
© 2015. Oluwadare Samuel Adebayo, Olabode Olatunbosun, Iwasokun Gabriel Babatunde & Akinyede Raphael Olufemi. This is a
research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License
http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium,
provided the original work is properly cited.

Global Journal of Computer Science and Technology: B
Cloud and Distributed
Volume 15 Issue 4 Version 1.0 Year 2015
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Hybrid Genetic Algorithms for Scheduling High-Speed
Multimedia Systems

 By Oluwadare Samuel Adebayo, Olabode Olatunbo

 Iwasokun

Gabriel Babatunde & Akinyede Raphael Olufemi
 The Federal University of Technology, Akure, Nigeria

Abstract- It has been observed that most conventional operating systems could not cope with the
scheduling of multimedia tasks owing to the large size of these files. For instance, processing of
multimedia tasks using the traditional operating systems are fraught with problems such as low
quality of service and delay jitters. In order to address these problems, a scheduling algorithm
christened hybrid genetic algorithm for multimedia task scheduling (HGAMTS) was developed. It
employed heuristic knowledge of the problem domain to model a hybrid genetic algorithm in a
multiprocessor environment. The system is made up of the scheduler model and the task model.
The scheduler model consist a centralized dynamic scheduling scheme. In this scheme, all tasks
arrive at a central processor (scheduler). The model has a minimum of five and maximum of ten
processors. Attached to each processor is a dispatch queue.

Keywords: scheduling algorithms, hybrid genetic algorithm, multimedia system, operating system,
multiprocessor system.

GJCST-B Classification : B.2.4

HybridGeneticAlgorithmsforSchedulingHighSpeedMultimediaSystems

Strictly as per the compliance and regulations of:

,

Hybrid Genetic Algorithms for Scheduling High-
Speed Multimedia Systems

Oluwadare Samuel Adebayo α, Olabode Olatunbosun σ, Iwasokun Gabriel Babatunde ρ
& Akinyede Raphael Olufemi Ѡ

Abstract- It has been observed that most conventional
operating systems could not cope with the scheduling of
multimedia tasks owing to the large size of these files. For
instance, processing of multimedia tasks using the traditional
operating systems are fraught with problems such as low
quality of service and delay jitters. In order to address these
problems, a scheduling algorithm christened hybrid genetic
algorithm for multimedia task scheduling (HGAMTS) was
developed. It employed heuristic knowledge of the problem
domain to model a hybrid genetic algorithm in a
multiprocessor environment. The system is made up of the
scheduler model and the task model. The scheduler model
consist a centralized dynamic scheduling scheme. In this
scheme, all tasks arrive at a central processor (scheduler). The
model has a minimum of five and maximum of ten processors.
Attached to each processor is a dispatch queue.
Communication is established between the scheduler and the
processors through the dispatch queues. The scheduler
ensured that each dispatch queue is filled with minimum
number of tasks so that a processor could always find a task
in its dispatch queue when it finishes executing a task. The
algorithm was implemented using Java programming
language. The experimental results were compared with two
real-time conventional algorithms: rate monotonic (RM) and
early deadline first (EDF). The result showed that the proposed
algorithm has higher success rate ratio and guaranteed
number of deadlines met.

I. Introduction

he advent of multimedia files has placed additional
challenge on the traditional operating systems.
This is due to the fact that multimedia tasks are

characterized by large files running sometimes into
hundreds of gigabytes. Most of these files has to be
processed in real-time and in continuous stream. Any
delay in the processing would lead to low quality of
service. Multimedia files are made up of text, graphics,
audio and video. Although a little delay in the processing
of text may not be noticeable but such little delay in
audio or video may seriously affect the quality of service.
In client-server systems, the high number of concurrent
users trying to download data, sometimes in continuous

Aurhor α σ ρ Ѡ :

Department of Computer Science, The Federal
University of Technology, P.M.B. 704, Akure, Nigeria.

e-mails: samoluwadare2013@gmail.com,

oolabode@futa.edu.ng,

biwasokun@futa.edu.ng, olufemi_akinyede@yahoo.com

streams may lead to considerable slow down. Some
researchers have noted that the traditional Operating
Systems as well as their extensions could not cope with
these demands of multimedia applications (Plagemann
et al., 2000; Yau and Lam, 1996; Neih and Lam, 1997;
Goyal et al., 1996a; Lesilie et al., 1996).

II. Review of Related Works

Scheduling algorithms is an active area of
research which has received considerable attention over
the years. In the literature, a number of scheduling
algorithms has been proposed, for instance, in
Tanenbaum (1994), a First-Come-First-Served (FCFS)
algorithm which selects the task with the earliest arrival
time was proposed. The system ensures that if it
contains periodic tasks, their release time will be
considered. The major drawback of this algorithm is that
it makes no effort to consider a task’s deadline. Liu and
Layland (1973) proposed the Early Deadline First (EDF)
algorithm which will always choose the task with the
earliest deadline. The algorithm is optimal in a uni-
processor system but does not consider priority and
therefore cannot analyze it. The algorithm fails under
overloading conditions (Thai, 2002; Tanenbaum, 1994).

A fuzzy scheduling algorithm is also proposed
in (Lee et al., 1994). The algorithm uses task laxity and
task criticality as system parameters. The simulation
model which contains small number of tasks on a uni-
processor system did not consider system overloads. All
the tasks are assumed to be real-time and fairness is
not considered in scheduling. In terms of real-time
distributed systems, Thai (2002) developed a model in
which the task with higher computation time is assigned
to bottleneck processor and system’s worst case
processing time is computed. How the task with higher
computational time is detected was not explained but
the proposed algorithm has acceptable resistance to
system overload especially when number of processors
is increased. Also, the algorithm needs communication
time between processors. Another drawback of the work
is that the algorithm does not consider heterogeneous
tasks and fairness.

Sabeghi et al. (2006) used fuzzy inference to
schedule non-preemptive periodic tasks in soft real-time
multiprocessing systems. Priority and deadline was
used as tasks parameters while fuzzy inference engine
was used to compute each task’s priority and to select

T

© 2015 Global Journals Inc. (US)

1

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

IV

V
er
sio

n
I

Ye
ar

20
15

(B
)

Keywords: scheduling algorithms, hybrid genetic
algorithm, multimedia system, operating system,
multiprocessor system.

the task with maximum priority to process. All tasks are
assumed to be periodic and it is not clear whether the
multiprocessor system that was proposed was
homogeneous or heterogeneous. Since the system
does not consider task’s processing time the results are
more similar to EDF and therefore not suitable for
multiprocessing systems. Chen et al. (2005) proposed a
scheduling algorithm that is suitable for both uni-
processor and multiprocessor systems. It provides a
method to detect work overloading and try to balance
load with task dispatching. It is however, doubtful if the
proposed model could handle multimedia data
efficiently. Dynamic integrated scheduling of hard real-
time, soft real-time and non-real-time tasks was
proposed in (Brandt et al., 2003). The model can
generate feasible schedules but the model is restricted
to periodic tasks and the tasks’ periods are changed
dynamically when overloading occurs.

Alberto et al. (1994) proposed a dynamic
scheduling of computer tasks using Genetic Algorithms
(GA). The scheduling algorithm which is non-preemptive
hard real-time is aimed at dynamically scheduling as
many tasks as possible such that each task meets its
execution deadline while minimizing the total delay time
of all the tasks. It implements a sequential MicroGA that
uses a small population size of 10 chromosomes
running for 10 trials and using a rather high mutation
rate with a sliding window of 10 tasks. They also
developed parallel MicroGA model for parallel
processors. The performance of the sequential MicroGA
model and the parallel MicroGA model were compared
with other algorithms namely FIFO, EDLF and SRTF for
solving similar problem. The results showed that the
sequential MicroGA and the parallel MicroGA models
produced superior task scheduling compared to other
algorithms tested. The work is limited because it was
meant to handle hard real-time task and it used a small
population size.

In Stutar et al. (2006) a memetic algorithm for
task scheduling in multiprocessor systems was
developed. The memetic algorithm was produced by
hybridizing Genetic Algorithm with Simulated Annealing
(SA). SA transverses the search space by testing
random mutations on an individual. The mutation that
increases fitness is accepted. Tasks are distributed
among the processors in such a way that the
precedence constraints

are preserved and total

execution time is minimized. It defines an order of
processing tasks that are ready to run in a given
processor. The memetic algorithms represent tasks in a
task graph which are then mapped onto a
multiprocessor system in a way that maintains
precedence relations and ensure that all tasks are
completed in shortest possible time. Even though the
memetic algorithms seem to offer a promise at
mitigating the shortcomings of GA, it was not

implemented. Hence, the efficiency of the algorithms
could not be ascertained.

Hamzel et al. (2007) also proposed a soft real-
time fuzzy task scheduling for multiprocessor systems.
The algorithm arranges real-time periodic and non-
periodic tasks in multiprocessor systems. Since most
static and dynamic optimal scheduling algorithms fail
with non-critical overload, the fuzzy approach attempt to
balance task loads of processors successfully, prevent
starvation and ensure fairness which causes higher
priority tasks to have higher running probability.
Experimental results show that the proposed fuzzy
scheduler creates feasible schedules for homogeneous
and heterogeneous tasks. It also, considers task priority
which causes higher system utilization and lowers
deadline misses. However, the model is deficient
because it does not consider scheduler processing
time.

Mahmood (2000) proposed a hybrid scheduling
algorithm for task scheduling in multiprocessor real-time
systems. The system recorded significant improvements
in guarantee ratio of tasks that arrived in the system. The
system was not however, designed to handle
multimedia tasks which consists both hard real-time and
soft real-time components. Seyed et al. (2014)
developed a genetic algorithm for optimization of
integrated scheduling of cranes, vehicles and storage
platforms at automated container terminals. The
proposed algorithm introduced a random string of tasks
to define precedence relations between tasks. The
performance of the algorithm was evaluated using 10
small size test cases. A fairly near optimal solution that
is similar to the existing simulated annealing algorithm
was obtained. It was also reported that the proposed
GA outperforms the existing algorithm when the number
of tasks to be scheduled increase from 30 to 100.

Faghihi et al. (2014) employed the use of GA to
schedule construction based on building information
model (BIM). The project management triangle includes
time, cost and quality. The task of developing project
schedules that will satisfy the constraints imposed by
time, cost and quality could be troublesome. The
proposed GA model was applied to 21 construction
projects and stable construction schedules were
successfully generated.

Chiu-Hung et al. (2015) applied greedy GA to
solve the problem of teacher transferring problems
(TVPs). An improved neighborhood search algorithm
was introduced into mutation operator. The result
produced an optimal solution which performed better
than classical methods for solving such problems. A
hardware-aware rate monotonic scheduling algorithm
for embedded multimedia systems was proposed in
(Park and Yoo, 2010). The experimental results show
that the algorithm improved the responsiveness of
hardware tasks with little impact on software tasks. The
output jitter reduced drastically. An improved CPU

Hybrid Genetic Algorithms for Scheduling High-Speed Multimedia Systems

© 2015 Global Journals Inc. (US)1

2

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

IV

V
er
sio

n
I

Ye
ar

20
15

(B
)

scheduling algorithm based on multiprogramming
environment was proposed in Arora et al. (2013). The
introduction of pipelining into the CPU scheduling led to
reduction in time latency. The proposed algorithm
outperforms existing scheduling algorithms by 40-50%.

Notario et al. (2012) presents a multi-objective
GA for task assignment on heterogeneous nodes. The
assignment strategy used was based on GA to
maximize task execution quality while minimizing energy
bandwidth consumption. The result offered Pareto
optimal solutions which were better than previous works
that were reviewed. Similarly, Khan and Govil (2013)
proposed a cost optimization technique of task
allocation in heterogeneous distributed computing
system (DCS). The proposed model considered the
allocation of m tasks to n processors in a DCS using a
modified tasks allocation technique which considers the
processing capacity of each processor. The results
show drastic reduction in processing cost.

This paper presents a hybrid genetic algorithm
for scheduling high-speed multimedia systems using
GA and maximum urgency first algorithm. A detailed
discussion of the optimization model using mixed-
integer linear programming is documented in
(Oluwadare and Akinnuli, 2012).

a) Hybrid Genetic Algorithms for Multimedia Task
Scheduling in a Multiprocessor System (HGAMTS)

HGAMTS combined a classical algorithm,
Maximum Urgency First (MUF) with the multiprocessor
algorithm proposed in (Mahmood, 2000). Detailed listing
of the algorithm is as follows:
Let m = number of processors; task [i] = the initial task
queue; l = length of a chromosome; pop = population
size; n = number of tasks in a chromosomes which is
initially set to 0.
While (more task queue to be scheduled) do
 If not (task queue empty) then
Order the tasks in the task queue in non-decreasing
order of their criticality.
 Select the task with highest criticality.
 If tasks have same highest criticalness, select the task
having the highest
 dynamic priority.
 If tasks have same highest criticalness and equal
dynamic priority then select
 task with highest user priority.
 If tasks have common on all three above factors,
execute the task based on
 first come, first served basis.

 {Create the population as follows}
 Select first t (t < = l – n) tasks from the
task queue
 Set n = n + 1
 For j = n + 1 to pop do
 For i = 1 to t do
 Generate a random number p (l…m)

 Call procedure random selector
Select randomly a position q (l…n + 1) in the
chromosome that has not been occupied so far.
Insert (task [i], p) at position q of a chromosome j { that
is (task [i],p} is the ith locus of chromosome).
 Endfor
 Endfor
 Endif
 If n > 1 then
 Evaluate each member’s fitness (call procedure
evaluate)
 Call procedure keep the best in order to select
the best fit off springs
 While not (termination condition) do
 Perform reproduction based on relative
fitness values of chromosomes
 Call procedure crossover to perform
crossover
Call procedure mutation
 Endwhile
 Select the best chromosome in the population
as a solution.
 Newtaskset = false
While not (newtaskset) do

Remove the tasks that have been sent to the
dispatch queues or found not to be feasible from all the
chromosomes of the population {f + r tasks will be
removed}
Set n = n – f(f+ r)

Arrange the remaining tasks in the first n
positions of each chromosome
Set newtaskset = true
 Endif
 Endwhile
Endif
Endwhile

The algorithm starts by ordering the task in non-
decreasing order of their criticality. Ordering the tasks in
this manner is to ensure that those tasks that are more
critical in terms of timeliness are assigned higher
criticality values. Depending on the consequences of
missing a deadline, multimedia tasks are typically
classified into three categories: hard real-time systems,
firm real-time systems and soft real-time systems
(Ramamritham, 1996).

Based on this categorization, tasks coming into
the system are assigned criticality values with hard real-
time systems tasks having the highest criticality value
followed by firm real-time tasks; and soft real-time tasks.
After arranging the tasks on the basis of their criticality
values, the algorithm then checks to see if there are two

Hybrid Genetic Algorithms for Scheduling High-Speed Multimedia Systems

© 2015 Global Journals Inc. (US)

3

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

IV

V
er
sio

n
I

Ye
ar

20
15

(B
)

Update the dispatch queues, if required, by
assigning first f feasible tasks from the best
chromosome.

Find the tasks that in the best chromosome that
cannot meet their deadlines by performing the feasibility
check. Let r be the count of such tasks.

or more tasks with same criticality value. It selects the
task among such category of tasks with a tie in their
criticality value and orders them using dynamic priority.

Dynamic priority is imposed by the immediate
conditions at the time of processing. In the design of
HGAMTS, the tasks arriving are submitted dynamically
at the scheduler (the central processor) which performs
the schedulability check before passing the task to any
of the dispatch queues associated with the processors
in the multiprocessor environment.

In a situation whereby tasks have same
criticality and dynamic priority another selection factor
known as user priority is introduced. If tasks tie on
criticality, dynamic priority and user priority the tasks are
selected on first-come-first-served basis. The central
goal of HGAMTS is to incorporate traditional scheduling
heuristics to generate a feasible schedule by
determining the processor which a task should be
assigned to and the order in which tasks should be
executed so as to meet their deadlines. This measure
increases the guarantee ratio (percentage of scheduled
tasks that meet their deadlines).

The algorithm then selects a set of tasks from
the sorted list and generates the initial population. Each
chromosome in the initial population is generated by
assigning task in the tasks set to a randomly selected
processor and inserting the pair (task, processor) in a
randomly selected unoccupied locus of the
chromosome. If the number of tasks is less than the
chromosome size, then the first n loci of the
chromosomes are used in solution encoding and active
chromosome size is set to n. This ensures that genetic
operators are applied only to the active part of the
chromosome. The second while loop determines the
best schedule by applying the genetic operators
discussed earlier. The second while loop terminates, if
the best chromosome has a fitness value equal to the
number of tasks considered for scheduling (the size of
active chromosome) or a maximum number of iterations
have been completed. Once the best schedule for a set
of tasks has been found, the dispatch queues are
updated, if required. All the dispatched tasks along with
tasks found infeasible are removed from all the
chromosomes so that they are not reconsidered for
scheduling. A task Ti is feasible if it could be submitted
at the end of any of the dispatched queues such that ri
≤ st(Ti) ≤ di - ci and ri+ ci ≤ ft(Ti) ≤ di . Any task that fails
to meet this condition is not feasible. The new task set
includes the newly arriving tasks along with the tasks
that have not been dispatched so far.

The chromosome syntax employed is such that
each gene is a pair of decimal values (Ti ,Pi) which
indicates that task Ti is assigned to processor Pi . The
position of genes in the chromosome indicates the order
in which tasks should be executed. For instance, the
chromosome representation shown in Figure 1 indicates
that task 1 be executed on processor 4, task 5 on

processor 1, task 2 on processor 3 and task 3 on
processor 1. It also indicates that if two tasks are
assigned to the same processor for instance, tasks 5
and 3, task 5 is executed first followed by task 3.

Figure 1 : Chromosome representation in HGAMTS

One of the advantages of the multiprocessor
system is that two tasks assigned to two different
processors may execute in parallel provided they do not
require the same resource in exclusive mode. Tasks
assigned to the same processor must execute in the
specified order. In the chromosome representation
scheme, each chromosome has a fixed length/size. This
means that the maximum number of tasks that may be
considered for scheduling at a time is bounded by the
chromosome size. The remaining tasks together with the
newly arriving tasks are kept in the task queue
(Mahmood, 2000). When one set of task is scheduled, a
new set of tasks from the task queue is selected for
scheduling. If the number of tasks in the task queue is
less than the chromosome size then only part of the
chromosomes is used and application of genetic
operators is restricted to that part only. The part of a
chromosome being used is called the active part. It
should be noted that the maximum size of the active
part is equal to the chromosome size.

The position of a task on the chromosome
which is a greedy consideration based on the domain-
specific knowledge, determines the order in which the
task will be executed. The closer the task is to the front
of the chromosome, the greater are the chances of
being scheduled. Also, the nature of the task that
precedes a particular task may impose some
constraints on where it can be placed. For instance, if
two tasks require a resource, and one of them is in
exclusive mode, the task in exclusive mode may prevent
the other from being executed. The three genetic
operators employed in HGAMTS are crossover,
reproduction and mutation.

(1,4) (5,1) (2,3) (3,1)

Hybrid Genetic Algorithms for Scheduling High-Speed Multimedia Systems

© 2015 Global Journals Inc. (US)1

4

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

IV

V
er
sio

n
I

Ye
ar

20
15

(B
)

III. Experimental Set-up

Extensive simulation runs were carried out. For
each simulation run, 300 tasks were randomly
generated. The worst case computation time ci of task Ti
was randomly chosen between MIN_C and MAX_C and
were set to 30 and 60 respectively. Deadline of task Ti
was uniformly chosen between

ii cr ∗+ 2 and ii cRr ∗+

where R ≥ 2
The inter arrival time of task is exponentially

distributed with mean

2/)__()/(1 CMAXCMINm +∗∗λ

where m is the number of processors (5 ≤ m ≤ 10).
The value of λ was varied from 0.2 to 0.6

(Mahmood, 2000). Many values of the reproduction
operator x (% of tasks to be killed before reproduction)
were tried. Chromosome size was varied from 5 to 20 for
different set of simulation runs. Also, population size
was varied from 20 to 50. All the dispatched queues
were of equal length for a particular simulation run.
However, the length of dispatch queues was varied
between 1 and 3 for different simulation runs.

IV. Results
The values presented in the Tables 1 through

Table 2 are the average of 10 simulation runs and the
maximum iteration was set to 700. The results obtained
were compared with Rate Monotonic (RM) and Earliest
Deadline First (EDF) algorithms.
a) Success Ratio at different Task Arrival Rates and

Chromosome Sizes The success ratio of the three algorithms was
measured at different task arrival rates and
chromosome sizes. The result is presented in Table 1

Hybrid Genetic Algorithms for Scheduling High-Speed Multimedia Systems

© 2015 Global Journals Inc. (US)

5

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

IV

V
er
sio

n
I

Ye
ar

20
15

(B
)

Figure 2 : Schematic representation of the partitioning scheme and the queuing

 Table 1

:

Success Ratio at different Task Arrival Rates and Chromosome Sizes

Task
Arrival
rate

Success Ratio

 RM

EDF

HGAMTS
at l = 5

HGAMTS
at l = 10

HGAMTS
at l = 15

HGAMTS
at l = 20

 0.2

 0.25

 0.3

0.35

 0.4

 0.45

 0.5

0.55

 0.6

88

 86

 82

78

 66

 61

 60

60

 57

93

 89

 84

78

 69

 65

 64

58

 55

95

 91

 87

80

 77

 70

 68

65

 60

95

 93

 90

86

 84

 83

 80

76

 72

100

 100

 98

98

 95

 93

 89

85

 80

100

 100

 100

100

 98

 97

 97

95

 95

 l = Chromosome size
 Source

:

Simulation studies, 2014

 Table 1 revealed that at lower task arrival rates
(0.2 –

0.3) the success ratio of the three algorithms is

between 82 and 100%. RM recorded the least success
ratio while HGAMTS recorded the highest. The success
ratio drops as the task arrival rate increases. It was also
revealed that HGAMTS has higher success ratio at all
task arrival rates followed by EDF and RM. The success
ratio of HGAMTS increases as chromosome size
increases. In fact, the success ratio of HGAMTS is 100%

at task arrival rate 0.25 and below for chromosome size
15. On the other hand, the success ratio reached 100%
at task arrival rate 0.35 and below for chromosome size
20. Hence, it could be inferred that the higher the
chromosome size, the better the performance of
HGAMTS. Also, the gap between the performance of
HGAMTS and the other two algorithms (RM and EDF)
increases with increase in chromosome size.

 A comparative analysis of the performance of

the three algorithms was also carried out at different
number of iterations. The result is presented in Table 2.

Table 2

:

Success Ratio at different number of iterations and chromosome sizes

Number of
iterations

Success Ratio
 RM

EDF

HGAMTS at HGAMTS at HGAMTS at HGAMTS at

Figure 3: Comparative analysis of success ratio of RM, EDF and
HGAMTS at different task arrival rates and chromosome sizes

0

10

20

30

40

50

60

70

80

90

100

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Task Arrival Rate

Su
cc

es
s R

ati
o

RM
EDF
HGAMTS at l = 5
HGAMTS at l = 10
HGAMTS at l = 15
HGAMTS at l = 20

Hybrid Genetic Algorithms for Scheduling High-Speed Multimedia Systems

© 2015 Global Journals Inc. (US)1

6

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

IV

V
er
sio

n
I

Ye
ar

20
15

(B
)

l = 5 l = 10 l = 15 l = 20

b) Success Ratio at different number of iterations and
chromosome sizes

 100
 200
 300
 400
 500
 600
 700

10
 22
 25
 28
 31
 36
 45

21
 24
 26
 29
 35
 43
 51

41
 46
 48
 52
 57
 60
 61

43
 47
 51
 58
 63
 66
 67

47
 58
 62
 69
 83
 89
 92

48
 59
 65
 72
 85
 96
 98

Population size (p) = 40, l = Chromosome size
Source : Simulation studies, 2014

Table 2 revealed that success ratio increases
with increase in number of iterations. RM has the least
success ratio followed by EDF while HGAMTS has the
highest success ratio across all iterations. It could also
be observed that for HGAMTS, success ratio increases
with increase in chromosome size.

c) Performance of RM, EDF and HGAMTS at different
utilization factors

The maximum utilization factor was varied
between 0.2 and 1.0 and processors were also varied

between 5 and 10. The metric used is the guarantee
ratio, which denotes the percentage of feasibly
scheduled task sets that meet their deadline. The
utilization was varied between 5 and 10. A task is
schedulable on m processors if no task in the set
misses its deadline.

Table 3 : Guarantee Ratio at different Utilization Factors

Utilization
factor

(α)

RM EDF HGAMTS
m=5 m=7 m=9 m=10 m=5 M=7 M=9 m=10 m=5 M=7 m=9 m=10

0.2
0.5
0.8
1.0

85
81
72
68

87
83
78
75

88
85
81
76

89
87
83
79

91
89
85
79

93
91
88
85

95
94
92
90

97
96
95
92

97
94
91
86

98
96
95
94

100
99
99
98

100
100
99
98

m = number of processors
Source : Simulation studies, 2014

Table 3 revealed that guarantee ratio decreases
with increase in utilization factor. The best performance
was obtained at α = 0.2 for all the algorithms. However,
HGAMTS recorded the best performance followed by
EDF while RM had the least performance. Results in
Table 3 also revealed that guarantee ratio increases with
increase in the number of processors (m).

V. Conclusion

Multimedia files are usually large in size and
must be processed within a time frame in order to
guarantee quality of service. Meeting deadlines and
achieving high resource utilization are the major goals of
multimedia task scheduling. Multiprocessor systems
offer a veritable opportunity to address some of the
processing challenges presented by multimedia data.
However, the complexity involved in the design of
appropriate algorithms for task scheduling in
multiprocessor systems is another area of challenge.

This research has shown that Hybrid Genetic
Algorithm could be used to schedule multimedia tasks
dynamically that arrives in the system. The algorithm
used fixed size chromosome to encode the solution.
However, the algorithm also allows part of the
chromosome to be used whenever there are fewer tasks

to occupy all the loci on the chromosome. When a part
of the chromosome is used, the genetic operators are
applied to the active part only. Tasks not submitted to
the dispatch queues are reconsidered with newly
arriving tasks. The simulation results confirm the
effectiveness of the hybrid genetic algorithm for
scheduling high-speed multimedia tasks in a
multiprocessor system.

References Références Referencias

1. Alberto, C., Pico, G., and Wainwright (1994).
Dynamic Scheduling of Computer Tasks using
Genetic Algorithms. Proc. of the first IEEE
Conference on Evolutionary Computation, IEEE
World Congress on Computation Intelligence, June
26 – July 2, Orlando, Florida, pp.829– 833.

2. Arora H, Arora D., Goel D.A. and Jain P. (2013).
An Improved CPU Scheduling Algorithm.
International Journal of Applied Information
Systems, Volume 6– No. 6, pp7-9

3.

Brandt, S.A., Banachowski, S., Caixue, L., and
Bisson, T. (2003). Dynamic integrated scheduling of
hard real-time, soft real-time and non-real-time
processes, in Proc. 24th IEEE Intl. Real-Time

Hybrid Genetic Algorithms for Scheduling High-Speed Multimedia Systems

© 2015 Global Journals Inc. (US)

7

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

IV

V
er
sio

n
I

Ye
ar

20
15

(B
)

Systems Symposium, Cancun, Mexico, pp. 396 –
407.

4. Chen, G., Ozturk, O., and Kandemir, M. (2005). An
adaptive locally-conscious process scheduler for
embedded systems, in Proc. 11th IEEE Real-Time
and Embedded Technology and Applications
Symposium, San Francisco, CA, pp. 354 – 364.

5. Chiu-Hung C., Tung-Kuan L., Jyh-Horng C., Chung-
Hung T. and Hsiu W. (2015). Optimization of
teacher volunteer transferring problems using
greedy genetic algorithms. Expert Systems with
Applications 42 (2015) 668–678, www.elsevier.
com/locate/eswa, Accessed on 04/02/2015

6. Faghihi V., Reinschmidt K.F and Kang J.H. (2014).
Construction scheduling using Genetic Algorithm
based on Building Information Model. Expert
Systems with Applications 41 (2014) 7565–7578,
www.elsevier.com/locate/eswa, Accessed on
04/02/2015

7. Goyal, P., Guo, X., and Vin, H.M. (1996a). A
hierarchical CPU scheduler for multimedia
operating systems. Proc. of USENIX sypm. on
operating systems design and implementation
(OSDI’96), Seatle, WA, USA, October 1996, pp. 107-
121.

8. Hamzeh, M., Fakhraie, S.M., and Lucas, C. (2007).
Soft real-time fuzzy task scheduling for
multiprocessor systems, Int. Journal of Intelligent
Technology, vol. 2 No. 4 pp. 211 – 236.

9. Khan F.N. and Govil K. (2013). Cost Optimization
Technique of Task Allocation in Heterogeneous
Distributed Computing System. Int. J. Advanced
Networking and Applications Volume: 05, Issue: 03,
pp:1913-1916

10. Lee, J., Tiao, A., and Yen, J. (1994). A fuzzy rule-
based approach to real-time scheduling, in Proc. 3rd
IEEE Conf. Fuzzy Systems, IEEE World Congress
Computational Intelligence, Fl, vol. 2, pp. 1394 –
1399.

11. Leslie, I., McAuley, D., Black, R., Roscoe, T.,
Barham, P., Evers, D., Fairbairns, and Hyden, R.
(1996). The design and implementation of an
operating system to support distributed multimedia
applications. IEEE Journal on selected areas in
communications, vol. 14. No.7, Sept. pp. 1280-
1297.

12. Liu, C.L. and Layland, J.W. (1973). Scheduling
Algorithms for Multiprogramming in a Hard Real
Time Environment Journal of the ACM, Vol. 20, No.
1, January 1973, pp. 46 – 61.

13. Mahmood, A. (2000). A Hybrid Scheduling
Algorithm for Task Scheduling in Multiprocessor
Real-Time Systems. Technical Paper, Dept of
Computer Science, University of Bahrain

14. Neih, J., and Lam, M.S., (1997). The design,
implementation and evaluation of SMART: a
scheduler for multimedia applications. Proc. of 16th

ACM sypm. on operating system principles
(SOSP’97), St. Malo, France, Oct. pp. 184-197.

15. Notario C.B.P, Rogier Baert R. and D’Hondt M
(2012).Multi-Objective Genetic Algorithm for Task
Assignment on Heterogeneous Nodes. International
Journal of Digital Multimedia Broadcasting Volume
2012, Article ID 716780, 12 pages

16. Oluwadare, S.A. and Akinnuli, B.O. (2011). A Mixed
Integer Linear Programming Model for Real-Time
Task Scheduling in Multiprocessor Computer
System. Journal of Information and Communication
Technology, Universiti Utara, Malaysia.

17. Park J. and Yoo J. (2010). Hardware-Aware Rate
Monotonic Scheduling Algorithm for Embedded
Multimedia Systems. ETRI Journal, Volume 32,
Number 5 pp. 657- 664

18. Plagemann, T., Goebel, V., Halvorsen, P., and
Anshus, O. (2000). Operating system support for
multimedia systems. The Computer
Communications Journal, Elsevier, Vol. 3, No. 3,
February, pp. 267-289.

19. Ramamritham, K. (1996). Dynamic Priority
Scheduling, Real-time Systems Specification,
Verification and Analysis, in M. Joseph (Ed.),
Prentice Hall.

20. Sabeghi, M., Naghibzadeh, M., and Taghavi, T.
(2006). Scheduling non-preemptive periodic tasks in
soft real-time systems using fuzzy inference, in Proc.
9th IEEE Intl. Symp. Object and Component-
Oriented Real-Time Distributed Computing,
Gyeongju, Korea, pp. 27 – 32.

21. Seyed M.H., Said H.T. and Omid M. (2014) A
genetic algorithm for optimization of integrated
scheduling of cranes, vehicles, and storage
platforms at automated container terminals. Journal
of Computational and Applied Mathematics, 270
(2014) pp 545-556, www.elsevier.com/locate/cam,
Accessed 10/01/2015

22. Sutar, S.R, Sawant, J.P and Jadhav, J.R. (2006).
Task Scheduling for Multiprocessor Systems using
Memetic Algorithms, p 27/1 – 27/9.

23. Tanenbaum, A.S. (1994). Distributed operating
systems: Prentice Hall. pp. 250 – 275.

24. Thai, N.D. (2002). Real-time scheduling in
distributed systems, in Proc. International
Conference Parallel Computing in Electrical
Engineering, Warsaw, Poland, pp. 165 –170.

25. Yau, D.K.Y., and Lam, S.S. (1996). Operating
system techniques for distributed multimedia.
Technical Report, TR-95-36 (revised), Dept., of
Computer Sciences, University of Texas at Austin,
TX, USA.

Hybrid Genetic Algorithms for Scheduling High-Speed Multimedia Systems

© 2015 Global Journals Inc. (US)1

8

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

IV

V
er
sio

n
I

Ye
ar

20
15

(B
)

	Hybrid Genetic Algorithms for Scheduling High-Speed Multimedia Systems
	Author
	Keywords
	I. Introduction
	II. Review of Related Works
	III. Experimental Set-up
	IV. Results
	a) Success Ratio at different Task Arrival Rates and Chromosome Sizes
	b) Success Ratio at different number of iterations and chromosome sizes
	c) Performance of RM, EDF and HGAMTS at differentutilization factors

	V. Conclusion
	References Références Referencias

