
© 2015. K.Tamilsevan, Dr. A. Satheesh “Scientist”  & Dr.S.Natarajan. This is a research/review paper, distributed under the terms of the 
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all 
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited. 

  
Global Journal of Computer Science and Technology: E 
Network, Web & Security  
Volume 15 Issue 2 Version 1.0 Year 2015 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 

Real Time Kernel Based Hot Spot Communication Using 
Raspberry PI      

By K.Tamilsevan, Dr. A. Satheesh “Scientist”  & Dr.S.Natarajan                                                                                       
 

Abstract- The Real time application of an embedded Linux is essential in the area of device driver 
platform. Device driver plays a vital role of both hardware and software. Configuration of raspberry Pi 
Processor in various commands sets in Embedded Linux by enabling of Wi-Fi Device by scratch 
Process of various units in hardware. More number of devices can be accessed without any problem 
enabling N number of connections. The development of a kernel is finally changed into an image. 
That Backup structure will enabled by the Core-image-minimal process.            

GJCST-E Classification :  D.4.7 

 

RealTimeKernelBasedHotSpotCommunicationUsingRaspberryPI                                                                       
 
 
 
 
 
 
 

Strictly as per the compliance and regulations of: 
 

Nandha Engineering College University, India



Real Time Kernel Based Hot Spot 
Communication Using Raspberry PI 

K.Tamilsevan α, Dr. A. Satheesh “Scientist” σ & Dr.S.Natarajan ρ 

Abstract- The Real time application of an embedded Linux is 
essential in the area of device driver platform. Device driver 
plays a vital role of both hardware and software. Configuration 
of raspberry Pi Processor in various commands sets in 
Embedded Linux by enabling of Wi-Fi Device by scratch 
Process of various units in hardware. More number of devices 
can be accessed without any problem enabling N number of 
connections. The development of a kernel is finally changed 
into an image. That Backup structure will enabled by the Core-
image-minimal process. Implementations of the bit bake 
execution to form an image configuration. Finally a pure kernel 
with a Device Driver bride module is done.  Here efficient to 
create a new hotspot communication by Raspberry Pi board. 

I. Introduction 

he kernel development for Raspberry Pi was 
essential to execute reduced time consuming 
methodologies. The description is systematic 

developments of kernel development and various 
control strategy proposed techniques are given below. 
The need for highly reliable time efficient system real-
time operating systems are useful for measurement and 
control applications, and how they differ from standard 
general-purpose operating systems like Windows.. 

II. Problem Identification 

GUIs take up a much larger amount of hard 
disk space than other interfaces.They need significant 
more memory RAM to run than other interface 
types.They can slow for experienced programmers to 
use.  These people often find CLI interfaces faster than 
to use. More time is required for allocate individual 
application. Not able to execute multitasking sections. 
Flexibility is more. 

III. Existing System 

Existing system microcontroller will be 
configured RTOS code. There will not have a sufficient 
memory for a large code. Microcontroller not able to 
support for multitasking and scheduling process. 

IV. Proposed System 

The main objective of the system, 
• To implement a pure kernel system in an Empty 

manner for creates an efficient platform for device 
driver.  

Author
 α σ ρ: P.G Scholar,

 

Professor & Dean, School of Electrical 
Sciences, Nandha Engineering College, United institute of technology.

  

e-mail: tamilselvankesavan@yahoo.com
 

• To make and configure they image data and beagle 
bone setup in terminal window.unless the hardware 
being control 

a) Algorithm for Empty kernel 
In Linux operating system will able to execute 

the instructions in the terminal window. Here various 
parameter and command sets will run in the terminal 
window. Creating a directory setup updating the 
essential packages. Then install Yocto project simulator 
tool is prospective manner from the company website. 

Step 1  - go to terminal and connect to internet  
Step 2  - sudo apt-get update  

Step 3  - sudo apt-get install build-essential  

Step 4  - git clone -b dylan git://git.yoctoproject.org/ 
poky.git  

Step 5  - cd poky ( getting into the folder of yocto)  

Step 6  - source oe-init-build-env build-tamil-arm-
simulation (creating a build directory in the name of 
yours)  

Step 7  - bitbake -k core-image-minimal (compiling ---- 
it will take more time to download and compile)  

Step 8  - runqemuqemuarm (running the simulation) 

V. Block Diagram 

These patches usually do only one thing to the 
source Code they are built on top of each other, 
modifying the source code by changing, adding, or 
removing lines of code. Each patch should, when 
applied, yield a kernel which still builds and Works 
properly. This discipline forces kernel developers to 
break their changes down into small,of the traditional 
embedded bootloaders (uBoot, RedBoot, etc..), 
delivering high flexibility and total system control in a 
100% Linux-based small-footprint embedded solution. 
Version. On embedded systems, devices are often not 
connected through a bus allowing enumeration, hot 
plugging, and providing unique identifiers for devices. 
 

T 

© 2015   Global Journals Inc.  (US)

19

G
lo
ba

l 
Jo

ur
na

l 
of
 C 
 o

m
p u

te
r 
S c

ie
nc

e 
an

d 
T  
ec

hn
ol
og

y  
  
  
  
  
V
ol
um

e 
X
V
 I
ss
ue

 I
I 
V
er

sio
n 

I
Ye

ar
  

 (
)

E
20

15



 

Figure 5.1 : Block Diagram for Hotspot 

VI. Boot Loader 

Boot loader is a piece of code that runs before 
any operating system is running.   

 

Figure 6.1 : Image formation for SD card 

 However, we still want the devices to be part of 
the device model. The solution to this is the platform 
driver / platform device. Infrastructure. The platform 
devices are the devices that are directly connected to 
the CPU, without any kind of bus. 
 

 

Figure 6.2 : Hardware Module 

VII. Comparision 

Table 1.1 : Comparisons of Parameters 

Parameter Existing 
System 

Proposed System 

Boot loader size 40 KB 32 KB 
Kernel size 2MB 1.5MB 
Boot time 30 Sec 25 Sec 
Threading Single Thread Multi thread 
No of Devices 
Connectivity 

Limited to 5 
Devices 

N number of Device 
Connectivity 

VIII. Conclusion 

 Embedded Linux is an essential platform for 
advanced real world interfaces. Here kernel 
development will Executed in the idea of image 
formations. Various command sets are used to develop 
a kernel in the research idea of bit bake executions. 
Here poky setup will identify directory setup respective 
progress. Here setup of a core images are configured in 
poky configuration of a tool. YOCTO project are used to 
make a simulate and analyse the hardware bridge 
module as a device driver section. Finally creation of an 
empty kernel in a reduced boot time execution. Finally 
hot spot communication are achieved. 

References Références Referencias 

1. AndiKleen “On submitting kernel patches” article 
2010. 

2. Andrew Morton kernel.org development and the 
embedded  world http://userweb.kernel.org/~akpm/ 
rants/elc-08.odp

3. Dumitru TODOROI “Creativity’s Kernel Development 
for Conscience Society”InformaticaEconomicăvol. 
16, no. 1/2012 

. 

4. Divya Sharma “Porting the Linux Kernel to Arm 
System-On-Chip And Implementation of RFID 

Real Time Kernel Based Hot Spot Communication Using Raspberry PI

© 2015   Global Journals Inc.  (US)1

20

G
lo
ba

l 
Jo

ur
na

l 
of
 C 
 o

m
p u

te
r 
S c

ie
nc

e 
an

d 
T  
ec

hn
ol
og

y  
  
  
  
  
V
ol
um

e 
X
V
 I
ss
ue

 I
I 
V
er

sio
n 

I
Ye

ar
  

 (
)

E
20

15



Based Security System Using ARM” Volume 3, 
Issue 5, May 2013 

5. http://www.ijisr.issr-journals.org. 
6. http://www.sciencedirect.com/science/journals/all 
7. http://landley.net/writing/docs/cross-compiling.html 
8. Jae Hwan Koh and ByoungWook Choi  “Real-time 

Performance of Real-time echanisms for RTAI and 
Xenomai in Various Running 
Conditions”International Journal of Control and 
Automation Vol. 6, No. 1, February, 2013. 

9. JaydevsinhJadeja, ChintanKapadiya,  “Porting the 
Linux Kernel to Beagle Bone Black”IJSRD - 
International Journal for Scientific Research & 
Development| Vol. 2, Issue 02, 2014 | ISSN 
(online): 2321-0613. 

10. Jonathan Corbet, “Linux Kernel Development” A 
White Paper By The Linux Foundation December 
2010. 

11. James William TOPLISS “Latency Performance for 
Real-Time Audio on BeagleBone Black” in IEEE 
RealTime Technology and Applications Sympo-
sium, pages 133{142. IEEE Computer Society. 

Real Time Kernel Based Hot Spot Communication Using Raspberry PI

© 2015   Global Journals Inc.  (US)

21

G
lo
ba

l 
Jo

ur
na

l 
of
 C 
 o

m
p u

te
r 
S c

ie
nc

e 
an

d 
T  
ec

hn
ol
og

y  
  
  
  
  
V
ol
um

e 
X
V
 I
ss
ue

 I
I 
V
er

sio
n 

I
Ye

ar
  

 (
)

E
20

15



 
 

 
 

 

 
 
 
 
 
 
 
 
 
 

This page is intentionally left blank 

© 2015   Global Journals Inc.  (US)1

22

G
lo
ba

l 
Jo

ur
na

l 
of
 C 
 o

m
p u

te
r 
S c

ie
nc

e 
an

d 
T  
ec

hn
ol
og

y  
  
  
  
  
V
ol
um

e 
X
V
 I
ss
ue

 I
I 
V
er

sio
n 

I
Ye

ar
  

 (
)

E
20

15
Real Time Kernel Based Hot Spot Communication Using Raspberry PI


	Real Time Kernel Based Hot Spot Communication Using Raspberry PI
	Author
	I. Introduction
	II. Problem Identification
	III. Existing System
	IV. Proposed System
	V. Block Diagram
	VI. Boot Loader
	VII. Comparision
	VIII. Conclusion
	References Références Referencias



