
© 2017. Koffka Khan. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/ licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Quantum Computing Tutorial Bits vs Qubits and Shor’s Algorithm
 By Koffka Khan

 The University of the West Indies
Abstract- The speculative inquiry that computation could be done in general more efficiently by
utilizing quantum effects was introduced by Richard Feynman. Peter Shor described a
polynomial time quantum algorithm for factoring integers by a quantum machine, which proved
the speculation true. Quantum systems utilize exponential parallelism, which cannot be done by
classical computers. However, quantum decoherence poses a difficulty for measuring quantum
states in modern quantum computers. This paper elaborates on some basic concepts applied to
quantum computing. It first outlines these key concepts, introduces the mathematics needed for
understanding quantum computing and finally explores the Shor’s Algorithm as it applies to both
classical and quantum computer security.

Keywords: quantum; computing; shor’s; algorithm; security.

GJCST-G Classification: I.1.2, F.2.2

Quantum ComputingTutorialBitsvsQubitsandShorsAlgorithm

 Strictly as per the compliance and regulations of:

Global Journal of Computer Science and Technology: G
Interdisciplinary
Volume 17 Issue 2 Version 1.0 Year 2017
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Quantum Computing Tutorial Bits vs Qubits and
Shor’s Algorithm

Koffka Khan

Author:

Department of Computing and Information Technology,
University of the West Indies, Trinidad and Tobago, W.I.

e-mail: koffka_@hotmail.com

Abstract-

The speculative inquiry that computation could be
done in general more efficiently by utilizing quantum effects
was introduced by Richard Feynman. Peter Shor

described a
polynomial time quantum algorithm for factoring integers by a
quantum machine, which proved the speculation true.
Quantum systems utilize exponential parallelism, which cannot
be done by classical computers. However, quantum
decoherence poses a difficulty for measuring quantum states
in modern quantum computers. This paper elaborates on
some basic concepts applied to quantum computing. It first
outlines these key concepts, introduces the mathematics
needed for understanding quantum computing and finally
explores the Shor’s Algorithm as it applies to both classical
and quantum computer security.

Keywords:

quantum; computing; shor’s; algorithm;
security.

I.

INTRODUCTION

n 2017, IBM has a 16-qubit Quantum computer on the
cloud available for users worldwide. These and other
revolutionary breakthroughs over the past years have

propelled the world of quantum computing into the
spotlight.

First let us see, how classical computers work. A
classical computer works with the binary numbering
system, and the computer is not able to compute

with
the decimal numbering system. Binary system has only
two digits. All arithmetic operations are done by the
binary system based logic. Let us use an example of
adding two single digit binary numbers using yes or no
logic. Turn the first bit on, if any one of the bit is on, that
is exclusive OR. Turn the second bit on if both the bits
are on, that is AND. We can use electrical-switches as an
input device and lights as output device. Transistors can
be used for binary-logic based operations and turning on
or off the lights based on the switch settings. Transistors
can be inter-connected in particular way to pass the
electric-current by with switches. A mobile phone has
millions of transistors inside. A computer has billions of
transistors inside. Computer likes binary states.

How about the quantum state, which has the
states of both 0 and 1 at the same time? Binary bit state
may be 0 or 1. Quantum qubit state will be both 0 and 1
at the same time. As individual digits of input numbers
have all possible ways, the result will also have all
possible values. Two single digit qubit numbers addition
will make 4 possible combinations. Two double-digit

Qubit numbers addition will make 16 possible
combinations and so on. All types of arithmetic
operations do this kind of computation. Therefore, a
quantum computer computes all possible ways in
parallel. But classical computer computes only one at a
time. Take the maze as an example. The maze has an
entrance and the maze is inside. The entrance is split
into multiple paths and has only one exit. The task of
computer is to find the correct path which leads to the
exit. Classical computer has to travel each path to find
the exit. However, a quantum computer can travel all
paths simultaneously and find the exit immediately. It
computes all possible combinations simultaneously and
choosing the best one.

Classical computer uses transistors to create
binary-based Logic-Gates. Subatomic particles such as
electrons and photons behave in a very strange way.
Electron has a property of spin. The spin state may be
Up, Down, Right or left. The spin state will be both Up
and Down or Right and Left simultaneously in particular
scenario. Such a state is called superposition [3] state.
Photon has a property of polarization. The polarization
state may be horizontal, or vertical. The polarization state
will be both horizontal and vertical simultaneously in
particular scenario. Light has strange behavior in the
double-slit experiment. Light without any slit shows
normal pattern. Light passing through single slit is
spread out, because of quantum uncertainty behavior.
Light passing through double slit shows interference
pattern because of the wave behavior of light. Passing
single photon at a time in single slit hits random place,
accumulates and shows the same spread pattern over
the period. Passing single photon at a time in double slit
hits random place, accumulates and shows the same
interference pattern over the period. How can a single
photon which is not a wave, show interference pattern?
Actually, it splits in to two photons, passing through slits
simultaneously, interferes with itself and shows
interference pattern. The photon is in superposition state
of passing both slits. The spread-pattern of single slit is
also the superposition state of a photon is in all position
simultaneously. The photon resides in this area with the
possibility of all combinations. This superposition state
can be used to create qubits, which is used in quantum
computers. Superposition of particle spin can be used to
create quantum logic gates. The superposition is
collapsed and turned in to definite state when it gets
measured.

I

35

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
II

V
er
sio

n
I

Y
e
a
r

20
17

(
)

G

This paper consists of three sections. Section II
discusses Quantum Concepts. Section III explores the
Mathematics that support Quantum Computing, Section
IV explains why cryptographic codes are so hard to
break and finally Section V discusses Shor’s Algorithm
and Quantum Security.

II. QUANTUM CONCEPTS

The fundamental unit of a classical computer is
a bit. Bits have two states, 0 and 1. A classical computer
takes in a string of bits and use logic gates to switch
some of the bits. Quantum computers use quantum bits
(qubits, [6]). Like a bit, a qubit can be in state 0 or state
1. Also like a classical computer, the initial program for a
quantum computer is just a string of zeros and ones.
However, while a quantum computer is running, its
qubits can also be in infinitely many super positions [3]
between 0 and 1. When a qubit is in a superposition, it
has some probability of being in state 0 and some
probability of being in state 1. You can think of a
superposition as being a mixed state partway between 0
and 1. However, super positions are fragile. If we look at
it or try to measure it, the qubit will collapse into a basic
state, either 0 or 1. You might know this from the famous
Schrodinger's cat thought experiment. Before opening
the box, the mythic cat is in a superposition of alive and
dead. However, when you observe the cat, it is forced to
pick a state, alive or dead, not both. Qubit materials are
usually things like electrons, where spin up corresponds
to state 0 and spin down corresponds to state 1.

Let us see an example of a quantum
computation with two qubits. There is four basic states, 0
0, 1 0, 0 1, and 1 1. The two classical bits can be in these
states. However, there are also infinitely many states
formed by superpositions or combinations of these basic
states. Each operation of a quantum computation is
performed by a quantum gate, which, like a classical
gate, changes the state the qubits are in. Let us start our
quantum computation in 0 0 and then apply a quantum
gate. Now the qubits are in a superposition. There is a
1/2 probability or 50% chance of being 0 1 and a 1/2
probability of being 1 0. The particular superposition
position it is in is a result of the quantum gate we chose
to apply. Here is one more quantum gate, changing the
state of our computation. At the end of the quantum
computation, we observe or measure the system.

However, we cannot see these delicate
superpositions. Remember, a superposition is like a mix
between basic states. When you observe the
computation and look at it from the perspective of these
basic states, it must pick one, collapsing the wave
function and revealing a single basic state. In this case, it
collapsed to state 0 1. If you run the same computation
repeatedly, the result will be 0 1 half the time, it will be 1 0
1/6 of the time, and 1 1 1/3 of the time. That is what the
numbers in the superposition tell you. The probability that

the superposition will collapse into each basic state. So if
you run the computation 100 times, roughly 50 times it'll
result in the state 0 1, 17 times it will result in state 1 0,
and 33 times it will result in state 1 1. This allows you to
recover the probabilities and therefore the final
superposition of the computation. This does not seem
very efficient with two qubits. Nevertheless, as we will see
later, it can save you a lot of time with more qubits.

III. MATHEMATICS THAT SUPPORT QUANTUM

COMPUTING

A vector can be a abstract concept in
mathematics. Let us define a vector as a list of numbers
and the dimension of that vector is the number of
numbers in the list. Actual qubits use negative or even
complex numbers, but let us deal with non-negative real
numbers for now. One qubit is represented as a two-
dimensional vector. The state 0, |0> and the state 1,
|1>. Moreover, this is a superposition, a|0> + b|1>.
We can visualize the vector on a circle like this. The
horizontal component is the square root of the probability
of being in state 0. In addition, the vertical component is
the square root of the probability of being in state 1. By
the Pythagorean Theorem, the length of the vector is 1.
Each point on the unit circle is a quantum state. A
classical computer can only point up or right, but a
quantum computer uses much more of the circle.

What about two qubits? It takes a four-
dimensional vector to represent the four possible states.
Here is the earlier computation in vector form.

The formula for the length of a two-dimensional
vector easily generalizes to the formula for the length of a
four-dimensional vector. Therefore, as we said before, all
the quantum state vectors have length 1.

The two-dimensional vectors pointed to a spot
on the unit circle in two-dimensional space. In addition,
these four-dimensional vectors point to a spot on the unit
sphere in four-dimensional space, which makes it very
hard to visualize. If you have N qubits, there are two to
the N basic states.

Therefore, a vector on a sphere represents the
quantum state in two to the N dimensional space.
Quantum gates change the system's state. Therefore,
they move the state vector around the sphere.
Mathematically, this is represented with a unitary matrix.
For our purpose, a matrix, specifically a unitary matrix, is
a block of numbers that describes how vectors move
around the sphere. When we multiply it by the starting
vector, 1 0 0 0, we get back a new vector, which
represents our second state. Each quantum gate is a
different unitary matrix, changing the vector, which
represents the state of the qubits. We just apply this
quantum gate to the state 0 0, represented by this
vector, and got this state as a result. However, if we
apply the same gate to state 1 0, represented by this
vector, we get this state as a result. Note that the

Quantum Computing Tutorial Bits vs Qubits and Shor’s Algorithm

36

Y
e
a
r

20
17

© 20 7 Global Journa ls Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
II

V
er
sio

n
I

(
)

G

superposition has negative numbers in it. To get the
probability that the qubit collapses into each basic state,
we just take the absolute value of the numbers. In fact,
not only can these numbers be negative, they can
actually be complex numbers. Notice that the state of N
qubits is actually represented on a sphere in two to the N
complex dimensions, which has twice the dimensionality
of the sphere in two to the N real dimensions.

IV. CRYPTOGRAPHY

Cracking open secure messages would be easy
if only you knew how to factor huge numbers. One of the
main methods of cryptography, the encoding and
decoding secure communications, uses big prime
numbers. It is easy for a computer to find big prime
numbers and multiply them together, but it is hard for a
computer to do the opposite-- find the prime factors of a
big number. The prime factors of a number are all the
prime numbers that evenly divide it. Normally, RSA
(Rivest Shamir Adleman) [1] cryptography uses these
prime factors like keys to decrypt messages. So if you
want to eavesdrop, you'll need to find one of these keys
to hack in--that is, you'll need to find the prime factors of
a big number, and we're talking really big, as in hundreds
of digits long. Let us try a small example. What are the
prime factors of 35? Well, they are 5 and 7. How did you
figure that out? Probably just by looking at it, but even if
you had forgotten that fact, you could have just checked
all the prime numbers smaller than 35. Does two divide
it? No. Does 3? No. Does 5? Yes. And so on. This is for a
computer, very time consuming. We will need to do
something strategic to factor big numbers. Along with
many, many other things Euler thought a lot about prime
numbers, relatively prime numbers, and modular
arithmetic, which is basically all the math underlying RSA
cryptography. Therefore, it makes sense that we would
use similar math to break the algorithm. Modular
arithmetic is what happens when you count in a circle.
Counting modulo 5, or mod 5 for short, goes 0, 1, 2, 3 4,
0, 1, 2, 3 4, 0, 1, 2, and so on. We just use the numbers
less than 5 on repeat. We tell time mod 12 or mod 24
depending on your convention. This cyclical counting
extends to the arithmetic operations. So 1 plus 2 mod 5
is still just 3, but 2 plus 3 mod 5 is 0, and 2 times 3 is 1
mod 5. Another way to think about modular arithmetic is
in terms of the remainder when dividing numbers.
Therefore, a slightly more formal definition follows. a is
congruent to x mod n means that when we divide a by n

the remainder is x. So 2 times 3 is 6, but when we divide
6 by 5, the remainder is 1. Therefore, 2 times 3 mod 5 is
1. Euler noticed something about modular arithmetic and
exponentiation. Let us look at the powers of 3-- 3, 9, 27,
81, 243, and so on. In addition, let us look at them all
mod 10.

It is easy to figure out what things are mod 10
because it is just the remainder when you divide by 10,

which is the ones digit. So mod 10 our sequence is 3, 9,
7, 1, 3, 9, 7, 1, and so on. Let us repeat the same
experiment, but instead of looking at the powers of 3
mod 10, let's look at the powers of 2 mod 7. The powers
of 2 are 2, 4, 8, 16, 32, 64, and so on. In addition, mod 7
we get 2, 4, 1, 2, 4, 1, and so on. What do you observe?
The sequence of powers just gets bigger and bigger, but
the modular versions of the sequence cycle repeats.
They repeat the same pattern over and over again, and
the last digit of that pattern is always 1. As long as x and
n are relatively prime, meaning they share no prime
factors, the sequence x mod N, x squared mod N, x
cubed mod N, x to the fourth mod N, and so on will
always have this property. We call the length of the
repeating pattern the period. Therefore, the period of 3
mod 10 is 4, and the period of 2 mod 7 is 3. Here is why
the period is important. If the period of x mod N is some
number r, then r is the smallest number such that x to the
r is congruent to 1 mod n. For example, 3 to the fourth is
congruent to 1 mod 10, but 3 for the first, 3 squared, and
3 cubed are not 1 mod 10, but let's get back to our
original goal. What does all this stuff about modular
arithmetic, exponentiation, and periods have to do with
factoring large numbers? Let us say I give you a number
n. I tell you n equals p times q for two prime numbers p
and q, but I do not tell you anything about those primes.
Your job is to find them. Here is how you will do it.
Step one- pick any number smaller than n. Let us call
the number you selected a. Check to make sure that a
and n are relatively prime by computing the greatest
common divisor of a and n. The greatest common divisor
of two numbers is the biggest integer that divides them
both, so it's 1 if the two numbers are relatively prime. The
Euclidean algorithm is a quick and standard way to find
the GCD [2] of two numbers. If they have a divisor in
common, that is a factor of n, which is what you have
been looking for, and you have saved yourself the rest of
the steps.
Step two- compute the period of a mod N. Let us call it r.
For the sake of example, let us say you are trying to find
the factors of 35. Therefore, n equals 35, and you pick a
equals 8 since its relatively prime to 35. Then with a little
computation, we can see that r equals 4. To make all the
arithmetic work out, we are going to need to divide r by
2. Therefore, we need to know that r is even. Later on, we
will also need to know that a to the r over 2 plus 1 is not
congruent to 0 mod N. If either of these things fail, we
need to pick a different a in step one. Luckily, there is at
least a 50% chance you will pick a good value for a. So
on average, you will not have to try too many times.
For step three, we will have to do some algebra. Let us
start with the fact we know. a to the r is congruent to 1
mod N, which, subtracting 1, gives the a to the r minus 1
is congruent to 0 mod N. Saying that something is 0 mod
N is the same as saying that it's a multiple of N.
Therefore, there must exist some integer k such that a to

Quantum Computing Tutorial Bits vs Qubits and Shor’s Algorithm

37

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
II

V
er
sio

n
I

Y
e
a
r

20
17

(
)

G

the r minus 1 equals k times N. Since we assumed r is an
even number, we can rewrite it as a to the r over 2 minus
1 times a to the r over 2 plus 1 equals kN. In addition,
since N equals pq, we'll replace it with pq. Here is what
happens with the example where we are trying to find the
factors of 35. Since the period of 8 mod 35 is 4, we have
8 to the fourth is congruent to 1 mod 35. Therefore, 8 to
the fourth minus 1 is congruent to 0 mod 35. Actually, 8
to the fourth minus 1 is 4,095, but we only care about its
value mod 35. We could rewrite this as 8 to the fourth
minus 1 equals k times 35 for some integer k. Again, we
could solve for k in this case, but it is irrelevant, so I will
leave it as a variable. Rewrite this as 8 squared minus 1
times 8 squared plus 1 equals k times p times q where p
and q are the prime factors of 35 that we're searching for.
Step four-I claim that the greatest common divisor of a to
the r over 2 minus 1 and N is one of the prime factors.
Let us call it p, and the greatest common divisor of a to
the r over 2 plus 1 and N is the other prime factor. Let us
call it q. Why? The equation a to the r over 2 minus 1
times a to the r over 2 plus 1 equals kpq means that p
must divide one of the factors on the left and q must
divide one of the factors on the left, but they cannot
divide the same factor since that factor would be divisible
by N. Why is neither factor divisible by N? For one, we
assumed a

• Step one- pick a less than N.

to the r over 2 plus 1 is not congruent to 0
mod N. For the other, we know r is the minimum value of
x such that a to the x is congruent to 1 mod N. So a to
the r over 2 minus 1 is not congruent to 0 mod N. Since p
and q divide separate factors on the left side of the
equation, we can assume p divides a to the r of 2 minus
1 and q divides a to the r over 2 plus 1. Therefore, our
formulas work.

Therefore, in our example, p is the greatest
common divisor of 63 and 35, which is 7. Moreover, q is
the greatest common divisor of 65 and 35, which is 5,
and is correct. In summary, here is the steps.

• Step two- find the period of a mod N.
• Step three- check that r is even and a to the r over 2

plus 1 is not congruent to 0 mod N. If either of these
things fail, we need to go back to step one and pick
a new value of a.

• Finally, step four-- let p equal the GCD of a to the r
over 2 minus 1 and N. In addition, let q equal the
GCD of a to the r over 2 plus 1 and N.

Step two, finding the period, takes a long time--
in fact, an exponentially long time. All the steps besides
two are fast. Instead of looking for a needle in a
haystack, we reduced the hard part to one step-- finding
the period. In addition-- here is the big twist-- period
finding is precisely the kind of thing a quantum computer
is good at, and on the next section. The four steps we
just reviewed are the outline of Shor's algorithm, and next
section shows how to use a quantum computer to
dramatically speed up step two.

V. SHOR’S ALGORITHM AND QUANTUM SECURITY

Remember, popular forms of cryptography work
by multiplying together two large prime numbers and
using those primes as keys to recover the message.
Therefore, to crack the code, we will need to find the
prime factors of a big number. However, that would take
a classical computer a long time. Way longer than the
encrypted information is probably useful for. However,
Shor's algorithm [4] allows us to quickly factor large
numbers using a quantum computer. Let us see how a
classical computer would factor a prime number. What is
the most straightforward way it could find the factors of a
number N? Well, it could check. Is 2 a factor, is 3 factor,
is 4 a factor, and so on. However, if N is big, this might
take many steps. Now, if a quantum computer is just a
bunch of classical computers working in parallel, then we
could have one computer check if 2 is a factor, another
check if 3 is a factor, and so on. Then it would only
require two steps. We have split the many steps of a
classical computer among the many parallel
computations of a quantum computer. Here is the
problem. When we say that a quantum computer is a
bunch of classical computers working in parallel, what
we really mean is that a quantum computer is in a
superposition of basic states, which are the kind of
states a classical computer could be in.

Remember, a superposition is a combination of
basic states and there is some probability associated
with observing each of them. To find that probability, you
square the amplitude of the number in front of the basic
state. Here, we have N basic states and a 1 over N
probability of being in each state. Therefore, the
quantum computer is not actually in all of these states. It
is more like the quantum computer has split itself into N
different pieces. However, when you measure a quantum
computer, that is, ask for the result of a computation, it
does not tell you about all N pieces it is in. Instead, it will
pick a state, each with probability 1 over N, and tell you
what that state says. You cannot look at the whole thing.
Just one random state. That is a problem for us. Only
two the N states give useful information. That the number
of checked was a divisor of N. So the vast majority of the
time we run the computation, N minus 2 over N of the
time, the result will just tell you that something is not a
factor of N. That means our algorithm is no more efficient
than checking random numbers to see if they are
divisors using a classical computer.

To harness the power of quantum computation,
we need each of these basic states, the components of
the superposition, to be working together. Right now,
they are functioning as separate computers individually
searching, which is a problem because the quantum
computer cannot tell us about all these independent
states. However, if there is some kind of underlying
structure to the states, we can use that to amplify the
states with the correct answers. In this case, the ones

Quantum Computing Tutorial Bits vs Qubits and Shor’s Algorithm

© 20 7 Global Journa ls Inc. (US)1

38

Y
e
a
r

20
17

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
II

V
er
sio

n
I

(
)

G

that give the factors of a number. Then when we
measure the quantum state, we will have a high
probability of ending up with the correct answer. So
instead of checking each number smaller than N to see if
it is a factor, how does Shor's algorithm find the factors?
It needs to utilize the properties of its entire
superposition, and not just a few of its basic states. To
do that, Shor's algorithm actually uses some number
theory, to transform the problem of finding the factors of
a given number into a problem of finding a different
number, the period of a periodic function. Here is the
four basic steps that outlines the number theory in Shor's
algorithm for finding the two secret prime factors, p and
q, of a given number N. That is, N is equal to p times q.

• Step 1, pick a number, a less than n, at random.
• Step 2, check to make sure it is not a factor of N.

Step of a mod N.
• Step 3, check that r is even, and a to the r over 2

plus 1 is not congruent to 0 mod N.
• Step 4, let p be the GCD of a to the r over 2 minus 1

and N, and q be the GCD of a to the r over 2 plus 1
and N. Then you found p and q, the two prime
factors of N.

However, step 2 is the extremely long step.
Remember, N is the number we are trying to find the
factors of, and a is a selected number smaller than N.
We are trying to find the smallest number r, which we
call the period, such that a to the r is congruent to 1
mod N. It is easy to find the period of a small example
just by checking the powers of a mod N until we get 1.
So if N is equal to 7 and a is equal to 2, we compute 2 to
the 1 mod and 2 to the 3 mod 7 is 1. Therefore, the
period is 3. However, if N is big, then r, the period, can
be as big as N. There is no known efficient classical way
to find the period. Remember how we tried to find the
factors of N by letting the quantum computer act as N
parallel classical computers, and using each to check a
different factor? We could try the same thing to find the
period. We begin with N different states representing the
numbers for each state, we compute a to the x mod N,
where x is the number of the state. So now the states
are a to the 1 mod N, a to the 2 mod N, a to the 3 mod
N, and so on. Then we just look for the smallest one that
says 1, and we are done. That is when we run into the
same problem as before. We cannot just scan all the
states at once. When we look at the result of a quantum
computation, it just shows one random state, which is
not very helpful.

However, there is something different about this
current problem. Something that will possibly help us.
The period is a global property of this quantum
superposition. It is not just a special fact about one or
two of the basic states. It is a fact about this entire wave
of numbers created by superposition, how often it
repeats. That is the period. We can use this to our
advantage. We apply something known as the quantum

Fourier transform [5] to the superposition a to the 1 mod
N, a to the 2 mod N, a to the 3 mod N, and so on. The
quantum Fourier transform utilizes the ideas of quantum
physics to do exactly what we want. It uses resonances
to amplify the basic state associated with the correct
period, and the incorrect answers destructively interfere,
which suppress their amplitudes. After applying the
quantum Fourier transform, there is a very high
probability that we will pick the correct period. So how
does it work?

To understand the quantum Fourier transform,
we will need to start with a quick version of a branch of
math known as complex analysis. What we will really be
doing is adding complex roots of unity. However, if you
are not familiar with that concept, do not worry. Start with
a bunch of circles. On the first, we will put two equally
spaced dots. On the next, we will put three equally
spaced lines. On the next, four equally spaced dots. And
so on. Notice, though, we always put one of the dots on
the middle right side, the 0-degree angle. Start a dial on
that special point. By the way, these dots are called
complex roots of unity. Now, let us focus on the circle
with three dots. We will move the dial counter-clockwise
through the points. In addition, underneath the dial, we
will form a path consisting of arrows where the direction
of the arrow is given by the direction in which the dial
points. For example, with three dots, the first arrow points
east. Then move the dial one dot counterclockwise and
connect to the first arrow another that points northwest,
like the dial. Move the dial again and connect another
arrow pointing southwest, the same direction as the dial.
Notice that after three arrows, we are back where we
started. This is what it looks like on a circle with six dots.
Again, after six arrows, we are back to the starting place.
Remember that we have a superposition whose basic
states look like a to the 1 mod N, a to the 2 mod N, a to
the 3 mod N, and so on. Let us pick a tiny example, like a
equals 2 and N equals 7. Then the components of the
superposition are 2 to the 1 mod 7, 2 to the 2 mod 7, 2 to
the 3 mod 7, and so on, which is the repeating pattern 2
4 1, 2 4. Because this example is so small, we can just
see that the period is three by looking at it. However, how
can we use our dials to figure out period? We will move
along the sequence a to the 1 mod N, a to the 2 mod N,
a to the 3 mod N. For each term in the sequence, move
every dial once counter-clockwise. Any time we
encounter a 1, stop and record where the dial is pointing
with an arrow. Let us focus on the sequence. The dial
with three points is always pointing directly east when we
record its values. Therefore, our path of arrows just runs
off to the right. However, what happens to the dial with
four points? The first time we encounter a 1, its facing
south. The next time, it's facing west. The next time, it is
facing north. In addition, the fourth time we encounter.
Therefore, our path of arrows has looped back to where
it started. In fact, this will happen with all of the numbers
besides 3. They will all just make loops near the starting

Quantum Computing Tutorial Bits vs Qubits and Shor’s Algorithm

39

© 2017 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
II

V
er
sio

n
I

Y
e
a
r

20
17

(
)

G

point. The distance of the arrow from the starting point is
like the amplitude, or probability of a state. Since we are
most likely to observe these states at the end of the
computation, we are set. We have magnified the correct
answer. In addition, that is roughly how the quantum
Fourier transform works.

Here is another way to think about it. Pretend
you are on a swing with period three seconds. It swings
back and forth every three seconds. The arrows from
before are like the kicks on a swing that you time as you
try to get higher and higher on the swing. If the kicks are
timed off resonance with the swing's natural frequency,
so anything other than every three seconds, then you
end up slowing down the swing. However, if every kick is
timed to match the frequency of the swing, every three
seconds, you create resonance, amplifying the swing's
motion. If we start with a bunch of states, metaphorically
swings, with different periods, than only the swing with
the correct period will be moving after a while. It will be
the state with the biggest amplitude or highest probability
of being observed. Of course, there is no actual dials or
arrow paths or swings in a quantum computer. That is
just a visual representation of adding complex numbers,
which are the amplitudes of waves. Waves and their
crazy ability to either reinforce each other with
constructive interference, or negate each other with
destructive interference, are at the heart of quantum
physics. The dial with three dots is showing constructive
interference by making the arrow path grow, which
represents the likelihood the quantum computer will
measure that state. The other dials are destructively
interfering, making it less likely we will detect them.

VI. CONCLUSION

This paper elaborates on some basic concepts
applied to quantum computing. It first outlines these key
concepts, introduces the mathematics needed for
understanding quantum computing and finally explores
the Shor’s Algorithm as it applies to both classical and
quantum computer security.

References Références Referencias

1. Barrett, Paul. "Implementing the Rivest Shamir and
Adleman public key encryption algorithm on a
standard digital signal processor." In Conference on
the Theory and Application of Cryptographic
Techniques, pp. 311-323. Springer Berlin
Heidelberg, 1986.

2. Brown, W. Steven. "On Euclid's algorithm and the
computation of polynomial greatest common
divisors." Journal of the ACM (JACM) 18, no.
4 (1971): 478-504.

3. Friedman, Jonathan R., Vijay Patel, Wei Chen, S. K.
Tolpygo, and James E. Lukens. "Quantum
superposition of distinct macroscopic states." nature
406, no. 6791 (2000): 43.

4. Lanyon, B. P., T. J. Weinhold, Nathan K. Langford,
M. Barbieri, D. F. V. James, Alexei Gilchrist, and A.
G. White. "Experimental demonstration of a
compiled version of Shor’s algorithm with quantum
entanglement." Physical Review Letters 99, no. 25
(2007): 25050.

5. Namias, Victor. "The fractional order Fourier
transform and its application to quantum
mechanics." IMA Journal of Applied
Mathematics 25, no. 3 (1980): 241-265.

6. Wallraff, Andreas, David I. Schuster, Alexandre
Blais, and L. Frunzio. "Strong coupling of a single
photon to a superconducting qubit using circuit
quantum electrodynamics." Nature 431, no. 7005
(2004): 162.

Quantum Computing Tutorial Bits vs Qubits and Shor’s Algorithm

40

Y
e
a
r

20
17

© 20 7 Global Journa ls Inc. (US)1

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
II

Is
su

e
II

V
er
sio

n
I

(
)

G

Global Journals Inc. (US)

Guidelines Handbook 2017

www.GlobalJournals.org

	Quantum Computing Tutorial Bits vs Qubits and Shor’s Algorithm
	Author
	Keywords
	I. Introduction
	II. Quantum Concepts
	III. Mathematics that Support Quantum Computing
	IV. Cryptography
	V. SHOR’S Algorithm and Quantum Security
	VI. Conclusion
	References Références Referencias

