Improved Interoperability in Heterogeneous Nodes for MANETs

By T. V. Krishna Reddy & Mr K. S. Ranjith M.E
Sree Vidyanikethan Engineering College, India

Abstract- By using the power aware heterogeneous routing protocol to establish routes between heterogeneous nodes. Protocol used to analyze the nodes residual energy and power cost. The existence of multiple routes between nodes, selecting the node with less power consumption is used to select the appropriate route to maintain interoperability between nodes. The source to destination communication can be done by the intermediate nodes. Multi-interfaced node with low energy could continue to fall on optimal routes and such a node could offer a link between heterogeneous nodes where no other link is possible. Thus such a node could suffer energy shortage and fade out from the network. This approach is to integrate update messages to the proposed messages which allow a node to transmit from source to neighbouring nodes with its residual energy status and enforce the modification of power cost associated with routes.

Keywords: Interoperability, heterogeneous, nodes, energy consumption, residual energy.

GJCST-E Classification : C.2.2 C.2.3

Strictly as per the compliance and regulations of:
Improved Interoperability in Heterogeneous Nodes for MANETs

T. V. Krishna Reddy & Mr. K. S. Ranjith M.E

Abstract - By using the power aware heterogeneous routing protocol to establish routes between heterogeneous nodes. Protocol used to analyze the nodes residual energy and power cost. The existence of multiple routes between nodes, selecting the node with less power consumption is used to select the appropriate route to maintain interoperability between nodes. The source to destination communication can be done by the intermediate nodes. Multi-interfaced node with low energy could continue to fall on optimal routes and such a node could offer a link between heterogeneous nodes where no other link is possible. Thus such a node could suffer energy shortage and fade out from the network. This approach is to integrate update messages to the proposed messages which allow a node to transmit from source to neighbouring nodes with its residual energy status and enforce the modification of power cost associated with routes.

Keywords: Interoperability, heterogeneous, nodes, energy consumption, residual energy.

I. Introduction

Remote cell frameworks have been being used since 1980s and we have seen their developments to in the first place, second and third era’s remote frameworks. These frameworks work with the backing of a brought together supporting structure, for example, an entrance point. The remote clients can be associated with the remote frame work by the assistance of these entrance focuses, when they meander from one spot to the next.

The versatility of frameworks is constrained by the vicinity of an altered supporting direction. It implies that the innovation can’t work effectively in that places where there is no perpetual framework. Simple and quick organization of remote systems will be normal by the future era remote frameworks. This quick system organization is impractical with the current structure of present remote frameworks.

Late head ways, for example, Bluetooth presented a crisp kind of remote framework works which is every now and again known as versatile specially appointed systems. Versatile impromptu systems or “short live” systems control in the nonexistence of perpetual framework. Portable specially appointed system offers speedy and level system arrangement in conditions where it is impractical something else.

II. Related Work

Past and late deal with heterogeneous MANET steering conventions have not characterized heterogeneity obviously (Al Aamri et al., 2010; Avudainayagam et al., 2003; Clausen and Jacquet, 2003; Fujiwara et al., 2012; Kunz, 2008; Liu et al., 2011; Souto et al., 2012; Stuedi, 2005; Tanetal., 2009; Xie et al., 2007; Zhang et al., 2011; Xie et al., 2007). remaining have overlooked the hub heterogeneity and concentrated on steering among heterogeneous systems each of which is include homogeneous nodes[Fujiwara et al., 2012]. Some have characterized heterogeneous system of a system containing portable hubs with different interfaces (Al Aamri et al., 2010; Clausen and Jacquet, 2003; Kunz, 2008; Safa et al., 2007; Stuedi, 2005; Tanetal., 2009; Xie et al., 2007; Zhang et al., 2011; Liu et al., 2011). a heterogeneous system is a system involving versatile hubs with diverse vitality supplies, distinct transmission powers, or distinct information rates (Avudainayagam et al., 2003; Liu et al., 2011; Zhang et al., 2011; Xie et al., 2007). remaining have overlooked the hub heterogeneity and concentrated on steering among heterogeneous systems each of which is include homogeneous nodes(Fujiwara et al., 2012) some have characterized heterogeneous system of a system containing portable hubs with different interfaces (Al Aamri et al., 2010; Clausen and Jacquet, 2003; Kunz, 2008; Safa et al., 2007; Stuedi, 2005; Tanetal., 2009; Xie et al., 2007; Zhang et al., 2011; Liu et al., 2011). we characterize heterogeneous MANET as a system shaped of heterogeneous hubs and a portion of the hubs may have more than one remote interfaced and the remote interfaces can be of diverse remote advances along these lines, the course are heterogeneous courses.

The Table-driven DSDV convention is a adjusted variant of the Distributed Bellman-Ford (DBF) Algorithm that was utilized effectively as a part of numerous element bundle exchanged systems. The bellman-ford strategy gave a method for ascertaining the most limited ways from source to destination hubs, if the measurements to every connection are known. DSDV utilizes this thought, yet defeats DBF’s propensity to make directing circles by including a parameter called destination-grouping number. In DSDV, every hub is obliged to transmit a grouping number, which is intermittently expanded by two and transmitted alongside whatever other steering redesign messages to every single neighbouring hub. On gathering of these redesign messages, the neighbouring hubs utilize the accompanying calculation to choose whether to

Author a: M. Tech –II Year Computer Science Sree Vidyanikethan Eng Cig., Tirupati.
Author c: Assistant Professor Department of Cse Sree Vidyanikethan Eng Cig., Tirupati. e-mail: sreenath.raichur@gmail.com

Impromptu is a Latin word, which signifies “for this or for this just”. Mobile specially appointed system is a self-ruling arrangement of versatile hubs joined by remote connections; every hub works as an.
overlook the overhaul or to roll out the essential improvements to its directing table.

The ad hoc on demand distance vector routing (AODV) convention is a responsive unicast steering convention for versatile impromptu systems. As a receptive steering convention, AODV just needs to keep up the directing data about the dynamic ways. In AODV, the steering data is kept up in the directing tables at all the hubs. Each portable hub keeps a next bounce steering table, which contains the destinations to which it as of now has a course. A directing table passage terminates in the event that it has not been utilized or reactivated for a pre specified close time.

On demand tree based routing protocol used to combining the levels of node by node by using the algorithm is Tree based optimized flooding. Which can be used to increase the connectivity and extending the network lifetime.

In OTRP (on demand tree based routing protocol) will process the work based on the intermediate nodes from source node to the destination node. Here the route request send to every node based on transfer the information is same as AODV protocol.

In light of system size and unidirectional connection to be discovering the heterogeneous courses from source to destination by utilizing the force mindful heterogeneous steering convention. These attributes make MANET conventional directing conventions awkward in a heterogeneous situation

III. Motivation

In mobile ad hoc network the energy consumption problems occurred like battery status of mobile nodes. Mainly in mobile nodes the Bluetooth and Wi-Fi connection formed on wireless technology and Bluetooth node consumes much energy consumption compare to Wi-Fi connection. It overcome those problems by using to know their energy status of neighbouring nodes to transfer the data

IV. Statement of a Problem

Multi-interfaced node with low energy could continue to fall on optimal routes and such a node could offer a link between heterogeneous nodes where no other link is possible. Thus, such a node could suffer energy shortage and fade out from the network.

V. Proposed System

To integrate updated message to the proposed messages which allows a node to signal to neighboring nodes its residual energy status and enforce the modification of power cost.

VI. Problem Domain

Basically network is collection of nodes. In mobile ad hoc network is a wireless network that is

1. Infrastructure network
2. Infrastructure less network

Coming to our problem is infrastructure less network i.e Bluetooth, Wi-Fi connection are like here data traffic, power consumption problems are occur so here how much energy consumed by those are formed in infrastructure less network.

a) Mathematical model

\[BL = 1 - \frac{\text{data in queue list}}{\text{amt in bfr}} \]

Data in queue list is number of queued packets to be transmitted. \(CT = \text{Cost}_{\text{trans}} + \text{Cost}_{\text{ref}} \) is cost for gathering the channel forwarding either Bluetooth, Wi-Fi \(\text{Cost}_{\text{trans}} \) is cost forwarding of a packet over a link. \(\text{Cost}_{\text{ref}} = \text{message data forward in bytes}. a \) is the cost per byte and change when Wi-Fi, Bluetooth.

\[\text{ESB} = \frac{\text{SBE}}{\text{PBE}} \]

Where \(0 \leq a \leq 1 \) \(a \) -can be changed for saving battery power of hubs

b) Notations

- DD – Data delivery
- ML – Maintainance of load
- CT = Cost for the transmission
- ESB = energy storage in battery
- SBE = Initial Battery Energy
- PBE = Current Battery Energy
- EC = Energy Cost
- DD_Dest - Data delivery storage of hub on the path
- ML_Dest - Load maintainance over the hub in the path
- Conv_Dest - Conversion rate resembling all the conversions over the path
- EC_Dest - Energt rate assign the destination path
- BL_Route - balance the burden parameter held at node resembling the load present on it

Notations

- Data in queue list
- Amount in buffer
- Transmission cost
- Reference cost
- Current battery energy
- Initial battery energy
- Energy storage in battery
- Cost for data delivery
- Cost for reference
- Balance the burden parameter
- Conv.Route – Transformation expense looking like the expense of changing from starting with one innovation then onto the next
- EC.Route - Energy cost assign with the route

c) Power aware routing algorithm

Step 1: Here the node is received with same originator ip address and route request then simply discard the newly received route request.

Figure: RREQ processing flow chart
Step 1. Source sends the request message to all neighbours
Step 2. Request message from same node then
Step 3. Ignore the request
Step 4. Else update the route table
Step 5. If node is a destination
Step 6. Produce route reply message
Step 7. Node > threshold level and Integrate message
Step 8. DD_Route, PC_Route, and Conv_Route and flood request
Step 9. otherwise ignore the request and update route parameters
Step 10. DD_Route + DD_Dest, PC_Route + PC_Dest
Step 11. Generate route reply message.

VII. Simulation Model

In this experiment we are setting different nodes to analyze the performance of the system. Here we consider 50 nodes, we configure the nodes with wireless network properties. Here we are implementing in the Network Simulator 2.

<table>
<thead>
<tr>
<th>Channel type</th>
<th>Wireless channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio propagation model</td>
<td>Two ray ground</td>
</tr>
<tr>
<td>Network interface</td>
<td>Wireless/phy</td>
</tr>
<tr>
<td>MAC type</td>
<td>MAC/802_11</td>
</tr>
<tr>
<td>Interface queue type</td>
<td>Queue/Drop tail</td>
</tr>
<tr>
<td>Link layer type</td>
<td>LL</td>
</tr>
<tr>
<td>Antenna model</td>
<td>Omni Antenna</td>
</tr>
<tr>
<td>Number of nodes</td>
<td>50</td>
</tr>
</tbody>
</table>

VIII. Results

Figure 2: Comparison of throughput
Figure 3: Comparison of residual energy status

Residual energy: which allows a nodes residual energy status to signalling to the neighbouring nodes based on we can travel the messages from source to destination. The fig 3 shows the AODV,PHAODV will compare the result. AODV protocol will doing less performance compare to that of PHAODV.

IX. Analysis Results

In experimental design, let us taking 20 nodes of their residual energy status based on finding the best path from source to destination as follows. Here we are taking the available routes between source to destination of their energy based to transmit the data.

a) **Input**
 - Suppose Select the source node is: 25
 - Suppose select the destination node is: 34

b) **Output**
 - Available route: 25 28 11 18 34
 - Average energy value of path: 74.598999
 - 1 = 13
 - Available route: 25 35 14 32 18 34
 - Average energy value of path: 74.232333
 - Node neighbouring: 14
 - Sorted energy: 65.19899 66.19899 67.232333 68.89899 69.39899 70.39899 71.39899
 - Avalue(3): 75.06566
 - best path list: 5
 - best path: 25 48 14 32 18 34
 - data transmission: 25 48 14 32 18 34

X. Conclusion

In these paper, the proposed approach was implemented in network simulator and its performance was compared to that of AODV, PHAODV. The performance metrics was taken into the through put, and residual energy status. By using those metrics to signal the residual energy status of neighbouring nodes based on easily transferring the messages from source to destination. The Future work resides the modification of energy cost and threshold levels depend on the node residual energy, which may decreasing error messages across the network.

References Références Referencias

networking and application (ANIA-2013); Barcelona Spain; March 2013.