
© 2015. Manjeet Kumar & Dr. Rabins Porwal. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 15 Issue 6 Version 1.0 Year 2015
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Agent based Software Testing for Multi Agent Systems
 By Manjeet Kumar & Dr. Rabins Porwal

 Mewar University Rajasthan, India

Abstract- Software testing starts with verification and validation and fulfills the requirement of the
customer. Testing can be done by automation tool like Win runner, QTP or manually. If we talk about
manual testing it takes lot of time and manpower also so nowadays we are using automation
software. When we talk about automation testing so the cost of such kind of testing is very high so
each company cannot afford. In this paper we are presenting agent based testing which is helpful for
both kind of testing. Multi-Agent Systems (MAS) are characterized by autonomous and collaborative
behaviors [1, 2]. Developing such systems is a complex process. As a result, a methodology for
developing MAS is highly necessary. In this paper, a methodology using roles and ontology for such
a purpose is presented [2]. The functionality of roles is estimated in the various phases of the MAS
development. It is based on an emphasis on the properties and behaviors associated with each
agent in MAS.

Keywords: software agent, muti agent system (mas), roles, ontology, bug, regression testing.

GJCST-C Classification : G.4 K.7.3

AgentbasedSoftwareTestingforMultiAgentSystems

Strictly as per the compliance and regulations of:

© 2015 Global Journals Inc. (US)

9

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er
sio

n
I

Ye
ar

20
15

 (

)
C

Agent based Software Testing for Multi Agent
Systems

Abstract- Software testing starts with verification and validation
and fulfills the requirement of the customer. Testing can be
done by automation tool like Win runner, QTP or manually. If
we talk about manual testing it takes lot of time and manpower
also so nowadays we are using automation software. When we
talk about automation testing so the cost of such kind of
testing is very high so each company cannot afford. In this
paper we are presenting agent based testing which is helpful
for both kind of testing. Multi-Agent Systems (MAS) are
characterized by autonomous and collaborative behaviors [1,
2]. Developing such systems is a complex process. As a
result, a methodology for developing MAS is highly necessary.
In this paper, a methodology using roles and ontology for such
a purpose is presented [2]. The functionality of roles is
estimated in the various phases of the MAS development. It is
based on an emphasis on the properties and behaviors
associated with each agent in MAS.

I. Introduction

oftware testing is an exercise to simulate a
system. Testing provides the program to get the
desired goal. Testing analyze a program with the

intent of finding problems and errors that measures
system reliability. Testing cannot show the absence of
bugs. It proceed the evaluation to SRS and is indication
of software correctness. Testing consists of identification
of required requirement and design as well as execution
test of code. Along with the progress of computer
network and communication, the research on MAS has
become one of the hotspots in distributed AI [5,6].
Agents have been steadily moving into more and more
significant applications [3]. Agents are capable to
support more naturally the development of software
systems whose components are heterogeneous and
autonomous. These properties make agents ideally
suited to applications in electronic commerce, virtual
enterprises, and other open settings [2]. In these
applications, agents must work in cooperation with
traditional systems. Because of the importance of these
applications and the risks of developing invalid systems,
techniques for building agents must compare well with
the techniques for building traditional application. There
is, thus, a major need for industrial-strength approaches
for engineering agent-based systems and to develop an

approach. Mean while, the concept of role and role
model [2]. This paper presents the significance of roles
in MAS and proposes a method to realize its potential.
The method supports dynamic binding between role
and agent.

Agent technology is very useful in Internet
computing. It is suitable for service oriented computing
and interact with each other . The OO methodology is
insufficient for developing agent-based systems
because it cannot naturally represent the essential
characteristics of agents, such as autonomous
behavior, designated environment. For example, a web
services application would be able to search for service
providers from a web services registry and then
dynamically establish a cooperation relationship with the
service provider and request services and emergent
behaviors resulting from the above characteristics
commonly occur in MAS. These properties are not
properly addressed in OO methodologies. Agent as a
key concept is necessary for systematic, effective and
efficient development of MAS.

Software agents represent an interesting
paradigm to develop intelligent and distributed systems,
because of their autonomy, proactiveness and reactivity;
in addition, their sociality enables the distribution of the
application logic in different agents that can interact
together and with the host environment. In such a
scenario interactions must be carefully designed and
managed at run-time[5]. The concept of role has been
adopted in different kind of agent approaches to flexibly
manage interactions. In particular, the approach
presented here can support and help the agent deciding
the role.

The existing works on agent-oriented software
engineering can be classified into two main camps:
technique based methods and generalizing related
methods. A technique specific method is based on a
specific agent language or agent theory and/or aims at
developing MAS to be executed on a specific agent
platform or environment. Technique specific methods
have a number of advantages [6,7]. They are practically
usable, efficient and effective for certain types of
software. These methods include guidance to
development process and supporting languages without
refer to any specific agent theory and implementations
techniques.

S

Manjeet Kumar α & Dr. Rabins Porwal σ

Author α : Research Scholar, Mewar University.
e-mail: manjeet2005@gmail.com
Author σ: Rajasthan Associate Professor, ITS Mohan Nagar, Ghaziabad.
e-mail: rabinsp@rediffmail.com

Keywords: software agent, muti agent system (mas),
roles, ontology, bug, regression testing.

Agent based Software Testing for Multi Agent Systems

© 2015 Global Journals Inc. (US)1

10

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er
sio

n
I

Ye
ar

 (

)
C

20
15

II. Software Agents vs. Roles

If we talk about software industry, software
agent can be used as a sunshade term for
development. Task oriented robots, user bots, personal
agents, autonomous agents and personal assistants are
all software agents[3,4]. Those tha vast computer
networks are known as soft bots[6]. In two general
usages of the term agent are distinguished: one as a
weak usage, two as a stronger and potentially more
contentious usage. A weak agent is hardware or
software based computer system with four key
properties autonomy, social ability, reactivity and
proactive ness. (i) Autonomous : An autonomous agent
can operate without the direct intervention of anything.
The internal state and goals should drive the agent to
move its autonomous actions towards completion of the
users or systems goals. (ii) Social ability: The ability to
interact with other agents by way of some agent-
communication language.(iii) Reactivity: A reactive
agent can perceive its environment and respond in a
timely fashion to changes that occur. (iv) Proactiveness:
By being proactive, an agent does not simply act in
response to platform. In [this attribute is a part of
autonomy and is not considered unique. However, in
[9,6], these are attributes “which agents should exhibit.

Several MAS methodologies such as MaSE
[3,7] have adopted the concept of role (or role model) in
analysis and design phases. In Gaia, a role is a
quadruple <responsibilities, permissions, activities,
protocols>. Role in MAS is defined as: (1) From the
conception perspective, a role is a constraint under
which an agent takes part in some interactions and
evolves in a certain way. In MAS, an agent behaves
under its bound roles. (2) From the implementation
perspective, a role is an encapsulation of certain
attributes and behaviors of the agent it is bound to. The
characteristics of agent role relationship are: (i)
Multiplicity: An agent can have more than one role at
one time; (ii) Dynamicity: An agent can dynamically
change its roles; (iii) Action ability (iv)Dependency:
Roles are not isolated, they must be other roles related
to an agent; (v)Role provides agent-to-agent interface
(vi) Software reuse by roles: Roles provide a facility for
efficient reuse.

III. Role-Based mas Development (rbmas)

An attractive feature of agent-orientation is that
it provides a powerful metaphor for describing,
understanding and modeling information systems that
contain multiple autonomous active information
processing agents and information sources and
receivers. A role is intended to enable software
engineers to use as a metaphor effectively to develop
such cooperative information systems systematically
through smooth and ordered transitions from models of
the current system and users’ requirements to the

designs and implementations of new systems in an
evolutionary way.

As shown in Fig1, an RBMAS considers such
evolutionary development of information system as
repeated cycles of modeling the current system and its
operation environment, designing a new system to be
executed in a new environment. This abstract model is
then refined and realized using more concrete concepts
to implement the new system. As this new system is
subject to further modification as users’ requirements
change and the organizational environment and
technology evolve, then a new cycle of modeling,
design, refinement. Therefore, role’s process of agent-
oriented software development can be divided into three
stages: (a) the analysis and modeling of the current
system(b) modifications to the system hence the
building of a model of the new system, (c) the
implementation of the new system.

Figure 1: Evolutionary life cycle of MAS

Models of information systems play at least two
important roles. The representation of the design of a
new system so that properties of the new system can be
inferred. The tester will be interested in different
properties of the model. In the former case, software
engineers will be interested in the following properties:
(1) correctness in terms of whether the model accurately
represents the real system to certain abstraction level;
(2) comprehensibility in terms that complex systems can
be represented in an comprehensible way. The following
properties of the new system: (i) the correctness of the
design in terms of whether users’ requirements are met;
(ii) the feasibility in terms of whether the design can be
implemented and how costly the implementation will be;
and, (iii) the sustainability in terms of its ease of
maintenance and ease of modification for the evolution
of the system in the future. Therefore, it is desirable to
know how much modification to the existing systems
required by the new design. It is also desirable to know
the modifiability and reusability of the designed system
in view of possible future development

Models of the
System and its
environment

Models of the
new System in
its environment

Information
System and its
environment

Modeling Implementing

Designing

© 2015 Global Journals Inc. (US)

11

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er
sio

n
I

Ye
ar

20
15

 (

)
C

Agent based Software Testing for Multi Agent Systems

We propose a role-based modeling language
tailored to (i) explicitly separate role from agent
conceptually and linguistically; (ii) roles exist throughout
the whole process of MAS development. The Flow chart
for main development Process of analysis and modeling
of roles is shown in fig 2.

a) Capture Use Cases
In fig 3, use case diagram for knowledge

Transfer with an example is explained. Professor actor
includes Explain Concept by Black Board use case or
Explain Concept by Practical / Projector use case
lecture in the class; student actor includes Grasp the
Concept use case to understand the lecture. In some
possible conditions, Explain Concept by Practical /
Projector use case may be extended by Explain
Concept by simulation use case. In [UML], detailed
information about <<include>> and <<extend>>
stereotypes is discussed.

Figure 3 : Use Case Knowledge Transfer

b) Ascertain Roles
Roles can be identified from use cases [9, 8].

However, use cases are not sufficient for describing all
the roles and events in the MAS. An assistant method is
to check the words with –er, -ist or –or suffix in the
requirement specification. Fig 4 shows an example
notation of role.

Figure 4 : Role Example of Research Scholar

c) Construct Role Organizations
Every role communicates and interacts with

other roles. Besides, roles can be specialized or
aggregated to other roles. Inheritance and aggregation
associations respectively denote specialize/generalize
and aggregate/decompose relations among roles. Fig 4
shows a role coordination chart triangle denotes
inheritance relation, diamond denotes aggregation
relation, and rectangle with a line on left-top corner
denotes organization [3,5,7].

Figure 2 : Flow Chart : Analysis and modeling of roles

<Goal>
Defend the Ph.D

Publish Paper
Take Patents

<Attribute>
Literature Survey
Identify the Goals

<Services>
Present/ Publish the Work

File for Patent
<Responsibility>
Defend the Work

Research
Scholar

Figure 5 : Roles in a university

Agent based Software Testing for Multi Agent Systems

© 2015 Global Journals Inc. (US)1

12

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er
sio

n
I

Ye
ar

 (

)
C

20
15

d) Bind Roles to Agents
For each role, the appropriate agent may

belongs to to agent classes directly (fig 5). An agent has
a name, attributes in the below figure Role Organization
is given.An agent can change its roles dynamically. To
make this property clear, we apply finite automata to
describe agent’s role transitions (role transition). All the
roles are bound to the agent. Role binding describe
initial binding of role to agent. The rectangle is a
compact form of agent and the rectangle with semi-
circle is a compact form of role

Figure 6 : Student Agent

Figure 7 : Role Binding

Figure 8 : Role

IV. Ontology Overview

Ontology is description of problem domain,
where entities of the domain, its properties and its
relations are described. In a sense it is vocabulary,
thesaurus or taxonomy. It is a set of definitions of
content-specific knowledge representation primitives
(classes, relations, functions and constants). It
represents the hierarchical structuring of knowledge
about things by subcategorizing them according to their
essential qualities.

The huge advantage of ontology is not in
processing, but in sharing meaning, emergence and
discovery of gaps and for improving a tacit knowledge
transfer. Computer-based ontology provides formal and
structured representation of domain knowledge. It is
designed to serve as a raw material for computer
reasoning and computer-based agents. It provides a
formally defined specification of the meaning of those
terms, which are used by agents during their
interoperation. It is important, because agents can differ
in their understandings of environment, goals
capabilities, but they can still interoperate in order to
perform a common task.

a) Agent Communications and Ontology
Common agent languages hold the promise of

diverse agents communicating to provide more complex
functions across the networked world. Indeed, as
agents grow more powerful, their need for
communication increases. The two agent commu-
nication languages with the broadest uptake for
exchanging information and knowledge are KQML [3]
and FIPA (Foundation for Intelligent Physical). The
unproductive “standards war” scenario that might have
arisen at one point seems now to have been avoided,
with the most active participants supporting the FIPA
effort, which incorporates many aspects of KQML [3].
FIPA standardization effort, seeks to address
interoperability concerns through a sustained program.
This is one area in which the visibility of agent
technology is strong, with some of the most active take-
up efforts from early adopters as, for example, is
illustrated in [2]. Despite their merit, KQML and FIPA
ACL only deal with agent-to-agent communication. An
agent is understood as something that can act on behalf
of a human or an organization.

Communication can be understood also as
main sensors for software agents, since it is how agents
can learn, share knowledge and interact with their
environment, by communication, [FIPAACL] based
communication is meant, where as content language
RDF [RDFW3C] or OWL [OWLWEB] is used.
Commercial technologies like WSDL, XML-RPC, SOAP
or P2P came out of MAS research area. For example
WSDL and UDDI can be understood, as a subset of
what FIPA ACL is capable, however for most of
applications features of XML-RPC or for most

© 2015 Global Journals Inc. (US)

13

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er
sio

n
I

Ye
ar

20
15

 (

)
C

Agent based Software Testing for Multi Agent Systems

complicated interaction SOAP and WSDL is sufficient.
Agents can move forward only when they incorporate
existing commercial communication technologies such
as XML-RPC, SOAP and WSDL, and thus they will be
able to communicate within the user and other existing
software systems.

b) Ontology in MAS
Ontology defines the meaning of the terms in

used content language and the relation among these
terms. It ensures that the agents ascribe the same
meaning to the symbols used in the message. Using
ontology not only allows communication between
agents but also gives the possibility for agents to reason
about the concept.

Ontologies are dependent on used content
language. In MAS ontologies are usually simple. The
best-known implementation of ontology is in JADE agent
system. Real Java classes with properties represent
ontology classes. Instances of classes are individuals –
information that can be stored or communicated.
However UML or object oriented ontology is not
sufficient because, multiple inheritance, inverse
properties and other features present in RDF or OWL
can not be used.

V. Conclusions and Future Work

Roles represent system goal and constrain
agents’ behavior. They exist throughout all phases from
analysis to implementation, and this is the main
difference to previous works on role both in OO and in
agent orientation (AO) . Such a model can enable a
natural realization of dynamic bindings between agents
and roles. Besides, the RBMAS method generates roles
from use cases. This prevents jumping from abstract
use cases to concrete entities.

The paper presents the software infrastructure
introduced into the agent service framework in order to
support ontology design, implementation, and
management. Software ontology’s are a high level
abstraction which is very useful for identifying the
concepts of a problem domain, to define their relation,
and to reason about them. Ontologyies give an added
value to the interaction among software agents since
they provide facilities to define a communication and to
validate messages.

References Références Referencias

1. Agent Cities Consortium, Agent Cities.NET Project
IST200028384,2002,

2. Andersen, E. (Egil), Conceptual Modeling of
Objects: A Role Modeling Approach, PhD Thesis,
97.

3. http://www-ksl. kst/what-is-an-ontology.html
4. Bates, J. (1994), "The Role of Emotion in Believable

Characters", Comm of the ACM 37 (7),
5. Bauer, B., Muller, J.P., Odell, J., Agent UML: a

formalism for specifying multiagent software

systems, in Agent-Oriented Software Engineering,
Wooldridge, M, Editor. LNCS, Vol. 1957, 2001:
Springer, pp. 91~103.

6. Boella, G., van der Torre, L.: Attributing mental
attitudes to roles: The agent metaphor applied to
organizational design. In: Proc. of ICEC’04, IEEE
Pres 04

7. Boella, G., van der Torre, L.: Organizations as
socially constructed agents in the agent oriented
paradigm. In: Procs. of ESAW’04, Berlin, Springer
Verlag (2004)

8. Boella, G., van der Torre, L.: Groups as agents with
mental attitudes. In: Procs. of AAMAS’ 04, ACM
Press (2004) 964–971

9. Boella, G., van der Torre, L.: Regulative and
constitutive norms in normative multiagent systems.
In: Procs. of KR’04, AAAI Press (2010)

10. Cabri, G., Ferrari, L., Leonardi, L.: Agent role-based
collaboration and coordination: a survey about
existing approaches. In: IEEE Systems, Man and
Cybernetics Conference. (2008)

11. Chandra K. Sekharaiah , Md Abdul Muqsit Khan, U.
Gopal Affective Computing: Next Generation AI
Software Systems Icfai Journal of Information
Technology, Vol. 3, No. 4, pp. 61-74, Dec 2007

12. Chandra K. Sekharaiah , Md Abdul Muqsit Khan, U.
Gopal Computer Ergonomics: Relooking at
Machines Vs. Environment International Ergonomics
Conference HWWE IIT Guwahati Dec 2009

13. K. Chandra Sekharaiah, D. Janaki Ram, Mohd.
Abdul Muqsit Khan The Peculiarities of Software
Composition Models Journal of Digital Information
Management (ISSN 0972-7272) Volume 3 Issue 3
Online Aug Print September 2009

14. Chandra K. Sekharaiah , Md Abdul Muqsit Khan, U.
Gopal Obstacles to Machine Translation
International Journal of Translation Aug 2006

15. Giovani Caire, JADE Tutorial Applicationdefined
Content Languages

16. DARPA, DAML Website, 02, www.daml.org/
17. FIPA, FIPA Specification ACL Message Structure,

2008

This page is intentionally left blank

Agent based Software Testing for Multi Agent Systems

© 2015 Global Journals Inc. (US)1

14

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
I
V
er
sio

n
I

Ye
ar

 (

)
C

20
15

	Agent based Software Testing for Multi Agent Systems
	Author
	Keywords
	I. Introduction
	II. Software Agents vs. Roles
	III. Role-Based mas Development (rbmas)
	a) Capture Use Cases
	b) Ascertain Roles
	c) Construct Role Organizations
	d) Bind Roles to Agents

	IV. Ontology Overview
	a) Agent Communications and Ontology
	b) Ontology in MAS

	V. Conclusions and Future Work
	References Références Referencias

