initially at the visual level. It was observed that during the 
process the students connected, in their minds, 
representations that helped them to respond to the next 
level, according to the theory of van Hiele.  
 

 

 

Figure 41 : A pseudo-Toulmin model explaining the transformations in the DGS environment 

The dynamic manipulation of objects in 
software led the students to construct the properties of 
the shapes. The use of software transformation tools 
influenced the direction of their thinking, since their use 
allowed the properties of shapes to be analyzed and 
then synthesized into shapes. As a result, the 
construction and transformation of semi-preconstructed 
LVAR led the students to a theoretical way of thinking, 
and cognitive transformations through related cognitive 
connections.  

“If we accept that mathematical growth 
coincides with constructing new mathematical reality, 
we may conceive mathematics education as supporting 
students in constructing new mathematical reality. This 
fits with Freudenthal’s (1973) notion of “mathematics as 
a human activity”. In his view students should be given 
the opportunity to reinvent mathematics. The challenge 
then is: How to make students invent what you want 
them to invent?” (Gravemeijer, 2004, p.3) 
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Many students do not have the ability to 
dynamically visualize and mentally manipulate 
geometric objects, which is important for solving 
problems in geometry. In that case they are not able to 
reflect on or to anticipate a possible solution to the 
problem. Therefore, geometric transformations in the 
software help the students to form an intermediate stage 
between the concrete and the abstract. They help them 
to instrumental decode the mathematical symbols and 
to connect their use with the pre-existing knowledge. 
Then the interaction with the software incorporates the 
steps and the mental or cognitive actions that facilitate 
the understanding of the solution.  

The use of the transformations in the DGS 
environment strongly influenced the formation of the 
‘dynamic’ teaching cycle process which is described in 
the next section. 
b) A ‘dynamic’ teaching cycle process through LVAR 

The data presented here focused on teaching 
situations, including instructional units, classroom 
activities, and simulated or modeled problems in the 
DGS environment. In this section, I shall analyze my role 
as teacher, researcher, and instructor of the activities 
as it emerged from the teaching situations, as well as 

the students’ role in the formation of a mathematical 
teaching cycle. The design or selection of teaching 
activities and problems that stimulate and excite 
mathematical reinvention (Freudenthal, 1973) on the 
part of students is a "challenge for the teacher, [who 
must] try to see the world through the eyes of the 
student." (Gravemeijer, 2004, p.8) 

If the teaching and learning of concepts through 
the use of real problems in a DGS environment is 
compared with the traditional approach, we conclude 
that, “the modelling perspective [using a DGS 
environment] offers major advantages. The process of 
modelling constitutes the bridge between mathematics 
as a set of tools for describing aspects of the real world, 
on the one hand, and mathematics as the analysis of 
abstract structures, on the other” (Corte, Verschaffel & 
Greer, 2000, p.71).  Moreover, the intrinsic design of 
dynamic representational systems has essential impacts 
on the mental representations of the student, that is, the 
ways in which students construct their personal 
representations of meaning during the activity, whether 
these representations are directed at an individual 
student or in the student's collaborative environment 
with others. Accordingly, the conclusions can be used to 
analyze the potential of these tools for mathematics 
teaching and learning, to design new tools, and to better 
understand the ways in which these tools can be 
(instrumentally) decoded by teachers and students to 
be transformed into theoretical knowledge built through 
mediation. As teachers (or teacher- researchers) design 
teaching concepts and ways of interacting with their 
students, they increasingly feel the need to understand 

the minds of the students, looking for methods to lead 
their students to understand the concepts. Therefore, 
the determining factor is the teacher who decides on the 
objectives/aims of the teaching method and chooses 
the means for effective implementation of the objectives 
or of the educational process. The positive 
attitudes/behaviors of the teachers of mathematics with 
regard to mathematics, their positive position with 
regard to technology, and their interest in the students’ 
understanding of the concepts, are the most important 
factors for the development of innovative applications in 
schools. 

 

As a teacher-researcher, I know that the 
students encounter difficulties in order to understand the 
concepts in geometry. The connection between the 
represented and the representation can create conflicts 
to students because they are not able to control the 
information that comes from the outside world 
(Mesquita, 1998). The question is how we can overcome 
the cognitive obstacles they face and what are these 
teaching situations which can provide the scaffolding to 
the next van Hiele level. 

 

The instructional units aimed to challenge 
students and “elicit, support and extend children's 
mathematical thinking, facilitating mathematical 
discussions, using the representations of concepts and 
encourage use of alternative solution methods” (Fuson 
et al., 2000, p. 277). Many times I tried to shift mentally 
from an observer’s point of view to an actor’s point of 
view (Cobb, Yackel & Wood, 1992 in Gravemeijer, 
2004), and consider now the design of the activity of this 
regard. My approach was as follows: 
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Figure 42 :  A pseudo-Toulmin’s model representing the instructional design through LVAR 

Situation 1 : The highlighted idea in 
mathematics, which is ‘symmetry,’ is interdisciplinary, 
connected with art and culture. The aim is to ‘see’ 
mathematics in any context.  

Situation 2 : The challenge was to connect the 
transformations in static and dynamic means 
conceptually and procedurally. Instrumental decoding of 
students’ mathematical ideas played a major role for the 
overcoming of cognitive and instrumental obstacles. 

Situation 3: This situation aims to accomplish 
the figure’s symbol character. The grid in the DGS 
environment provides a challenge for the 
experimentation. The important points in this situation 
were the students’ methods of dealing with the 
questions: “Under what conditions does the rhombus 
become a square?” or “What are the similarities and 
differences between a kite and a square?”

                 The motivation for this situation was 
that my students understand the parallelograms from 
their symmetry properties and, if they have a set of 
properties, to understand the kind of quadrilateral. This 
phase is very crucial for the students to acquire the 
ability to replace a figure with a set of properties that 
represent it and from these properties to construct the 
figure. In other words, the figure will acquire the signal 
character.

            The recognition of differences and 
similarities between figures’ symmetry properties 
demarcates the scope of this situation. The teaching 

and didactic process must focus at the understanding 
of the structuring process and not the learning of ready-
made structures.

          The development of structures in 
students’ minds has been achieved with the synthesis of 
a more complex construction. The situations aim to 
develop the abstraction. Pythagorean Theorem’s 
reconfigurations have been used as a tool for the 
development of students’ instrumental decoding of a 
complex figure’s anasynthesis. The 6th situation led 
students to think about self similarity, which is not 
included in high school curriculum.  

    Self -similarity, Pythagorean 
Theorem and the midpoint theorem are the 
mathematical backgrounds of this situation. Here is 
explained the rationale in the design process and the 
importance of linking visual active representations and 
instrumental decoding. 

The use of a computing environment such as 
dynamic geometry helps students to build ‘a model of 
the meaning’ (Thompson, 1987, p.85) and overcome the 
difficulties of translation between representations 
through the automatic translation or "dyna-linking" 
(Ainsworth, 1999, p. 133), since [they] “encode causal, 
functional, structural, and semantic properties and 
relationships of a represented world – either abstract or 
concrete” (Sedig & Sumner, 2006, p.2). The design and 
redesign of activities for the teaching and learning 
processes, with real problems or simulations of real-
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Situation 4:

Situation 5:

Situation 6:

Situation 7:



world problems through LVAR in the dynamic geometry 
software, and the results obtained from the research 
data (Patsiomitou, 2012 a, b), suggest that a student 
develops his/her abstractive competency when his/her 
cognitive structures are linked through representations 
that the student develops during the learning process.  

“Apart from the aspect of anticipating the 
mental activities of the students, a key element of the 
notion of a hypothetical learning trajectory is that the 
hypothetical character of the learning trajectory is taken 
seriously. The teacher has to investigate whether the 
thinking of the students actually evolves as conjectured, 
and he or she has to revise or adjust the learning 
trajectory on the basis of his or her findings. In relation 
to this, Simon (1995) speaks of a mathematical teaching 
cycle. In a similar manner, Freudenthal (1973) speaks of 
thought experiments that are followed by instructional 
experiments in a cyclic process of trial and adjustment. 
If we accept this image of the role of the teacher in 
instruction that aims at helping students to invent some 
(to them) new mathematics, we may ask ourselves, what 
type of support should be offered to teachers. 
Apparently, we will have to aim at developing means of 
support that teachers can use in construing and revising 
hypothetical learning trajectories” (Gravemejer, 2004, 
p.9). 

The whole action is an innovative production of 
a new approach to the educational process based on 
theoretical underpinning. This innovation is introduced 
for the first time in the school of established practice, 
and thus, proposes the redevelopment / redesign of the 
everyday teaching practice by using LVAR, with proper 
interventions in school curriculum. Specifically, linked 
representations that the student is able to construct 
(Patsiomitou, 2012a, b): 
 When the student builds a representation (e.g., a 

rectangle) in order to create a robust construction 
externalizing his/her mental approach, using 
software interaction techniques by externalizing 
his/her mental approach or by transforming an 
external or internal representation to another 
representation in the same representational system 
or another one.  

 When s/he gets feedback from the theoretical 
dragging to mentally link figures’ properties so that, 
because of the addition of properties, subsequent 
representations stem from earlier ones. 

 When s/he transforms representations so that the 
subsequent representations stem from previous 
ones due to the addition of properties. 

•

 

When s/he links mentally the developmental 
procedural aspects in a process of a dynamic 
reinvention 

 

•

 

When s/he reverses the procedure in order to create 
the same figure in a phase of the DHLP or between 
phases of the same DHLP. 

 

•

 

Adding to the initial [procedural] structure so that 

the first component parts of a construction  lead to a 
structure and to eventually becoming more and 
more complex,

 

•

 

Linking the conceptual steps of the construction  (p. 
76).  

Moreover, the procedures, due to their design, 
“prompted” the cooperation of students, contributed to 
the development of positive behavior, and strengthened

 

the weak students to understand the concepts and 
procedures while interacting with their classmates. The 
process resulted in the cooperation of students with me 
which often "forgot" my role and "took" on the role of a 
student playing the ‘game’ to ask questions that some 
of my students did not have the courage to ask. 

 

With regard to the problems, many teachers 
prefer algebra to geometry. The reasons are as follows: 
(a) the awareness of the risk of the student’s failure or 
(b) the teacher’s lack of confidence for their knowledge 
of the subject of geometry. How would the LVAR 
process (i.e. the utilization of LVAR concept for the 
construction of activities) change this weakness when 
students are able to process on official electronic 
platforms from the Ministry of Education? How will this 
affect the confidence of teachers who handle this 
platform for their students, giving feedback on their 
knowledge? 

 

These questions should be discussed, as well 
as discussing who will educate the designers of these 
activities

 

so that the material is consistent with the idea. 
On the other hand, it is obvious that there is possible 
misuse of the LVAR concept for the construction of 
activities by the way that every teacher thinks, which 
could lead to opposing results. It is therefore necessary 
to train the agents who will spread the LVAR idea, with 
consistent processes of meaning. Still, the 
implementation of the idea can be generalized and 
repeated in any group of students, at different times and 
in any thematic framework (e.g., the objects of physics 
or chemistry). 
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•

•

•



 

Figure 43 :  An adaptation of Simon’s (1995) Mathematics Teaching Cycle for the current study 

The analysis of the teaching situations and the 
development of the Mathematics Teaching Cycle have 
led to an iterative diagram that is an adaptation of 
Simon’s (1995, p.136) work, taking into account also the 
work of McGraw (2002, p.10). The Mathematics 
Teaching Cycle portrays the relationship between the 
following areas of knowledge (Simon, 1995): “the 
teacher’s knowledge of mathematics mathematics and 
his hypotheses about the students' understandings, 
several areas of teacher knowledge come into play, 
including the teacher's theories about mathematics 
teaching and learning; knowledge of learning with 
respect to the particular mathematical content; and 
knowledge of mathematical representations, materials, 
and activities” (p. 133).  

What has been examined is the use of 
technology in the teaching cycle which plays an 
important role in the development of discussions, as 
well as students’ vH level. The diagram aims to include 
the incorporation of technology practices in class. The 
teacher’s interaction with students and the mathematical 
communication through dialogues is accomplished in 
sequential situations: the implementation of activities, 
effective teaching and inquiry into students’ 
mathematics, the assignment of students’ knowledge, 
all of which leads to the teacher’s feedback. These 
processes go on continually and can suggest 

adaptations in various domains of a teacher’s 
knowledge, including in the following areas: 
mathematics, pedagogy, representations, technology, 
and modeling through LVAR representations. The whole 
process leads to a modification of the hypothetical 
learning path that includes a continuous interaction 
between the teacher’s knowledge of particular content, 
the teacher’s goal, and assessment of the students’ vH 
levels. 

VI. Conclusions 

The modeling of a problem in the dynamic 
environment can 'carry' any [mathematical] object to the 
classroom in two ways: through the use of digital 
images or through the use of their simulations. On the 
other hand, a technological tool is important as the 
design of artifacts can be generalized and replicated in 
any group of students, at different times and in any 
thematic framework (e.g., science, geography). 
Therefore, referring to LVAR is concluded in the 
following (Patsiomitou, 2012a, p 498): 
• How could this affect the students' understanding of 

the utilization of LVAR in the teaching and learning 
of other disciplines (e.g., physics or ancient Greek 
and history)? [or] Would students understand the 
obscure points of other disciplines, because of the 
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interaction with the [appropriate] dynamic LVAR 
representations? 

• Can the students develop their linking of the 
conceptual and procedural representations of these 
objects? 

On the other hand, new cognitive tools are not 
included [or included in a very slow way] for the 
teaching of concepts. It is particularly important for the 
'movement' of a process by applying innovative 
practices to change the negative views that a large 
portion of teachers have regarding technology. This 
seems to focus on a lack of knowledge because of the 
phobias surrounding technological tools in the 
mathematics classroom, leading to an adherence to 
traditional teaching methods.  

In general, the whole issue has to do with the 
way we perceive the world, the natural objects 
(unconscious), how we compare them mentally 
(consciously) with theoretical constructs of geometry in 
order to represent them and how we instrumental 
decode them using technology. Finally, it is important to 
continue teaching and research concepts in this vital 
field, through activities that involve children in the 
learning process, so using linked visual representations 
they will learn how to develop, interpret, and make 
sense of geometric concepts. This argument recognizes 
and underlines the force of Kant’s argument (1929, 
“Critique of Pure Reason”) that: 
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