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 symbols of these formal languages can denote deduced actions that correspond to specific 
behaviors of a robotic entity or agent that interacts with an environment. The primary objective of 
this paper pretend to represent and generate simple behaviors of artificial agents. Reinforcement 
learning techniques, grammars, and languages, as defined based on the model of the proposed 
system were applied to the typical case of the ideal route on the problem of artificial ant. The 
application of such techniques proofs the viability of building robots that might learn through 
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compilers, programming languages, natural language 
processing, automata theory, etc. The words or
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these formal languages can denote deduced actions that 
correspond to specific behaviors of a robotic entity or agent 
that interacts with an environment. The primary objective of 
this paper pretend to represent and generate simple behaviors 
of artificial agents. Reinforcement learning techniques, 
grammars, and languages, as defined based on the model of 
the proposed system were applied to the typical case of the 
ideal route on the problem of artificial ant. The application of 
such techniques proofs the viability of building robots that 
might learn through interaction with the environment.
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I.

 
Introduction

 
dvances in artificial intelligence (AI) have 
supported to the development of sciences and 
disciplines whose influence leads to 

experimentation and application of new techniques that 
seek an optimal solution or high performance, 
depending on the problem that has arisen. The problem 
of emulating human navigation skills in an environment 
involves the analysis of behaviors of the humans, which 
are mapped to cases of robots or humanoids to develop 
in them mechanisms needed to help find solutions to 
specific problems. Such mechanisms form the structure 
of models that encompass interactions between the 
modules involved in the solution of such a problem. In 
this paper, the proposed model follows the basic 
structure defined by Russell and Norvig on learning 
agents [1]; then considering modules of events and 
actions that interact with the environment through 
sensors and actuators. The functionality of such 
modules lies in the implementation of context-free 
grammars as a tool for describing and build robotic 
behaviors. The purpose of this work is to manage 
behaviors of agents acting within an environment, based 
on grammars and formal languages. Some work in this 
direction will be mentioned briefly in the next section. In 
section 3 the fundamental principles of regular 
grammars will be addressed; as they are used to 
describe knowledge about events and actions, as well 
as determine the language of valid words that define 
behavior. Section 4 describes the fundamental concepts 
of grammars, terminology, and reinforcement learning 
(RL) used in finding the solution on the Santa Fe Trail 

problem [2]. The last two sections 5 and 6 show the 
results and conclusions respectively.  

II. Related Work 

In the recent years, few approaches based on 
formal grammars have been used to learn behaviors in 
robot navigation problems. Some of these approaches 
outline the use of bio-inspired mechanisms to build 
systems with human-like behavior based on spiking 
neural networks (SNN) [3]; Others that use the RL, 
Bayesian techniques, and decision trees, rely on human 
experience and pretend that a robot agent learns to 
make decisions in generalized models [4], [5]. 
Otherwise, the ART system [6] considers learning 
behaviors as a classification problem, and uses a neural 
network to increase the learning capacity without losing 
earlier information of other behaviors when they are 
learning new ones; also integrated audio, and vision 
models in the current perception of the behavior are 
observed. Within the first work on behavior and  
autonomy of robots, in [7] these issues are described 
based on the representation in nets and using genetic 
algorithms (GA) as a method to search movements 
which are learned and generated from the states 
involved in a net. Regarding the generation of behaviors 
in [8] are proposed architectures that emulate cortical 
regions of the human brain which relate modules 
perception declarative memory, and objectives 
management. Such modules supported in production 
systems respond to patterns of information stored on 
the work memory engaged. In [9], behaviors are in 
software architecture designed to handle reusable 
components where each of them has a specific role 
based primarily on finite state machines (FSM). On the 
other hand, below the context of using of formal 
languages for generating robotic behaviors, Manikonda, 
et al., [10] propose techniques and models with 
differential equations based on kinetic state machines. 
In more recent work, Dantam and Stillman [11] formally 
develop the concept Grammar Movements doing a 
complete linguistic analysis for robotic control, being 
very similar some of its specific goals with the particular 
implementation presented in this article.  

III. Fundamentals of Languages, 
Grammars and System Model 

The languages described by formal grammars 
are of great practical importance in the definitions of 
programming languages, formalization of the rules of 
the grammars based on the parsing, simplified 
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translations of languages, and applications for pre-
processing chains (words). Each language determined 
by an abstract computing model: finite automaton, 
pushdown automata, linear bounded automata, and 
Turing machines, prescribes regular, context-free 
(CFLs), context-sensitive, and recursively enumerable 
languages, respectively.  

a) Context-Free Grammars  
A context-free grammar (CFG) is a finite set of 

variables (non-terminals or syntactic categories) where 
each represents a language. These languages 
represented by the variables are described recursively 
each other and regard also primary symbols called 
terminals. Rules that relate these variables are called 
productions. Formally a CFG is denoted as G = (V, T, P, 
S), where V and T are finite sets of variables and 
terminals respectively. Each production in P is of the 
form A→ α where A is a variable which can be replaced 
by a chain (α) of symbols regardless of the context, α 
must be not empty, with symbols of the set (V∪T)*1, S is 
a special variable called start symbol. Some common 
conventions for grammars are a) the capital letters A, B, 

that can be variables or terminals. d) The lowercase 
letters u, v, w, and z denote terminals. e) The lowercase 
Greek letters α, β, and γ

 

denote strings of variables and 
terminals. For further explanation on these issues see 
Hopcroft and Ullman [12]. 

 

In this paper, we will define in the next section, 
Robotic Behavior Grammar (RBG) according to the 
formal description of the CFG. 

 

b)

 

System Model 

 

Respect to the system model, this paper follows 
the general concept of a learning agent according to [1] 
so that the functional mapping defines the relevant 
modules regarding specific applications addressed by 
the RBG. The model consists of four main components 
(Figure 1) linking an agent and an environment. The 
events module tells the element learning how things are 
happening about a standard fixed performance, in this 
case, the target’s progress of the agent.

 
 

1

 

The asterisk right here indicates the possible set of relationships 
between variables and terminals involved.

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:

 

The general model of Robotic Behavior Grammar (RBG).

 

 

In the RBG model, the sensors detect 
occurrences of events in the environment which may be 
a valid event, a non-event, and a repeated event. If a 
valid event occurs in this environment, the events 
module recognizes it as a variable V corresponding to a 
fact derivable Ed then defining it as VEd and verifying 
that belongs to the set of productions to the derivation 
of events PEd. The learning element will process that 
information to decide whether the "word" (event or fact) 
is valid in the language generated by the grammar used. 
The performance module then looks for the production 

P, which relates an action a, and a derivate event e in 
the set of productions of actions to events PEa. Thus, an 
external operation carried out by the actor in the 
environment is selected. As the event is null when it was 
not generated or fired any event; or repeated, when the 
agent is in the same state as a previous one, the 
expansion of variables continues without affecting the 
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C, D, E, and S denote variables; S is a start symbol 
unless it stated in another way. b) The lowercase letters 
a, b, c, d, e, digits, and expressions in "bold" are 
terminals. c) Capital letters X, Y, and Z denote symbols 

                                                          

current derivation. The process of the agent’s behavior 
ends when its achieved the goal, or when that means 
reaches a predetermined time limit. For a more versatile 
agent, the problems generator module takes the current 
knowledge and can formulate new rules to new 
situations or to find particular areas of behavior that are 
susceptible to improvement. 



 

IV.

 

Terminology and Concepts

 

a)

 

Grammars  
A grammar of robotic behavior RBG = (V, Σ, P, 

S) define the components as follows: V is the set

 

of 
variables V = {VAc, VEa, VEd, Vaux} where VAc are 
variables representing complex actions, VEa are 
variables representing events or states, VEd is called a 
derivation variable of facts, and Vaux are auxiliary 
variables. S is the symbol of the start function, which 
belongs to the subset VEa. Σ

 

contains the terminal 
symbols for the primary actions of the agent. The 
symbol P are the productions divided into several 
subgroups directly related to subsets of V. These 
productions are: PAc, which are productions

 

of complex 
actions; PEa, which are productions to select actions for 
events; PEd indicating outputs to derivation of events; 
Paux indicating auxiliary productions for operations; 
PSEenv indicating productions of extension, and 
PSEnuln productions of suppression. 

 

b)

 

Generating behaviors 

 

The RBG can generate behaviors using 
grammars derivation process, which depends on the 
different subsets of variables and productions. Those 
behaviors lead to executing routines that rely on the 
expansion of production rules. For example, a variable 
that can be expanded in many different ways, unless 
there are certain conditions, will always be extended by 
the same production rule. Whenever is expanded a 
variable, and a new terminal symbol appears, a 
corresponding primary action for such a symbol will run. 
Derivation default will be leftmost derivation, which 
guarantees a particular order in the process that 
generates behaviors.

 

c)

 

Learning 

 

Reinforcement learning (RL) is the method 
considered in this work. With this method, the robotic 
agent learns to select an action from several of them 
possible involved in a particular state. With 
reinforcement learning the agent seeks to learn an 
optimal policy π, which for some state s, recommend an 
action a that helps the

 

agent to meet its goal. For this 
process is performed a mapping between the elements 
of the grammar of behaviors and RL. The reinforcement 
learning process was carried out using standard 
algorithms, once are identified states, actions and a 
control policy

 

for a grammar of behaviors (in this case 
the RBG). Note that transitions, utilities, and the learning, 
tend to vary depending on the problem. In an RBG = 
{V, Σ, P, S}, the productions of the subset PEa (member 
of the set P), have the form Ex →

 

Ai where Ex

 

is a 
variable that represents an event, and belongs to the 
subset VEa, Ai is a variable (where i=1,2,…n) 
representing an action which belongs to the subgroup 
VAc. The purpose of the agent is to learn a policy π: 

S→A, such that it dictates the next action at to be 
executed when the agent is in a state st, ie, π(st)=at. 

 

 

𝑉𝑉(st)≡Σ𝛾𝛾𝑖𝑖∞𝑖𝑖=0𝑟𝑟𝑡𝑡+𝑖𝑖
                                               

(1)

                                                  

where rt+i indicates the sequence of generated 
rewards, which starts at a state st as a result of using a 
policy π for selecting actions. The formula (1) indicates 
that starting in state st and then implementing the 
actions recommended by the policy π, the sequence of 
rewards is obtained [13]. The parameter γ

 

(gamma) 
defined by an assignment of values between 0 and 1, is 
known as the discount factor, and it indicates the 
preference between immediate rewards on future 
rewards. The smaller the value of γ, future rewards will 
be less significant for the agent. In general, it’s intended 
that the agent learns a policy that maximizes V π(s) for 
all states s. This procedure is called optimal policy, 
given by 

 

𝜋𝜋∗

 

≡𝑎𝑎𝑟𝑟𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥𝑉𝑉𝜋𝜋(s), (∀s)                                                (2)

 

V.

 

Development and Implementation

 

a)

 

Grammar for the passage of Santa Fe 

 

It will describe the design and implementation 
of the RBG based on the context of the problem of 
artificial ant in the particular instance Santa Fe Trail [2]. 
The aim of the ant is eating all the food (cells in black), 
running all the way, in the shortest possible time; the 
stage in which the artificial ant acts is a 32x32 grid of 
squares (cells), as shown in Figure 2. Its considered the 
ant as being the agent that starts in the box at the left 
upper corner (0,0) facing right and has the following 
limitations: partially observable environment (only can 
see the place in which it is) and will have three basic 
actions: 

 

-

 

Move a unit forward. 

 

-

 

Rotate 90 degrees clockwise. 

 

-

 

Rotate 90 degrees counterclockwise.
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, . 
Using that policy to generate the most 

significant utility it's found one way to specify which 
strategy to use. An arbitrary policy π from a random 
initial state st defined the cumulative value V π(st) 
according to the equation: 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 2: The artifical ant on the Santa Fe Trail problem 
The path is irregular and consists of 89 pieces 

of food, which can be placed consecutively or 
separated by jumps. Jumps can vary but follow specific 
patterns, which are: jumps in a straight line, single and 
double; jumps corner, individual, double (how a horse 
moves in chess) and triples. The artificial ant (Agent) will 
do the corresponding derivations of the RBG after the 
completion of the algorithm of Figure 3. In this algorithm, 
the implied grammar will define the events that the agent 
will receive. Are defined the actions as production rules, 
and they are explained by a control policy which will 
select the step to take when an event happens. 

 The Agent can do three necessary actions, 
which in the grammar through the terminal symbols (f), 
(r), (l), could represent movement toward the front, turn 
right 90⁰, and turn left 90⁰, respectively. When through 
the derivation process a new terminal symbol has been 
adding to the string, the necessary action that 
corresponds with that terminal symbol will run. From 
basic movements, are formed complex actions which 
belong to the subset of productions PAc. When is 
generated an event, will be selected any of these 
productions (rules). In the case of agent RBG = (V, Σ, P, 
S), its components are defined as follows: 

 
V={VAc, VEa, VEd} P={PAc, PEa, PEd, PSEev1} 

S={[START]} Σ= {(r), (l), (f)}  

VAc
 ={[ROT RIGHT], [ROT LEFT], [FORWARD]}  

VEa
 
={[START], [ROT 360], [WALL INFRONT], [FOOD], 

[NO FOOD]} 
 

VEd

 
={[EVENT]} 

 

PAc

 
= {[ROT RIGHT] →

 
(r)[EVENT][ROT RIGHT], [ROT 

LEFT] →
 

(l)[EVENT][ROT LEFT], [FORWARD] →
 

(f)[EVENT][FORWARD]} 
 

PEd = {[EVENT] → [START] | [ROT 360] | [WALL 
INFRONT] | [FOOD] | [NO FOOD]}  

PEa = {[START] → [ROT RIGHT] | [ROT LEFT] | 
[FORWARD], [ROT 360] → [ROT RIGHT] | [ROT LEFT] | 
[FORWARD], [WALL INFRONT] → [ROT RIGHT] |[ROT 
LEFT], [FOOD] → [ROT RIGHT] | [ROT LEFT] | 
[FORWARD], [NO FOOD]→[ROT RIGHT] | [ROT LEFT] | 
[FORWARD]}  

PSEev1 = {[ROT RIGHT] → ϵ, [ROT LEFT] → ϵ, 
[FORWARD] → ϵ}  

Note that will use square brackets and 
parentheses to frame a variable or a terminal, 
respectively.  
______________________________________________  

The RBG algorithm 
 

______________________________________________  

1. Start 
 

2. Selecting actions 
 

3. Execution of complex action 
 

4. Running basic action 
 

5. Check for event generated 
 

6. Deletion and / or extension of variables 
 

7. Derivation of events. The event is valid? 
 

 
Yes.↑ 2  
No. ↓ 8  
8. Derivation leftmost. Is it produce an action?  
 
Yes. ↑ 4  
No. ↓ 8  
_____________________________________________  

Figure 3: The general flow of grammar robotic behavior 
(RBG)  

b) Transitions, frequencies and utilities in the 
Reinforcement Learning (RL)  

It will treat a nondeterministic transition function 
in the implementation of reinforcement learning. That is, 
when is required to do something to a state, the result 
will not always be the same, i.e., it hold a probabilistic 
transition Pr = (s, a, s '), which means the chance of 
going to the state s' by acting a from the state s. This 
function is unknown to the agent and, to approximate 
such function, it will use a table of frequency (TF) 
defined as:  

TF [s, a, s '] = TF [s, a, s'] + 1 

That is, for each time it’s tried the pass from 
state s to s' using the action a, it will be adding 1 to the 
entry table that corresponds to such movement. Just as 
transitions between states occur, the utility function it 
presents in a non-deterministic way. Then, it’s used a 
table of utilities (TU) to get updated as does the table of 
frequencies but, the difference is that it’s updated TU 
only if the agent finds food in the new state s'. That is,  
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TU[st, at, s’t+1] ← TU[st, at, s’t+1] + Ct+1 

iff s’t+1 contains food, otherwise  

TU[st, at, s’t+1] ← TU[st, at, s’t+1] – 0.5 

Where Ct+1 is the number of boxes with food 
that the agent found at time t + 1.  
i. Q-Learning Function  

Since a strategy (policy) is required to show the 
best action for each state, a function is then used to 
recommend the optimal movement for that state when 
using frequency tables and utilities. It needs to update a 
Q-table using,  

Q[s, a] ← updateQValues(s, a), ∀(state-action pair (s, a)) 

Where, updateQValues (s, a) is a call to a 
function in the algorithm of Figure 4. If it's updated the 
table Q, it is possible to get simply the optimal policy, 
which, for a state s, is given by the following expression:  

𝜋𝜋∗ (s) ← max𝑎𝑎[𝑠𝑠,𝑎𝑎],(∀(𝑎𝑎),∀(𝑠𝑠)) 

During the execution of the algorithm, where 
defined values of 10 for the size of an epoch (times that 
it’s repeated the journey), and values of 400 for the time 
limit permissible (necessary actions allowed) before 
concluding such a period.  

The resulting policy guides the agent to find the 
89 pieces of food on the Santa Fe path, and this policy 
it’s represented by a string of integers, where each 
number represents the index of the optimal action for 
any state.  

Algorithm updateQValues(s,a) 
 

FUNCTION updateQValues(s, a) 
 

INPUT: state-action pair(s, a) 
 

var n ←0 
 

var total ←
 

(times repeated of the pair(s, a) 
 

var count ←
 

0 
 

Repeat for all events s’ 
 

   var c ←
 

TF(s, a, s’) 
 

   if c = 0? then 
 

        n ←
 

n + (UT[s, a, s’] * (c/total)) 
 

       count ←
 

count + 1 
 

if count > 0? then 
 

   OUTPUT: (n/count) 
 

if count <= 0? then 
 

   OUTPUT : 0 
 

__________________________________________ 
 

Figure 4:
 

Auxiliary function for the updating of 
the table Q(s, a)

 

For example, for a numerical policy 3 3 1 3 1 
wherein, the mapping corresponding with each 
production rule

 
that belonging to subset PE takes the 

form: 
 

[E] → [A1] | [2] | [A3] | … [Ax] 

and knowing that the policy is π*([E]) = n where n 
indicates the n-th optimal action to follow for such an 
event [E], then the resultant learned control policy (3 3 1 
3 1) for the agent can be rewritten, as follows:  

𝜋𝜋∗([START]) = 3  
𝜋𝜋∗([ROT 360]) = 3  

𝜋𝜋∗([WALL INFRONT]) = 1  

𝜋𝜋∗([FOOD]) = 3  

𝜋𝜋∗([NO FOOD]) = 1  

VI. Results and Conclusions 

The software implemented to meet results to the 
issues raised in this paper can be found in 
ftp://ftp.cicese.mx/pub/divFA/ciencomp/briseno/ where 
its possible to download the software, and all the 
necessary information to verify the algorithmic 
implementation of the agent’s behavior. The Santa Fe 
Trail problem has also been addressed based on other 
algorithms applicable to machine learning, such as 
genetic algorithms (GA). The last option, although not 
described in this paper, was also considered in the 
experimental runs for comparative purposes. It’s 
possible to see, in Figure 5, that the reinforcement 
learning algorithm of the RBG found an effective 
strategy after the sixth attempt in about 13 seconds to 
get all the foods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:

 

Performance of the Reinforcement Learning 
Algorithm to learn the best policy based on the Robotic 
Behavior Grammar applied to the Santa Fe Trail 
problem

 

On the other hand, the RBG implemented with 
Genetic Algorithms, in Figure 6, describes the 
performance of the best individual, the average 
individual, the worst individual, and the convergence of 
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them after the eighth generation, between 100 to 140 
seconds. The above proves a better performance when 
it’s used the Reinforcement Learning technique 
according to the procedure described in section 5.

__________________________________________ 

__________________________________________ 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6:

 

Performance of the Genetic Algorithm to learn 
the best individual based on the Robotic Behavior 
Grammar applied to the Santa Fe Trail problem

 

The results showed that formal grammars are a 
possible method to represent and generate behavior of 
agents (robots) that interact with an environment. 
Besides, the techniques of machine learning, as in this 
case reinforcement learning, can help in the derivation 
process of the productions involving these grammars, 
so the agent can optimally meet your goal. In future 
work, it is considered to include grammars induction 
techniques to automate the capture of grammars 
applicable to unforeseen circumstances or in cases of 
dynamic environments. 
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