Discrimination of Textures using Texton Patterns

By Shaik Rahamat Basha & P Kiran Kumar Reddy

Narayana Engineering College, Gudur, India

Abstract- Textural patterns can often be used to recognize familiar objects in an image or retrieve images with similar texture from a database. Texture patterns can provide significant and abundance of texture and shape information. One of the recent significant and important texture features called Texton represents the various patterns of image which is useful in texture analysis. The present paper is an extension of our previous paper [1]. The present paper divides the 3 × 3 neighbourhood into two different 2 × 2 neighbourhood grids each consist four pixels. On this 2 × 2 grids shape descriptor indexes (SDI) are evaluated separately and added to form a Total Shape Descriptor Index Image (TSDI). By deriving textons on TSDI image Total Texton Shape Matrix (TTSM) image is formed and Grey Level Co-Occurrence Matrix (GLCM) parameters are derived on it for efficient texture discrimination. The experimental result shows the efficacy of the present method.

Keyword: textons, glcm features, shape descriptor index (sdi), total shape descriptor index image (tssi), total texton shape matrix (ttsm), 2 × 2 grids.

GJCST-F Classification: I.2.10
Discrimination of Textures using Texton Patterns

Shaik Rahamat Basha & P Kiran Kumar Reddy

Abstract: Textural patterns can often be used to recognize familiar objects in an image or retrieve images with similar texture from a database. Texture patterns can provide significant and abundance of texture and shape information. One of the recent significant and important texture features called Texton represents the various patterns of image which is useful in texture analysis. The present paper is an extension of our previous paper [1]. The present paper divides the 3 × 3 neighbourhood into two different 2 × 2 neighbourhood grids each consist four pixels. On this 2 × 2 grids shape descriptor indexes (SDI) are evaluated separately and added to form a Total Shape Descriptor Index Image (TSDI). By deriving textons on TSDI image Total Texton Shape Matrix (TTSM) is formed and Grey Level Co-Occurrence Matrix (GLCM) parameters are derived on it for efficient texture discrimination. The experimental result shows the efficacy of the present method.

Keywords: textons, glcm features, shape descriptor index (sdi), total shape descriptor index image (tsdi), total texton shape matrix (ttsm), 2 × 2 grids.

I. Introduction

Analysis of texture requires the identification of proper attributes or features that differentiate the textures in the image for segmentation, classification and recognition. Initially, texture analysis was based on the first order or second order statistics of textures [6, 7, 8, 9, 10]. Then, Gaussian Markov random field (GMRF) and Gibbs random field models were proposed to characterize textures [11, 12, 13, 14, 15, 16]. Later, local linear transformations are used to compute texture features [17, 18]. Then, texture spectrum technique was proposed for texture analysis [19]. The above traditional statistical approaches to texture analysis, such as co-occurrence matrices, second order statistics, GMRF, local linear transforms and texture spectrum are restricted to the analysis of spatial interactions over relatively small neighborhoods on a single scale. As a consequence, their performance is best for the analysis of micro textures only [20]. More recently, methods based on multi-resolution or multi-channel analysis, such as Gabor filters and wavelet transform, have received a lot of attention [21, 22, 23, 24, 25, 26, 27, 23, 25]. From the literature survey, the present study found the Grey Level Co-occurrence

Matrix (GLCM) is a benchmark method for extracting Haralick features (angular second moment, contrast, correlation, variance, inverse difference moment, sum average, sum variance, sum entropy, entropy, difference variance, difference entropy, information measures of correlation and maximal correlation coefficient) or Conners features [28] (inertia, cluster shade, cluster prominence, local homogeneity, energy and entropy). These features have been widely used in the analysis, classification and interpretation of remotely sensed data. Its aim is to characterize the stochastic properties of the spatial distribution of grey levels in an image.

The present paper is organized as follows. In the second section, we have given clear information about grey level co-occurrence matrix information and the third section, we discussed about textons. In fourth section, we discussed deriving different Shape Descriptor Indexes (SDI). In the fifth section, proposed methodology is discussed and in sixth section, results and discussions are given. Finally, in last section, we concluded about this paper.

II. Gray Level Co-occurrence Matrix

One of the other most popular statistical methods used to measure the textural information of images is the Gray Level Co-occurrence Matrix (GLCM). The GLCM method gives reasonable texture information of an image that can be obtained only from two pixels. Grey level co-occurrence matrices introduced by Haralick [29] attempt to describe texture by statistically sampling how certain grey levels occur in relation to other grey levels. Suppose an image to be analyzed is rectangular and has Nx rows and Ny columns. Assume that the grey level appearing at each pixel is quantized to Nl levels. Let Lx = {1, 2, ..., Nl} be the horizontal spatial domain, Ly = {1, 2, ..., Ny} be the vertical spatial domain, and G = {0, 1, 2, ..., Ng} be the set of Ng quantized grey levels. The set Lx × Ly is the set of pixels of the image ordered by their row-column designations. Then the image I can be represented as a function of co-occurrence matrix that assigns some gray level in Lx × Ly to a 2 × 2 neighborhood. Then

The gray level transitions are calculated based on the parameters, displacement (d) and angular orientation (θ). By using a d instance of one pixel and angles quantized to 45° intervals, four matrices of horizontal, first diagonal, vertical, and second diagonal (0°, 45°, 90° and 135° degrees) are used. Then
the un-normalized frequency in the four principal directions is defined by Equation (1).

\[
p(i, j, d, \theta) = \#
\]

\[
\begin{aligned}
&\{(k, l), (m, n) \in (I_\alpha \times I_\alpha) \times (I_\alpha \times I_\alpha) | (k - m = 0, l - n = d) \text{ or } (k - m = d, l - n = -d) \\
&\text{ or } (k - m = -d, l - n = d) \text{ or } (|k - m| = d, l - n = 0) \\
&\text{ or } (|k - m| = -d, l - n = -d) \\
&\text{ and } (k, l) \text{ the coordinates with gray level } i, (m, n) \text{ the coordinates with gray level } j\}
\end{aligned}
\]

Equation (1)

where \(\# \) is the number of elements in the set, \((k, l)\) the coordinates with gray level \(i \), \((m, n)\) the coordinates with gray level \(j \). The following Fig. 1 illustrates the above definitions of a co-occurrence matrix \((d=1, \theta = 0^\circ)\).

Even though Haralick extracted 24 parameters from co-occurrence matrix, the present paper used only energy, contrast, local homogeneity, and correlation as given in Equations (2) to (5).

\[
\text{Energy} = \sum_{i,j=0}^{N-1} -\ln(P_{ij})^2
\]

Equation (2)

Energy measures the number of repeated pairs and also measures uniformity of the normalized matrix.

\[
\text{Contrast} = \sum_{i,j=0}^{N-1} P_{ij} (i - j)^2
\]

Equation (3)

The contrast feature is a difference moment of the P matrix and is a standard measurement of the amount of local variations present in an image. The higher the value of contrast are, the sharper the structural variations in the image.

\[
\text{Local Homogeneity} = \sum_{i,j=0}^{N-1} \left(\frac{P_{ij}}{1+(i-j)^2} \right)
\]

Equation (4)

It measures the closeness of the distribution of elements in the GLCM to the GLCM diagonal. The converse of homogeneity results in the statement of contrast.

\[
\text{Correlation} = \sum_{i,j=0}^{N-1} \left(P_{ij} \frac{(i-\mu)(j-\mu)}{\sigma^2} \right)
\]

Equation (5)

Where \(P_{ij} \) is the pixel value in position \((i, j)\) of the texture image, \(N \) is the number of gray levels in the image, \(\mu \) is \(\mu = \sum_{i,j=0}^{N-1} i P_{ij} \) mean of the texture image and \(\sigma^2 \) is \(\sigma^2 = \sum_{i,j=0}^{N-1} P_{ij}(i-\mu)^2 \) variance of the texture image. Correlation is the measure of similarity between two images in comparison. The measures mean \((m)\), which represents the average intensity.

III. TEXTONS

Textons [30, 31] are considered as texture primitives, which are located with certain placement rules. A close relationship can be obtained with image features such as shape, pattern, local distribution orientation, spatial distribution, etc. using textons. The textons are defined as a set of blobs or emergent patterns sharing a common property all over the image. The different textons may form various image features. To have a precise and accurate texture classification, the present study strongly believes that one need to consider all different textons. That is the reason the present study considered all. There are several issues related with i) texton size ii) tonal difference between the size of neighbouring pixels iii) texton categories iv) expansion of textons in one orientation v) elongated elements of textons. By this sometimes a fine or coarse or an obvious shape may results or a pre-attentive discrimination is reduced or texton gradients at the texture boundaries may be increased. The present paper utilized the following five texton shades of \(2 \times 2\) grid shown in Fig. 2. In Fig. 2 (a), the pixels are represented as \(d_1, d_2, d_3\) and \(d_4\). The present paper considered texton shades if three or more pixels have the same intensity levels. This rule derives five texton shapes denoted as \(T_1, T_2, T_3, T_4\) and \(T_5\) as shown in Fig. 2.
IV. DERIVING DIFFERENT SHAPE DESCRIPTOR INDEXES (SDI)

Hole shape (Index = 0): The TU with 0 represents a hole shape. The hole shape consists all 0’s as shown in the Fig.3.

```
0 0 0
0 0
```

Figure 3: Hole shape with SDI value 0

Dot shape (Index =1): The TU with 1, 2, 4 and 8 represents a dot shape. The dot shape will have only a single 1 as shown in Fig.4.

```
1 0 0
0 0 1
0 0 1
```

Figure 4: The four dot shapes with SDI value 1

Horizontal/Vertical line shape (Index =2): The two adjacent 1’s results four different TU weights i.e. 3, 6, 9 and 12 and all of them represents a horizontal or vertical line as shown in Fig.5.

```
1 1 0
0 0 1
0 0 1
```

Figure 5: Representation of horizontal / vertical lines with SDI value 2

Diagonal Line shape (Index= 3): The other two adjacent 1’s with TU values 5 and 10 represents diagonal lines as shown in Fig.6.

```
0 1
1 0
```

Figure 6: Representation of diagonal line with SDI value 3

Triangle shape (Index = 4): The three adjacent 1’s with TU values 7, 11, 13 and 14 represents triangle shape as shown in Fig.7.

```
1 1
0 1
```

Figure 7: Representation of triangle shape with SDI value 4

Blob shape (Index =5): TU 15 with all 1’s represents a blob shape as shown in Fig.8.

```
1 1
1 1
```

Figure 8: Representation of blob shape with SDI value 5

The advantage of SDI is they don’t depend on relative order of texture unit weights and can be given in any of the four forms as shown in Fig.9 where the relative TU will change, but shape remains the same.

```
2^3 2^0
2^3 2^0
```

Figure 9: Four different ways of assigning weights to TU

V. DERIVATION OF TOTAL TEXTON SHAPE CO-OCCURRENCE MATRIX (TTSCM)

If the given image is colour convert into gray level image. Divide each 3×3 window into two separate units by comparing neighbouring pixel value with the centre pixel as shown in fig.10 for deriving Binary Cross Texture Unit Element (BCTUE) and Binary Diagonal Texture Unit Element (BDTUE)[2,3,4,5]. As shown in Fig.10(a) a 3×3 neighbourhood will have 8 neighbouring pixels and are divided into two sets of cross and diagonal sets with four pixels of binary values as shown in Fig.10(b & c), by following the equation 6. Represent BCTUE and BDTUE in the form of two separate 2×2 grids as shown in Fig.11.

\[
bi = \begin{cases}
0 & \text{if } S(Pc - Pi) < 0 \\
1 & \text{if } S(Pc - Pi) \geq 0
\end{cases}
\] (6)
Derive Shape Descriptor Indexes (SDI) on BDTUE and BCTUE for deriving Diagonal SDI (DSDI) and Cross SDI (CSDI) as shown in Fig.12 and Fig.13.

For forming Total Shape Descriptor Index (TSDI) image add CSDI and DSDI images as shown in Fig.14 and the pixel grey level values of TSDI image ranges from 0 to 10. Now derive textons on TSDI to form Total Texton Shape Matrix (TTSM) image. Finally construct co-occurrence matrix on TTSM that which leads to the formation of Total Texton Shape co-occurrence Matrix (TTSCM) on which GLCM features with 0°, 45°, 90°, and 135° are derived. For efficient discrimination algorithm is derived based on the feature set values of TTSCM.

The average of contrast, correlation, energy and homogeneity features set values on TTSCM are evaluated with a distance of one and with an orientation of 0°, 45°, 90°, and 135° are tabulated in Table 1, 2 and 3 for the Car, Elephant and Water texture images collected.
from Google database respectively. A sample texture images of Car, Water and Elephant are shown in Fig.18. Based on feature set values of TTSCM images, Algorithm 1 is derived. Discrimination results are tabulated in Table 4 along with a bar graph shown in Fig.19. The Table 5 compares discrimination rates of our earlier methods Texton based Cross Shape Descriptor Index (TCSDI) Texton based Diagonal Shape Descriptor Index (TDSDI) [2,4] with the current method TTSCM approach of this paper. The corresponding bar graph representation is shown in Fig.20.

The proposed TTSCM obtained high discrimination rate over our earlier TCSDI and TDSDI methods. This is because the TTSCM represent the SDI of the entire image instead of two separate or partial images of TCSDI and TDSDI.

Table 1: Average GLCM feature values with 0°, 45°, 90° and 135° for TTSCM of Car images

<table>
<thead>
<tr>
<th>Texture number</th>
<th>Contrast</th>
<th>Correlation</th>
<th>Energy</th>
<th>Homogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>12.655</td>
<td>0.5969</td>
<td>0.174</td>
<td>0.6707</td>
</tr>
<tr>
<td>C_2</td>
<td>13.326</td>
<td>0.5751</td>
<td>0.128</td>
<td>0.6317</td>
</tr>
<tr>
<td>C_3</td>
<td>12.499</td>
<td>0.6052</td>
<td>0.162</td>
<td>0.6671</td>
</tr>
<tr>
<td>C_4</td>
<td>11.465</td>
<td>0.6269</td>
<td>0.188</td>
<td>0.6838</td>
</tr>
<tr>
<td>C_5</td>
<td>14.144</td>
<td>0.5986</td>
<td>0.112</td>
<td>0.6081</td>
</tr>
<tr>
<td>C_6</td>
<td>13.939</td>
<td>0.5980</td>
<td>0.081</td>
<td>0.5848</td>
</tr>
<tr>
<td>C_7</td>
<td>13.542</td>
<td>0.6593</td>
<td>0.117</td>
<td>0.6208</td>
</tr>
<tr>
<td>C_8</td>
<td>13.812</td>
<td>0.5804</td>
<td>0.115</td>
<td>0.6377</td>
</tr>
<tr>
<td>C_9</td>
<td>14.128</td>
<td>0.5469</td>
<td>0.122</td>
<td>0.6269</td>
</tr>
<tr>
<td>C_10</td>
<td>11.662</td>
<td>0.6075</td>
<td>0.235</td>
<td>0.7022</td>
</tr>
</tbody>
</table>

Table 2: Average GLCM feature values with 0°, 45°, 90° and 135° for TTSCM of Elephant images

<table>
<thead>
<tr>
<th>Texture number</th>
<th>Contrast</th>
<th>Correlation</th>
<th>Energy</th>
<th>Homogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>9.159</td>
<td>0.3525</td>
<td>0.032</td>
<td>0.4971</td>
</tr>
<tr>
<td>E_2</td>
<td>9.809</td>
<td>0.3369</td>
<td>0.0354</td>
<td>0.5044</td>
</tr>
<tr>
<td>E_3</td>
<td>9.129</td>
<td>0.3472</td>
<td>0.0375</td>
<td>0.5137</td>
</tr>
<tr>
<td>E_4</td>
<td>9.268</td>
<td>0.3631</td>
<td>0.0375</td>
<td>0.5165</td>
</tr>
<tr>
<td>E_5</td>
<td>8.801</td>
<td>0.3546</td>
<td>0.0387</td>
<td>0.5187</td>
</tr>
<tr>
<td>E_6</td>
<td>9.187</td>
<td>0.3343</td>
<td>0.0371</td>
<td>0.5156</td>
</tr>
<tr>
<td>E_7</td>
<td>7.254</td>
<td>0.2813</td>
<td>0.0474</td>
<td>0.5335</td>
</tr>
<tr>
<td>E_8</td>
<td>6.479</td>
<td>0.2645</td>
<td>0.0509</td>
<td>0.5414</td>
</tr>
<tr>
<td>E_9</td>
<td>12.69</td>
<td>0.4056</td>
<td>0.0324</td>
<td>0.5063</td>
</tr>
<tr>
<td>E_10</td>
<td>6.252</td>
<td>0.2921</td>
<td>0.0495</td>
<td>0.5478</td>
</tr>
</tbody>
</table>

Table 3: Average GLCM feature values with 0°, 45°, 90° and 135° for TTSCM of Water images

<table>
<thead>
<tr>
<th>Texture number</th>
<th>Contrast</th>
<th>Correlation</th>
<th>Energy</th>
<th>Homogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td>18.74</td>
<td>0.4686</td>
<td>0.0402</td>
<td>0.5306</td>
</tr>
<tr>
<td>W_2</td>
<td>16.83</td>
<td>0.3171</td>
<td>0.0327</td>
<td>0.4965</td>
</tr>
<tr>
<td>W_3</td>
<td>15.08</td>
<td>0.328</td>
<td>0.0352</td>
<td>0.5022</td>
</tr>
<tr>
<td>W_4</td>
<td>17.71</td>
<td>0.3615</td>
<td>0.0345</td>
<td>0.4859</td>
</tr>
<tr>
<td>W_5</td>
<td>18.45</td>
<td>0.4389</td>
<td>0.0301</td>
<td>0.5002</td>
</tr>
<tr>
<td>W_6</td>
<td>12.03</td>
<td>0.314</td>
<td>0.0359</td>
<td>0.5031</td>
</tr>
<tr>
<td>W_7</td>
<td>16.48</td>
<td>0.4387</td>
<td>0.0317</td>
<td>0.5013</td>
</tr>
<tr>
<td>W_8</td>
<td>15.26</td>
<td>0.5095</td>
<td>0.0408</td>
<td>0.5462</td>
</tr>
<tr>
<td>W_9</td>
<td>16.43</td>
<td>0.3591</td>
<td>0.0316</td>
<td>0.5024</td>
</tr>
<tr>
<td>W_10</td>
<td>19.39</td>
<td>0.3411</td>
<td>0.027</td>
<td>0.4851</td>
</tr>
</tbody>
</table>

Algorithm 1: Discrimination algorithm using the proposed TTSCM method.
The present paper derived TTSCM image by adding CSDI and DSDI images. By this TTSCM captured all local shape features. The present paper compared the discrimination rates of TCSDI, TDSDI and TTSCM approaches. The results clearly indicate the high discrimination rates of TTSCM over our earlier TCSDI and TDSDI methods. The TSDI represents efficient border without any disturbances when compared to CSDI and DSDI images. This is because TTSCM forms only one SDI image on the original image instead of two different SDI namely, i) TCSDI ii) TDSDI. The intensity values of TSDI image range from 0 to 10. Moreover TTSCM reduces the formation of two GLCM on the original image one representing the cross and other representing the diagonal features.

References Références Referencias

4. P. Kiran Kumar Reddy, V. V. Kumar, “Texture Classification Based on Cross and Diagonal Shape Descriptor Co-occurrence Matrix”, CIIT International
Discrimination of Textures using Texton Patterns

This page is intentionally left blank