
© 2018. J. L. Briseño, M.A. Jiménez & G. Olague. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: D
Neural & Artificial Intelligence
 Volume 18 Issue 2 Version 1.0 Year 2018
 Type: Double Blind Peer Reviewed International Research Journal
 Publisher: Global Journals

 Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Robotic Behavior based on Formal Grammars
By J. L. Briseño, M.A. Jiménez & G. Olague

 Abstract-

Formal grammars, studied by N. Chomsky for the definition of equivalence with
languages and models of computing, have been a useful tool in the development of compilers,
programming languages, natural language processing, automata theory, etc. The words or

 symbols of these formal languages can denote deduced actions that correspond to specific
behaviors of a robotic entity or agent that interacts with an environment. The primary objective of
this paper pretend to represent and generate simple behaviors of artificial agents. Reinforcement
learning techniques, grammars, and languages, as defined based on the model of the proposed
system were applied to the typical case of the ideal route on the problem of artificial ant. The
application of such techniques proofs the viability of building robots that might learn through
interaction with the environment.

Keywords:

context-free grammars, robotic behavior, intelligent agent, machine learning.

GJCST-D Classification:

RoboticBehaviorbased onFormalGrammars

 Strictly as per the compliance and regulations of:

I.2.9

Robotic Behavior based on Formal Grammars
J.L. Briseño α, M.A. Jiménez σ & G. Olague ρ

 Abstract-

Formal grammars, studied by N. Chomsky for the

definition of equivalence with languages and models of
computing, have been a useful tool in the development of
compilers, programming languages, natural language
processing, automata theory, etc. The words or

symbols of

these formal languages can denote deduced actions that
correspond to specific behaviors of a robotic entity or agent
that interacts with an environment. The primary objective of
this paper pretend to represent and generate simple behaviors
of artificial agents. Reinforcement learning techniques,
grammars, and languages, as defined based on the model of
the proposed system were applied to the typical case of the
ideal route on the problem of artificial ant. The application of
such techniques proofs the viability of building robots that
might learn through interaction with the environment.

 Keywords:

context-free grammars, robotic behavior,
intelligent agent, machine learning.

I.

Introduction

dvances in artificial intelligence (AI) have
supported to the development of sciences and
disciplines whose influence leads to

experimentation and application of new techniques that
seek an optimal solution or high performance,
depending on the problem that has arisen. The problem
of emulating human navigation skills in an environment
involves the analysis of behaviors of the humans, which
are mapped to cases of robots or humanoids to develop
in them mechanisms needed to help find solutions to
specific problems. Such mechanisms form the structure
of models that encompass interactions between the
modules involved in the solution of such a problem. In
this paper, the proposed model follows the basic
structure defined by Russell and Norvig on learning
agents [1]; then considering modules of events and
actions that interact with the environment through
sensors and actuators. The functionality of such
modules lies in the implementation of context-free
grammars as a tool for describing and build robotic
behaviors. The purpose of this work is to manage
behaviors of agents acting within an environment, based
on grammars and formal languages. Some work in this
direction will be mentioned briefly in the next section. In
section 3 the fundamental principles of regular
grammars will be addressed; as they are used to
describe knowledge about events and actions, as well
as determine the language of valid words that define
behavior. Section 4 describes the fundamental concepts
of grammars, terminology, and reinforcement learning
(RL) used in finding the solution on the Santa Fe Trail

problem [2]. The last two sections 5 and 6 show the
results and conclusions respectively.

II. Related Work

In the recent years, few approaches based on
formal grammars have been used to learn behaviors in
robot navigation problems. Some of these approaches
outline the use of bio-inspired mechanisms to build
systems with human-like behavior based on spiking
neural networks (SNN) [3]; Others that use the RL,
Bayesian techniques, and decision trees, rely on human
experience and pretend that a robot agent learns to
make decisions in generalized models [4], [5].
Otherwise, the ART system [6] considers learning
behaviors as a classification problem, and uses a neural
network to increase the learning capacity without losing
earlier information of other behaviors when they are
learning new ones; also integrated audio, and vision
models in the current perception of the behavior are
observed. Within the first work on behavior and
autonomy of robots, in [7] these issues are described
based on the representation in nets and using genetic
algorithms (GA) as a method to search movements
which are learned and generated from the states
involved in a net. Regarding the generation of behaviors
in [8] are proposed architectures that emulate cortical
regions of the human brain which relate modules
perception declarative memory, and objectives
management. Such modules supported in production
systems respond to patterns of information stored on
the work memory engaged. In [9], behaviors are in
software architecture designed to handle reusable
components where each of them has a specific role
based primarily on finite state machines (FSM). On the
other hand, below the context of using of formal
languages for generating robotic behaviors, Manikonda,
et al., [10] propose techniques and models with
differential equations based on kinetic state machines.
In more recent work, Dantam and Stillman [11] formally
develop the concept Grammar Movements doing a
complete linguistic analysis for robotic control, being
very similar some of its specific goals with the particular
implementation presented in this article.

III. Fundamentals of Languages,
Grammars and System Model

The languages described by formal grammars
are of great practical importance in the definitions of
programming languages, formalization of the rules of
the grammars based on the parsing, simplified

A

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

1

Y
e
a
r

20
18

 (

)
D

© 2018 Global Journals

Author α: e-mail: briseno@cicese.mx

translations of languages, and applications for pre-
processing chains (words). Each language determined
by an abstract computing model: finite automaton,
pushdown automata, linear bounded automata, and
Turing machines, prescribes regular, context-free
(CFLs), context-sensitive, and recursively enumerable
languages, respectively.

a) Context-Free Grammars
A context-free grammar (CFG) is a finite set of

variables (non-terminals or syntactic categories) where
each represents a language. These languages
represented by the variables are described recursively
each other and regard also primary symbols called
terminals. Rules that relate these variables are called
productions. Formally a CFG is denoted as G = (V, T, P,
S), where V and T are finite sets of variables and
terminals respectively. Each production in P is of the
form A→ α where A is a variable which can be replaced
by a chain (α) of symbols regardless of the context, α
must be not empty, with symbols of the set (V∪T)*1, S is
a special variable called start symbol. Some common
conventions for grammars are a) the capital letters A, B,

that can be variables or terminals. d) The lowercase
letters u, v, w, and z denote terminals. e) The lowercase
Greek letters α, β, and γ

denote strings of variables and
terminals. For further explanation on these issues see
Hopcroft and Ullman [12].

In this paper, we will define in the next section,
Robotic Behavior Grammar (RBG) according to the
formal description of the CFG.

b)

System Model

Respect to the system model, this paper follows
the general concept of a learning agent according to [1]
so that the functional mapping defines the relevant
modules regarding specific applications addressed by
the RBG. The model consists of four main components
(Figure 1) linking an agent and an environment. The
events module tells the element learning how things are
happening about a standard fixed performance, in this
case, the target’s progress of the agent.

1

The asterisk right here indicates the possible set of relationships
between variables and terminals involved.

Figure 1:

The general model of Robotic Behavior Grammar (RBG).

In the RBG model, the sensors detect
occurrences of events in the environment which may be
a valid event, a non-event, and a repeated event. If a
valid event occurs in this environment, the events
module recognizes it as a variable V corresponding to a
fact derivable Ed then defining it as VEd and verifying
that belongs to the set of productions to the derivation
of events PEd. The learning element will process that
information to decide whether the "word" (event or fact)
is valid in the language generated by the grammar used.
The performance module then looks for the production

P, which relates an action a, and a derivate event e in
the set of productions of actions to events PEa. Thus, an
external operation carried out by the actor in the
environment is selected. As the event is null when it was
not generated or fired any event; or repeated, when the
agent is in the same state as a previous one, the
expansion of variables continues without affecting the

Robotic Behavior based on Formal Grammars
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

2

Y
e
a
r

20
18

(
)

D

© 2018 Global Journals 1

EVENTS

(Critic)

 LEARNING

NEW PROBLEMS

PERFORMANCE

Sensors

Actuators

AGENT
GRAMMAR

EN
V

IR
O

N
M

EN
T

Performance standard

C, D, E, and S denote variables; S is a start symbol
unless it stated in another way. b) The lowercase letters
a, b, c, d, e, digits, and expressions in "bold" are
terminals. c) Capital letters X, Y, and Z denote symbols

current derivation. The process of the agent’s behavior
ends when its achieved the goal, or when that means
reaches a predetermined time limit. For a more versatile
agent, the problems generator module takes the current
knowledge and can formulate new rules to new
situations or to find particular areas of behavior that are
susceptible to improvement.

IV.

Terminology and Concepts

a)

Grammars
A grammar of robotic behavior RBG = (V, Σ, P,

S) define the components as follows: V is the set

of
variables V = {VAc, VEa, VEd, Vaux} where VAc are
variables representing complex actions, VEa are
variables representing events or states, VEd is called a
derivation variable of facts, and Vaux are auxiliary
variables. S is the symbol of the start function, which
belongs to the subset VEa. Σ

contains the terminal
symbols for the primary actions of the agent. The
symbol P are the productions divided into several
subgroups directly related to subsets of V. These
productions are: PAc, which are productions

of complex
actions; PEa, which are productions to select actions for
events; PEd indicating outputs to derivation of events;
Paux indicating auxiliary productions for operations;
PSEenv indicating productions of extension, and
PSEnuln productions of suppression.

b)

Generating behaviors

The RBG can generate behaviors using
grammars derivation process, which depends on the
different subsets of variables and productions. Those
behaviors lead to executing routines that rely on the
expansion of production rules. For example, a variable
that can be expanded in many different ways, unless
there are certain conditions, will always be extended by
the same production rule. Whenever is expanded a
variable, and a new terminal symbol appears, a
corresponding primary action for such a symbol will run.
Derivation default will be leftmost derivation, which
guarantees a particular order in the process that
generates behaviors.

c)

Learning

Reinforcement learning (RL) is the method
considered in this work. With this method, the robotic
agent learns to select an action from several of them
possible involved in a particular state. With
reinforcement learning the agent seeks to learn an
optimal policy π, which for some state s, recommend an
action a that helps the

agent to meet its goal. For this
process is performed a mapping between the elements
of the grammar of behaviors and RL. The reinforcement
learning process was carried out using standard
algorithms, once are identified states, actions and a
control policy

for a grammar of behaviors (in this case
the RBG). Note that transitions, utilities, and the learning,
tend to vary depending on the problem. In an RBG =
{V, Σ, P, S}, the productions of the subset PEa (member
of the set P), have the form Ex →

Ai where Ex

is a
variable that represents an event, and belongs to the
subset VEa, Ai is a variable (where i=1,2,…n)
representing an action which belongs to the subgroup
VAc. The purpose of the agent is to learn a policy π:

S→A, such that it dictates the next action at to be
executed when the agent is in a state st, ie, π(st)=at.

𝑉𝑉(st)≡Σ𝛾𝛾𝑖𝑖∞𝑖𝑖=0𝑟𝑟𝑡𝑡+𝑖𝑖

(1)

where rt+i indicates the sequence of generated
rewards, which starts at a state st as a result of using a
policy π for selecting actions. The formula (1) indicates
that starting in state st and then implementing the
actions recommended by the policy π, the sequence of
rewards is obtained [13]. The parameter γ

(gamma)
defined by an assignment of values between 0 and 1, is
known as the discount factor, and it indicates the
preference between immediate rewards on future
rewards. The smaller the value of γ, future rewards will
be less significant for the agent. In general, it’s intended
that the agent learns a policy that maximizes V π(s) for
all states s. This procedure is called optimal policy,
given by

𝜋𝜋∗

≡𝑎𝑎𝑟𝑟𝑔𝑔𝑚𝑚𝑎𝑎𝑥𝑥𝑉𝑉𝜋𝜋(s), (∀s) (2)

V.

Development and Implementation

a)

Grammar for the passage of Santa Fe

It will describe the design and implementation
of the RBG based on the context of the problem of
artificial ant in the particular instance Santa Fe Trail [2].
The aim of the ant is eating all the food (cells in black),
running all the way, in the shortest possible time; the
stage in which the artificial ant acts is a 32x32 grid of
squares (cells), as shown in Figure 2. Its considered the
ant as being the agent that starts in the box at the left
upper corner (0,0) facing right and has the following
limitations: partially observable environment (only can
see the place in which it is) and will have three basic
actions:

-

Move a unit forward.

-

Rotate 90 degrees clockwise.

-

Rotate 90 degrees counterclockwise.

Robotic Behavior based on Formal Grammars

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

3

Y
e
a
r

20
18

 (

)
D

© 2018 Global Journals

, .
Using that policy to generate the most

significant utility it's found one way to specify which
strategy to use. An arbitrary policy π from a random
initial state st defined the cumulative value V π(st)
according to the equation:

Figure 2: The artifical ant on the Santa Fe Trail problem
The path is irregular and consists of 89 pieces

of food, which can be placed consecutively or
separated by jumps. Jumps can vary but follow specific
patterns, which are: jumps in a straight line, single and
double; jumps corner, individual, double (how a horse
moves in chess) and triples. The artificial ant (Agent) will
do the corresponding derivations of the RBG after the
completion of the algorithm of Figure 3. In this algorithm,
the implied grammar will define the events that the agent
will receive. Are defined the actions as production rules,
and they are explained by a control policy which will
select the step to take when an event happens.

 The Agent can do three necessary actions,
which in the grammar through the terminal symbols (f),
(r), (l), could represent movement toward the front, turn
right 90⁰, and turn left 90⁰, respectively. When through
the derivation process a new terminal symbol has been
adding to the string, the necessary action that
corresponds with that terminal symbol will run. From
basic movements, are formed complex actions which
belong to the subset of productions PAc. When is
generated an event, will be selected any of these
productions (rules). In the case of agent RBG = (V, Σ, P,
S), its components are defined as follows:

V={VAc, VEa, VEd} P={PAc, PEa, PEd, PSEev1}

S={[START]} Σ= {(r), (l), (f)}

VAc
 ={[ROT RIGHT], [ROT LEFT], [FORWARD]}

VEa

={[START], [ROT 360], [WALL INFRONT], [FOOD],

[NO FOOD]}

VEd

={[EVENT]}

PAc

= {[ROT RIGHT] →

(r)[EVENT][ROT RIGHT], [ROT

LEFT] →

(l)[EVENT][ROT LEFT], [FORWARD] →

(f)[EVENT][FORWARD]}

PEd = {[EVENT] → [START] | [ROT 360] | [WALL
INFRONT] | [FOOD] | [NO FOOD]}

PEa = {[START] → [ROT RIGHT] | [ROT LEFT] |
[FORWARD], [ROT 360] → [ROT RIGHT] | [ROT LEFT] |
[FORWARD], [WALL INFRONT] → [ROT RIGHT] |[ROT
LEFT], [FOOD] → [ROT RIGHT] | [ROT LEFT] |
[FORWARD], [NO FOOD]→[ROT RIGHT] | [ROT LEFT] |
[FORWARD]}

PSEev1 = {[ROT RIGHT] → ϵ, [ROT LEFT] → ϵ,
[FORWARD] → ϵ}

Note that will use square brackets and
parentheses to frame a variable or a terminal,
respectively.
__

The RBG algorithm

__

1. Start

2. Selecting actions

3. Execution of complex action

4. Running basic action

5. Check for event generated

6. Deletion and / or extension of variables

7. Derivation of events. The event is valid?

Yes.↑ 2
No. ↓ 8
8. Derivation leftmost. Is it produce an action?

Yes. ↑ 4
No. ↓ 8

Figure 3: The general flow of grammar robotic behavior
(RBG)

b) Transitions, frequencies and utilities in the
Reinforcement Learning (RL)

It will treat a nondeterministic transition function
in the implementation of reinforcement learning. That is,
when is required to do something to a state, the result
will not always be the same, i.e., it hold a probabilistic
transition Pr = (s, a, s '), which means the chance of
going to the state s' by acting a from the state s. This
function is unknown to the agent and, to approximate
such function, it will use a table of frequency (TF)
defined as:

TF [s, a, s '] = TF [s, a, s'] + 1

That is, for each time it’s tried the pass from
state s to s' using the action a, it will be adding 1 to the
entry table that corresponds to such movement. Just as
transitions between states occur, the utility function it
presents in a non-deterministic way. Then, it’s used a
table of utilities (TU) to get updated as does the table of
frequencies but, the difference is that it’s updated TU
only if the agent finds food in the new state s'. That is,

Robotic Behavior based on Formal Grammars
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

4

Y
e
a
r

20
18

(
)

D

© 2018 Global Journals 1

TU[st, at, s’t+1] ← TU[st, at, s’t+1] + Ct+1

iff s’t+1 contains food, otherwise

TU[st, at, s’t+1] ← TU[st, at, s’t+1] – 0.5

Where Ct+1 is the number of boxes with food
that the agent found at time t + 1.
i. Q-Learning Function

Since a strategy (policy) is required to show the
best action for each state, a function is then used to
recommend the optimal movement for that state when
using frequency tables and utilities. It needs to update a
Q-table using,

Q[s, a] ← updateQValues(s, a), ∀(state-action pair (s, a))

Where, updateQValues (s, a) is a call to a
function in the algorithm of Figure 4. If it's updated the
table Q, it is possible to get simply the optimal policy,
which, for a state s, is given by the following expression:

𝜋𝜋∗ (s) ← max𝑎𝑎[𝑠𝑠,𝑎𝑎],(∀(𝑎𝑎),∀(𝑠𝑠))

During the execution of the algorithm, where
defined values of 10 for the size of an epoch (times that
it’s repeated the journey), and values of 400 for the time
limit permissible (necessary actions allowed) before
concluding such a period.

The resulting policy guides the agent to find the
89 pieces of food on the Santa Fe path, and this policy
it’s represented by a string of integers, where each
number represents the index of the optimal action for
any state.

Algorithm updateQValues(s,a)

FUNCTION updateQValues(s, a)

INPUT: state-action pair(s, a)

var n ←0

var total ←

(times repeated of the pair(s, a)

var count ←

0

Repeat for all events s’

 var c ←

TF(s, a, s’)

 if c = 0? then

 n ←

n + (UT[s, a, s’] * (c/total))

 count ←

count + 1

if count > 0? then

 OUTPUT: (n/count)

if count <= 0? then

 OUTPUT : 0

__

Figure 4:

Auxiliary function for the updating of
the table Q(s, a)

For example, for a numerical policy 3 3 1 3 1
wherein, the mapping corresponding with each
production rule

that belonging to subset PE takes the

form:

[E] → [A1] | [2] | [A3] | … [Ax]

and knowing that the policy is π*([E]) = n where n
indicates the n-th optimal action to follow for such an
event [E], then the resultant learned control policy (3 3 1
3 1) for the agent can be rewritten, as follows:

𝜋𝜋∗([START]) = 3
𝜋𝜋∗([ROT 360]) = 3

𝜋𝜋∗([WALL INFRONT]) = 1

𝜋𝜋∗([FOOD]) = 3

𝜋𝜋∗([NO FOOD]) = 1

VI. Results and Conclusions

The software implemented to meet results to the
issues raised in this paper can be found in
ftp://ftp.cicese.mx/pub/divFA/ciencomp/briseno/ where
its possible to download the software, and all the
necessary information to verify the algorithmic
implementation of the agent’s behavior. The Santa Fe
Trail problem has also been addressed based on other
algorithms applicable to machine learning, such as
genetic algorithms (GA). The last option, although not
described in this paper, was also considered in the
experimental runs for comparative purposes. It’s
possible to see, in Figure 5, that the reinforcement
learning algorithm of the RBG found an effective
strategy after the sixth attempt in about 13 seconds to
get all the foods.

Figure 5:

Performance of the Reinforcement Learning
Algorithm to learn the best policy based on the Robotic
Behavior Grammar applied to the Santa Fe Trail
problem

On the other hand, the RBG implemented with
Genetic Algorithms, in Figure 6, describes the
performance of the best individual, the average
individual, the worst individual, and the convergence of

Robotic Behavior based on Formal Grammars

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

5

Y
e
a
r

20
18

 (

)
D

© 2018 Global Journals

0

2

4

6

8

10

12

14

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 1011121314

TI
M

E

FO
O

D

ATTEMPTS

Attempts Policy obtained

Time (seconds)

them after the eighth generation, between 100 to 140
seconds. The above proves a better performance when
it’s used the Reinforcement Learning technique
according to the procedure described in section 5.

__

__

Figure 6:

Performance of the Genetic Algorithm to learn
the best individual based on the Robotic Behavior
Grammar applied to the Santa Fe Trail problem

The results showed that formal grammars are a
possible method to represent and generate behavior of
agents (robots) that interact with an environment.
Besides, the techniques of machine learning, as in this
case reinforcement learning, can help in the derivation
process of the productions involving these grammars,
so the agent can optimally meet your goal. In future
work, it is considered to include grammars induction
techniques to automate the capture of grammars
applicable to unforeseen circumstances or in cases of
dynamic environments.

References Références Referencias

1.

Russell, S. y Norvig, P. (2009). Artificial Intelligence:
A Modern Approach. Prentice Hall Press, (3rd ed.).
Upper Saddle River, NJ, USA.

2.

Koza, J. R. (1992). Genetic programming: On the
programming of computers by means of natural
selection. MIT Press.

3.

Gamez, D., Fountas, Z., y Fidjeland, A. K. (2013). A
neuronal controlled computer game avatar with
humanlike behavior. Computational Intelligence and
AI in Games, IEEE Transactions on, 5(1): 1–14. J.L.
Briseño et al.

4.

Bauckhage, C., Gorman, B., Thurau, C., y
Humphrys, M. (2007). Learning human behavior
from analyzing activities in virtual environments.
MMI-Interaktiv, 12: 3–17.

5.

Hester, T., Quinlan, M., y Stone, P. (2010).
Generalized model learning for reinforcement
learning on a humanoid robot. In: Robotics and
Automation (ICRA), 2010 IEEE International
Conference on. IEEE, pp. 2369–2374.

6.

Gu, L. y Su, J. (2006). Humanoid robot behavior
learning based on art neural network and cross-

modality learning. In: Advances in Natural
Computation. Springer, pp. 447–450.

7.

Ogura, T., Okada, K., Inaba, M., y Inoue, H. (2003).
Behavior network acquisition in multisensory space
for whole-body humanoid. In: Multisensor Fusion
and Integration for Intelligent

Systems, MFI2003.
Proceedings of IEEE International Conference on.
IEEE, pp. 317–322.

8.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass,
S., Lebiere, C., y Qin, Y. (2004). An integrated theory
of the mind. Psychological review, 111(4): 1036.

9.

Martın, F., Canas, J. M., Agüero, C., y Perdices, E.
(2010). Behavior-based iterative component
architecture for robotic applications with the NAO
humanoid. En: XI Workshop de Agentes Fısicos.
Valencia (Spain).

10.

Manikonda, V., Krishnaprasad, P. S., y Hendler, J.
(1995). A motion description language and a hybrid
architecture for motion planning with nonholonomic
robots. In: Robotics and Automation, 1995.
Proceedings, 1995 IEEE International Conference
on. IEEE Vol. 2, pp. 2021–2028.

11.

Dantam, N. y Stillman, M. (2013). The motion
grammar: Analysis of a linguistic method for robot
control. Robotics, IEEE Transactions on, 29(3):
704-718.

12.

Hopcroft J. E. and Ullman

J. D. (1979). Introduction
to Automata theory, Languages, and Computation.
Addison Wesley Publishing Company, Inc.

13.

Mitchell, T. M. (1997). Machine learning. 1997. Burr
Ridge, IL: McGraw Hill, 45.

Robotic Behavior based on Formal Grammars
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
III

 I
ss
ue

 I
I
V
er
sio

n
I

6

Y
e
a
r

20
18

(
)

D

© 2018 Global Journals 1

-20

0

20

40

60

80

100

120

140

160

0 5 10 15

FO
O

D
-T

im
e

Generations

	Robotic Behavior based on Formal Grammars
	Author
	Keywords
	I. Introduction
	II. Related Work
	III. Fundamentals of Languages,Grammars and System Model
	a) Context-Free Grammars
	b) System Model

	IV. Terminology and Concepts
	a) Grammars
	b) Generating behaviors
	c) Learning

	V. Development and Implementation
	a) Grammar for the passage of Santa Fe
	b) Transitions, frequencies and utilities in theReinforcement Learning (RL)

	VI. Results and Conclusions
	References Références Referencias

