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The speculative inquiry that computation could be 
done in general more efficiently by utilizing quantum effects 
was introduced by Richard Feynman. Peter Shor

 

described a 
polynomial time quantum algorithm for factoring integers by a 
quantum machine, which proved the speculation true. 
Quantum systems utilize exponential parallelism, which cannot 
be done by classical computers. However, quantum 
decoherence poses a difficulty for measuring quantum states 
in modern quantum computers. This paper elaborates on 
some basic concepts applied to quantum computing. It first 
outlines these key concepts, introduces the mathematics 
needed for understanding quantum computing and finally 
explores the Shor’s Algorithm as it applies to both classical 
and quantum computer security. 
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I.

 

INTRODUCTION

 
n 2017, IBM has a 16-qubit Quantum computer on the 
cloud available for users worldwide. These and other 
revolutionary breakthroughs over the past years have 

propelled the world of quantum computing into the 
spotlight. 

 

First let us see, how classical computers work. A 
classical computer works with the binary numbering 
system, and the computer is not able to compute

 

with 
the decimal numbering system. Binary system has only 
two digits. All arithmetic operations are done by the 
binary system based logic. Let us use an example of 
adding two single digit binary numbers using yes or no 
logic. Turn the first bit on, if any one of the bit is on, that 
is exclusive OR. Turn the second bit on if both the bits 
are on, that is AND. We can use electrical-switches as an 
input device and lights as output device. Transistors can 
be used for binary-logic based operations and turning on 
or off the lights based on the switch settings. Transistors 
can be inter-connected in particular way to pass the 
electric-current by with switches. A mobile phone has 
millions of transistors inside. A computer has billions of 
transistors inside. Computer likes binary states. 

 

How about the quantum state, which has the 
states of both 0 and 1 at the same time? Binary bit state 
may be 0 or 1. Quantum qubit state will be both 0 and 1 
at the same time. As individual digits of input numbers 
have all possible ways, the result will also have all 
possible values. Two single digit qubit numbers addition 
will make 4 possible combinations. Two double-digit 

Qubit numbers addition will make 16 possible 
combinations and so on. All types of arithmetic 
operations do this kind of computation. Therefore, a 
quantum computer computes all possible ways in 
parallel. But classical computer computes only one at a 
time. Take the maze as an example. The maze has an 
entrance and the maze is inside. The entrance is split 
into multiple paths and has only one exit. The task of 
computer is to find the correct path which leads to the 
exit. Classical computer has to travel each path to find 
the exit. However, a quantum computer can travel all 
paths simultaneously and find the exit immediately. It 
computes all possible combinations simultaneously and 
choosing the best one.  

Classical computer uses transistors to create 
binary-based Logic-Gates. Subatomic particles such as 
electrons and photons behave in a very strange way. 
Electron has a property of spin. The spin state may be 
Up, Down, Right or left. The spin state will be both Up 
and Down or Right and Left simultaneously in particular 
scenario. Such a state is called superposition [3] state. 
Photon has a property of polarization. The polarization 
state may be horizontal, or vertical. The polarization state 
will be both horizontal and vertical simultaneously in 
particular scenario. Light has strange behavior in the 
double-slit experiment. Light without any slit shows 
normal pattern. Light passing through single slit is 
spread out, because of quantum uncertainty behavior. 
Light passing through double slit shows interference 
pattern because of the wave behavior of light. Passing 
single photon at a time in single slit hits random place, 
accumulates and shows the same spread pattern over 
the period. Passing single photon at a time in double slit 
hits random place, accumulates and shows the same 
interference pattern over the period. How can a single 
photon which is not a wave, show interference pattern? 
Actually, it splits in to two photons, passing through slits 
simultaneously, interferes with itself and shows 
interference pattern. The photon is in superposition state 
of passing both slits. The spread-pattern of single slit is 
also the superposition state of a photon is in all position 
simultaneously. The photon resides in this area with the 
possibility of all combinations. This superposition state 
can be used to create qubits, which is used in quantum 
computers. Superposition of particle spin can be used to 
create quantum logic gates. The superposition is 
collapsed and turned in to definite state when it gets 
measured. 
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This paper consists of three sections. Section II 
discusses Quantum Concepts. Section III explores the 
Mathematics that support Quantum Computing, Section 
IV explains why cryptographic codes are so hard to 
break and finally Section V discusses Shor’s Algorithm 
and Quantum Security. 

II. QUANTUM CONCEPTS 

The fundamental unit of a classical computer is 
a bit. Bits have two states, 0 and 1. A classical computer 
takes in a string of bits and use logic gates to switch 
some of the bits. Quantum computers use quantum bits 
(qubits, [6]). Like a bit, a qubit can be in state 0 or state 
1. Also like a classical computer, the initial program for a 
quantum computer is just a string of zeros and ones. 
However, while a quantum computer is running, its 
qubits can also be in infinitely many super positions [3] 
between 0 and 1. When a qubit is in a superposition, it 
has some probability of being in state 0 and some 
probability of being in state 1. You can think of a 
superposition as being a mixed state partway between 0 
and 1. However, super positions are fragile. If we look at 
it or try to measure it, the qubit will collapse into a basic 
state, either 0 or 1. You might know this from the famous 
Schrodinger's cat thought experiment. Before opening 
the box, the mythic cat is in a superposition of alive and 
dead. However, when you observe the cat, it is forced to 
pick a state, alive or dead, not both. Qubit materials are 
usually things like electrons, where spin up corresponds 
to state 0 and spin down corresponds to state 1. 

Let us see an example of a quantum 
computation with two qubits. There is four basic states, 0 
0, 1 0, 0 1, and 1 1. The two classical bits can be in these 
states. However, there are also infinitely many states 
formed by superpositions or combinations of these basic 
states. Each operation of a quantum computation is 
performed by a quantum gate, which, like a classical 
gate, changes the state the qubits are in. Let us start our 
quantum computation in 0 0 and then apply a quantum 
gate. Now the qubits are in a superposition. There is a 
1/2 probability or 50% chance of being 0 1 and a 1/2 
probability of being 1 0. The particular superposition 
position it is in is a result of the quantum gate we chose 
to apply. Here is one more quantum gate, changing the 
state of our computation. At the end of the quantum 
computation, we observe or measure the system. 

However, we cannot see these delicate 
superpositions. Remember, a superposition is like a mix 
between basic states. When you observe the 
computation and look at it from the perspective of these 
basic states, it must pick one, collapsing the wave 
function and revealing a single basic state. In this case, it 
collapsed to state 0 1. If you run the same computation 
repeatedly, the result will be 0 1 half the time, it will be 1 0 
1/6 of the time, and 1 1 1/3 of the time. That is what the 
numbers in the superposition tell you. The probability that 

the superposition will collapse into each basic state. So if 
you run the computation 100 times, roughly 50 times it'll 
result in the state 0 1, 17 times it will result in state 1 0, 
and 33 times it will result in state 1 1. This allows you to 
recover the probabilities and therefore the final 
superposition of the computation. This does not seem 
very efficient with two qubits. Nevertheless, as we will see 
later, it can save you a lot of time with more qubits. 

III. MATHEMATICS THAT SUPPORT QUANTUM 

COMPUTING 

A vector can be a abstract concept in 
mathematics. Let us define a vector as a list of numbers 
and the dimension of that vector is the number of 
numbers in the list. Actual qubits use negative or even 
complex numbers, but let us deal with non-negative real 
numbers for now. One qubit is represented as a two-
dimensional vector. The state 0, |0> and the state 1, 
|1>. Moreover, this is a superposition, a|0> + b|1>. 
We can visualize the vector on a circle like this. The 
horizontal component is the square root of the probability 
of being in state 0. In addition, the vertical component is 
the square root of the probability of being in state 1. By 
the Pythagorean Theorem, the length of the vector is 1. 
Each point on the unit circle is a quantum state. A 
classical computer can only point up or right, but a 
quantum computer uses much more of the circle. 

What about two qubits? It takes a four-
dimensional vector to represent the four possible states. 
Here is the earlier computation in vector form. 

The formula for the length of a two-dimensional 
vector easily generalizes to the formula for the length of a 
four-dimensional vector. Therefore, as we said before, all 
the quantum state vectors have length 1. 

The two-dimensional vectors pointed to a spot 
on the unit circle in two-dimensional space. In addition, 
these four-dimensional vectors point to a spot on the unit 
sphere in four-dimensional space, which makes it very 
hard to visualize. If you have N qubits, there are two to 
the N basic states. 

Therefore, a vector on a sphere represents the 
quantum state in two to the N dimensional space. 
Quantum gates change the system's state. Therefore, 
they move the state vector around the sphere. 
Mathematically, this is represented with a unitary matrix. 
For our purpose, a matrix, specifically a unitary matrix, is 
a block of numbers that describes how vectors move 
around the sphere. When we multiply it by the starting 
vector, 1 0 0 0, we get back a new vector, which 
represents our second state. Each quantum gate is a 
different unitary matrix, changing the vector, which 
represents the state of the qubits. We just apply this 
quantum gate to the state 0 0, represented by this 
vector, and got this state as a result. However, if we 
apply the same gate to state 1 0, represented by this 
vector, we get this state as a result. Note that the 
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superposition has negative numbers in it. To get the 
probability that the qubit collapses into each basic state, 
we just take the absolute value of the numbers. In fact, 
not only can these numbers be negative, they can 
actually be complex numbers. Notice that the state of N 
qubits is actually represented on a sphere in two to the N 
complex dimensions, which has twice the dimensionality 
of the sphere in two to the N real dimensions. 

IV. CRYPTOGRAPHY 

Cracking open secure messages would be easy 
if only you knew how to factor huge numbers. One of the 
main methods of cryptography, the encoding and 
decoding secure communications, uses big prime 
numbers. It is easy for a computer to find big prime 
numbers and multiply them together, but it is hard for a 
computer to do the opposite-- find the prime factors of a 
big number. The prime factors of a number are all the 
prime numbers that evenly divide it. Normally, RSA 
(Rivest Shamir Adleman) [1] cryptography uses these 
prime factors like keys to decrypt messages. So if you 
want to eavesdrop, you'll need to find one of these keys 
to hack in--that is, you'll need to find the prime factors of 
a big number, and we're talking really big, as in hundreds 
of digits long. Let us try a small example. What are the 
prime factors of 35? Well, they are 5 and 7. How did you 
figure that out? Probably just by looking at it, but even if 
you had forgotten that fact, you could have just checked 
all the prime numbers smaller than 35. Does two divide 
it? No. Does 3? No. Does 5? Yes. And so on. This is for a 
computer, very time consuming. We will need to do 
something strategic to factor big numbers. Along with 
many, many other things Euler thought a lot about prime 
numbers, relatively prime numbers, and modular 
arithmetic, which is basically all the math underlying RSA 
cryptography. Therefore, it makes sense that we would 
use similar math to break the algorithm. Modular 
arithmetic is what happens when you count in a circle. 
Counting modulo 5, or mod 5 for short, goes 0, 1, 2, 3 4, 
0, 1, 2, 3 4, 0, 1, 2, and so on. We just use the numbers 
less than 5 on repeat. We tell time mod 12 or mod 24 
depending on your convention. This cyclical counting 
extends to the arithmetic operations. So 1 plus 2 mod 5 
is still just 3, but 2 plus 3 mod 5 is 0, and 2 times 3 is 1 
mod 5. Another way to think about modular arithmetic is 
in terms of the remainder when dividing numbers. 
Therefore, a slightly more formal definition follows. a is 
congruent to x mod n means that when we divide a by n 

the remainder is x. So 2 times 3 is 6, but when we divide 
6 by 5, the remainder is 1. Therefore, 2 times 3 mod 5 is 
1. Euler noticed something about modular arithmetic and 
exponentiation. Let us look at the powers of 3-- 3, 9, 27, 
81, 243, and so on. In addition, let us look at them all 
mod 10.  

It is easy to figure out what things are mod 10 
because it is just the remainder when you divide by 10, 

which is the ones digit. So mod 10 our sequence is 3, 9, 
7, 1, 3, 9, 7, 1, and so on. Let us repeat the same 
experiment, but instead of looking at the powers of 3 
mod 10, let's look at the powers of 2 mod 7. The powers 
of 2 are 2, 4, 8, 16, 32, 64, and so on. In addition, mod 7 
we get 2, 4, 1, 2, 4, 1, and so on. What do you observe? 
The sequence of powers just gets bigger and bigger, but 
the modular versions of the sequence cycle repeats. 
They repeat the same pattern over and over again, and 
the last digit of that pattern is always 1. As long as x and 
n are relatively prime, meaning they share no prime 
factors, the sequence x mod N, x squared mod N, x 
cubed mod N, x to the fourth mod N, and so on will 
always have this property. We call the length of the 
repeating pattern the period. Therefore, the period of 3 
mod 10 is 4, and the period of 2 mod 7 is 3. Here is why 
the period is important. If the period of x mod N is some 
number r, then r is the smallest number such that x to the 
r is congruent to 1 mod n. For example, 3 to the fourth is 
congruent to 1 mod 10, but 3 for the first, 3 squared, and 
3 cubed are not 1 mod 10, but let's get back to our 
original goal. What does all this stuff about modular 
arithmetic, exponentiation, and periods have to do with 
factoring large numbers? Let us say I give you a number 
n. I tell you n equals p times q for two prime numbers p 
and q, but I do not tell you anything about those primes. 
Your job is to find them. Here is how you will do it.  
Step one-  pick any number smaller than n. Let us call 
the number you selected a. Check to make sure that a 
and n are relatively prime by computing the greatest 
common divisor of a and n. The greatest common divisor 
of two numbers is the biggest integer that divides them 
both, so it's 1 if the two numbers are relatively prime. The 
Euclidean algorithm is a quick and standard way to find 
the GCD [2] of two numbers. If they have a divisor in 
common, that is a factor of n, which is what you have 
been looking for, and you have saved yourself the rest of 
the steps. 
Step two- compute the period of a mod N. Let us call it r. 
For the sake of example, let us say you are trying to find 
the factors of 35. Therefore, n equals 35, and you pick a 
equals 8 since its relatively prime to 35. Then with a little 
computation, we can see that r equals 4. To make all the 
arithmetic work out, we are going to need to divide r by 
2. Therefore, we need to know that r is even. Later on, we 
will also need to know that a to the r over 2 plus 1 is not 
congruent to 0 mod N. If either of these things fail, we 
need to pick a different a in step one. Luckily, there is at 
least a 50% chance you will pick a good value for a. So 
on average, you will not have to try too many times.  
For step three, we will have to do some algebra. Let us 
start with the fact we know. a to the r is congruent to 1 
mod N, which, subtracting 1, gives the a to the r minus 1 
is congruent to 0 mod N. Saying that something is 0 mod 
N is the same as saying that it's a multiple of N. 
Therefore, there must exist some integer k such that a to 
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the r minus 1 equals k times N. Since we assumed r is an 
even number, we can rewrite it as a to the r over 2 minus 
1 times a to the r over 2 plus 1 equals kN. In addition, 
since N equals pq, we'll replace it with pq. Here is what 
happens with the example where we are trying to find the 
factors of 35. Since the period of 8 mod 35 is 4, we have 
8 to the fourth is congruent to 1 mod 35. Therefore, 8 to 
the fourth minus 1 is congruent to 0 mod 35. Actually, 8 
to the fourth minus 1 is 4,095, but we only care about its 
value mod 35. We could rewrite this as 8 to the fourth 
minus 1 equals k times 35 for some integer k. Again, we 
could solve for k in this case, but it is irrelevant, so I will 
leave it as a variable. Rewrite this as 8 squared minus 1 
times 8 squared plus 1 equals k times p times q where p 
and q are the prime factors of 35 that we're searching for. 
Step four-I claim that the greatest common divisor of a to 
the r over 2 minus 1 and N is one of the prime factors. 
Let us call it p, and the greatest common divisor of a to 
the r over 2 plus 1 and N is the other prime factor. Let us 
call it q. Why? The equation a to the r over 2 minus 1 
times a to the r over 2 plus 1 equals kpq means that p 
must divide one of the factors on the left and q must 
divide one of the factors on the left, but they cannot 
divide the same factor since that factor would be divisible 
by N. Why is neither factor divisible by N? For one, we 
assumed a 

• Step one- pick a less than N.  

to the r over 2 plus 1 is not congruent to 0 
mod N. For the other, we know r is the minimum value of 
x such that a to the x is congruent to 1 mod N. So a to 
the r over 2 minus 1 is not congruent to 0 mod N. Since p 
and q divide separate factors on the left side of the 
equation, we can assume p divides a to the r of 2 minus 
1 and q divides a to the r over 2 plus 1. Therefore, our 
formulas work. 

Therefore, in our example, p is the greatest 
common divisor of 63 and 35, which is 7. Moreover, q is 
the greatest common divisor of 65 and 35, which is 5, 
and is correct. In summary, here is the steps. 

• Step two- find the period of a mod N.  
• Step three- check that r is even and a to the r over 2 

plus 1 is not congruent to 0 mod N. If either of these 
things fail, we need to go back to step one and pick 
a new value of a.  

• Finally, step four-- let p equal the GCD of a to the r 
over 2 minus 1 and N. In addition, let q equal the 
GCD of a to the r over 2 plus 1 and N. 

Step two, finding the period, takes a long time-- 
in fact, an exponentially long time. All the steps besides 
two are fast. Instead of looking for a needle in a 
haystack, we reduced the hard part to one step-- finding 
the period. In addition-- here is the big twist-- period 
finding is precisely the kind of thing a quantum computer 
is good at, and on the next section. The four steps we 
just reviewed are the outline of Shor's algorithm, and next 
section shows how to use a quantum computer to 
dramatically speed up step two. 

V. SHOR’S ALGORITHM AND QUANTUM SECURITY 

Remember, popular forms of cryptography work 
by multiplying together two large prime numbers and 
using those primes as keys to recover the message. 
Therefore, to crack the code, we will need to find the 
prime factors of a big number. However, that would take 
a classical computer a long time. Way longer than the 
encrypted information is probably useful for.  However, 
Shor's algorithm [4] allows us to quickly factor large 
numbers using a quantum computer. Let us see how a 
classical computer would factor a prime number. What is 
the most straightforward way it could find the factors of a 
number N? Well, it could check. Is 2 a factor, is 3 factor, 
is 4 a factor, and so on. However, if N is big, this might 
take many steps. Now, if a quantum computer is just a 
bunch of classical computers working in parallel, then we 
could have one computer check if 2 is a factor, another 
check if 3 is a factor, and so on. Then it would only 
require two steps. We have split the many steps of a 
classical computer among the many parallel 
computations of a quantum computer. Here is the 
problem. When we say that a quantum computer is a 
bunch of classical computers working in parallel, what 
we really mean is that a quantum computer is in a 
superposition of basic states, which are the kind of 
states a classical computer could be in. 

Remember, a superposition is a combination of 
basic states and there is some probability associated 
with observing each of them. To find that probability, you 
square the amplitude of the number in front of the basic 
state. Here, we have N basic states and a 1 over N 
probability of being in each state. Therefore, the 
quantum computer is not actually in all of these states. It 
is more like the quantum computer has split itself into N 
different pieces. However, when you measure a quantum 
computer, that is, ask for the result of a computation, it 
does not tell you about all N pieces it is in. Instead, it will 
pick a state, each with probability 1 over N, and tell you 
what that state says.  You cannot look at the whole thing. 
Just one random state. That is a problem for us. Only 
two the N states give useful information. That the number 
of checked was a divisor of N. So the vast majority of the 
time we run the computation, N minus 2 over N of the 
time, the result will just tell you that something is not a 
factor of N. That means our algorithm is no more efficient 
than checking random numbers to see if they are 
divisors using a classical computer. 

To harness the power of quantum computation, 
we need each of these basic states, the components of 
the superposition, to be working together. Right now, 
they are functioning as separate computers individually 
searching, which is a problem because the quantum 
computer cannot tell us about all these independent 
states. However, if there is some kind of underlying 
structure to the states, we can use that to amplify the 
states with the correct answers. In this case, the ones 
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that give the factors of a number. Then when we 
measure the quantum state, we will have a high 
probability of ending up with the correct answer. So 
instead of checking each number smaller than N to see if 
it is a factor, how does Shor's algorithm find the factors? 
It needs to utilize the properties of its entire 
superposition, and not just a few of its basic states. To 
do that, Shor's algorithm actually uses some number 
theory, to transform the problem of finding the factors of 
a given number into a problem of finding a different 
number, the period of a periodic function. Here is the 
four basic steps that outlines the number theory in Shor's 
algorithm for finding the two secret prime factors, p and 
q, of a given number N. That is, N is equal to p times q. 

• Step 1, pick a number, a less than n, at random. 
• Step 2, check to make sure it is not a factor of N. 

Step of a mod N.  
• Step 3, check that r is even, and a to the r over 2 

plus 1 is not congruent to 0 mod N. 
• Step 4, let p be the GCD of a to the r over 2 minus 1 

and N, and q be the GCD of a to the r over 2 plus 1 
and N. Then you found p and q, the two prime 
factors of N. 

However, step 2 is the extremely long step. 
Remember, N is the number we are trying to find the 
factors of, and a is a selected number smaller than N. 
We are trying to find the smallest number r, which we 
call the period, such that a to the r is congruent to 1 
mod N. It is easy to find the period of a small example 
just by checking the powers of a mod N until we get 1. 
So if N is equal to 7 and a is equal to 2, we compute 2 to 
the 1 mod and 2 to the 3 mod 7 is 1. Therefore, the 
period is 3. However, if N is big, then r, the period, can 
be as big as N. There is no known efficient classical way 
to find the period. Remember how we tried to find the 
factors of N by letting the quantum computer act as N 
parallel classical computers, and using each to check a 
different factor? We could try the same thing to find the 
period. We begin with N different states representing the 
numbers for each state, we compute a to the x mod N, 
where x is the number of the state. So now the states 
are a to the 1 mod N, a to the 2 mod N, a to the 3 mod 
N, and so on. Then we just look for the smallest one that 
says 1, and we are done. That is when we run into the 
same problem as before. We cannot just scan all the 
states at once. When we look at the result of a quantum 
computation, it just shows one random state, which is 
not very helpful.  

However, there is something different about this 
current problem. Something that will possibly help us. 
The period is a global property of this quantum 
superposition. It is not just a special fact about one or 
two of the basic states. It is a fact about this entire wave 
of numbers created by superposition, how often it 
repeats. That is the period. We can use this to our 
advantage. We apply something known as the quantum 

Fourier transform [5] to the superposition a to the 1 mod 
N, a to the 2 mod N, a to the 3 mod N, and so on. The 
quantum Fourier transform utilizes the ideas of quantum 
physics to do exactly what we want. It uses resonances 
to amplify the basic state associated with the correct 
period, and the incorrect answers destructively interfere, 
which suppress their amplitudes. After applying the 
quantum Fourier transform, there is a very high 
probability that we will pick the correct period. So how 
does it work?  

To understand the quantum Fourier transform, 
we will need to start with a quick version of a branch of 
math known as complex analysis. What we will really be 
doing is adding complex roots of unity. However, if you 
are not familiar with that concept, do not worry. Start with 
a bunch of circles. On the first, we will put two equally 
spaced dots. On the next, we will put three equally 
spaced lines. On the next, four equally spaced dots. And 
so on. Notice, though, we always put one of the dots on 
the middle right side, the 0-degree angle. Start a dial on 
that special point. By the way, these dots are called 
complex roots of unity. Now, let us focus on the circle 
with three dots. We will move the dial counter-clockwise 
through the points. In addition, underneath the dial, we 
will form a path consisting of arrows where the direction 
of the arrow is given by the direction in which the dial 
points. For example, with three dots, the first arrow points 
east. Then move the dial one dot counterclockwise and 
connect to the first arrow another that points northwest, 
like the dial. Move the dial again and connect another 
arrow pointing southwest, the same direction as the dial. 
Notice that after three arrows, we are back where we 
started. This is what it looks like on a circle with six dots. 
Again, after six arrows, we are back to the starting place. 
Remember that we have a superposition whose basic 
states look like a to the 1 mod N, a to the 2 mod N, a to 
the 3 mod N, and so on. Let us pick a tiny example, like a 
equals 2 and N equals 7. Then the components of the 
superposition are 2 to the 1 mod 7, 2 to the 2 mod 7, 2 to 
the 3 mod 7, and so on, which is the repeating pattern 2 
4 1, 2 4. Because this example is so small, we can just 
see that the period is three by looking at it. However, how 
can we use our dials to figure out period? We will move 
along the sequence a to the 1 mod N, a to the 2 mod N, 
a to the 3 mod N. For each term in the sequence, move 
every dial once counter-clockwise. Any time we 
encounter a 1, stop and record where the dial is pointing 
with an arrow. Let us focus on the sequence. The dial 
with three points is always pointing directly east when we 
record its values. Therefore, our path of arrows just runs 
off to the right. However, what happens to the dial with 
four points? The first time we encounter a 1, its facing 
south. The next time, it's facing west. The next time, it is 
facing north. In addition, the fourth time we encounter. 
Therefore, our path of arrows has looped back to where 
it started. In fact, this will happen with all of the numbers 
besides 3. They will all just make loops near the starting 
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point. The distance of the arrow from the starting point is 
like the amplitude, or probability of a state. Since we are 
most likely to observe these states at the end of the 
computation, we are set. We have magnified the correct 
answer. In addition, that is roughly how the quantum 
Fourier transform works. 

Here is another way to think about it. Pretend 
you are on a swing with period three seconds. It swings 
back and forth every three seconds. The arrows from 
before are like the kicks on a swing that you time as you 
try to get higher and higher on the swing. If the kicks are 
timed off resonance with the swing's natural frequency, 
so anything other than every three seconds, then you 
end up slowing down the swing. However, if every kick is 
timed to match the frequency of the swing, every three 
seconds, you create resonance, amplifying the swing's 
motion. If we start with a bunch of states, metaphorically 
swings, with different periods, than only the swing with 
the correct period will be moving after a while. It will be 
the state with the biggest amplitude or highest probability 
of being observed. Of course, there is no actual dials or 
arrow paths or swings in a quantum computer. That is 
just a visual representation of adding complex numbers, 
which are the amplitudes of waves. Waves and their 
crazy ability to either reinforce each other with 
constructive interference, or negate each other with 
destructive interference, are at the heart of quantum 
physics. The dial with three dots is showing constructive 
interference by making the arrow path grow, which 
represents the likelihood the quantum computer will 
measure that state. The other dials are destructively 
interfering, making it less likely we will detect them. 

VI. CONCLUSION 

This paper elaborates on some basic concepts 
applied to quantum computing. It first outlines these key 
concepts, introduces the mathematics needed for 
understanding quantum computing and finally explores 
the Shor’s Algorithm as it applies to both classical and 
quantum computer security. 
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