
© 2020. A.K.M Zahidul Islam & Dr. Alex Ferworn. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Comparison between Agile and Traditional Software
Development Methodologies

By A.K.M Zahidul Islam & Dr. Alex Ferworn
 Ryerson University

Abstract- Agile and Traditional software development methodologies, both are being used in
different projects of software development industry. Agile software development technology is an
incremental software development process. On the other hand, Traditional software development
methodologies or plan-driven software can be explained as a more formal approach to software
development. These methodologies come with a fully completed set of systems requirements
followed by an architectural and high leveldesign development and inspiration.

This research focuses on the software development life cycle, role and responsibilities of
agile and traditional software development methodologies and their technical practices. It
performs a comparison between both the software development methodologies. Here a
questionnaire is used to collect data from the various experts of different IT related organizations
of Bangladesh. In the questionnaire, there are three sections to bring out the individual
knowledge from different organization, methodology knowledge of the respondents and software
development experience of the respondents. The respondents are mainly software engineer,
system analyst, software developer etc. A comparison is also performed between this survey
result and a survey done by Ambler.

GJCST-C Classification:

AComparisonbetweenAgileandTraditionalSoftwareDevelopmentMethodologies

Volume 20 Issue 2 Version 1.0 Year 2020
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Global Journal of Computer Science and Technology: C
Software & Data Engineering

Strictly as per the compliance and regulations of:

K.6.3

A Comparison between Agile and Traditional
Software Development Methodologies

A.K.M Zahidul Islam α & Dr. Alex Ferworn σ

Abstract- Agile and Traditional software development
methodologies, both are being used in different projects of
software development industry. Agile software development
technology is an incremental software development process.
On the other hand, Traditional software development
methodologies or plan-driven software can be explained as a
more formal approach to software development. These
methodologies come with a fully completed set of systems
requirements followed by an architectural and high level-
design development and inspiration.

This research focuses on the software development
life cycle, role and responsibilities of agile and traditional
software development methodologies and their technical
practices. It performs a comparison between both the software
development methodologies. Here a questionnaire is used to
collect data from the various experts of different IT related
organizations of Bangladesh. In the questionnaire, there are
three sections to bring out the individual knowledge from
different organization, methodology knowledge of the
respondents and software development experience of the
respondents. The respondents are mainly software engineer,
system analyst, software developer etc. A comparison is also
performed between this survey result and a survey done by
Ambler.

The analysis demonstrates the effect on software
quality and cost from agile methodology and compares it with
ambler (2007) survey and tries to find out correlation between
the cost and quality of both the surveys. According to the
respondents of the survey (Questionnaire) it is clear that what
are the facilities and drawbacks of the traditional and agile
software development methodologies for different size of the
projects of an organization. At the end of the analysis part of
this research it shows that for small scale projects more than
90% respondent response for agile methodologies and less
than 10% responds for the mix software development
technologies which are specific for a organization. For medium
scales projects about 50% responds for agile software
developments methodologies, more than 40% responds for
the traditional software development methodologies and less
than 10% responds for the other mix technologies for an
organization. For the large scale project less than 10%
responds for agile methodologies, more than 80% responds
for traditional methodologies and slightly more than 10%
responds for the other mix technologies for a specific
organization.

The findings of this project research study also
confirm the appropriateness of the use of agile methodologies
for small scale projects, traditional and agile methodologies
for medium scale projects and traditional methodologies for
large scale projects of an organization.

Author α: Ryerson University, Toronto, Canada.
e-mail: akmzahidulislam102@gmail.com

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

7

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

I. Introduction

he software development industry is one of the
fastest growing industries in the world. By
analyzing previous 20 years history of software

development it is evident that a lot of brilliant ideas and
methods born repeatedly. However, there was no
guarantee whether those methods will last long or not
though there are a good number of examples to prove
this.

The concept of “Agile” is new. When it was
introduced there was no agreement or explanation on
what precisely it refers to. Despite this doubt agile
methods became very popular among the industry
within a very limited period. Agile was born after
introducing extreme programming also known as XP.
There are different methodologies comes under agile
such as Dynamic Systems Development Method, FDD,
TDD, SCRUM and etc.

“Agile” has the high reputation and interest in
the industry but still there is no clear agreement on how
“Agile” can be distinguish from more “Plan-driven”
methods which are also known as the traditional
methods. So it cannot identify any boundaries or
limitations (Boehm and Turner).There is no any
systematic check on agile methods. However, there are
some studies to identify the suitability of agile methods
for different software project natures. Due to that there
are no current events or guidelines for practitioners to
select the best method to bring the maximum benefits to
their projects.

“Agile” is becoming more renowned in the
software industry. Agile methods are overtaking tradition
methods in projects where requirements are changing
frequently. In agile software development there is a
series of software behaviors which is conventional as
well as controversial. As a result, in the near future the
software development industry will find ways to carefully
use either the traditional or the agile methods or a hybrid
of these two methods.

To get highest result and to achieve the goals, a
software development team needs to understand and
select the most suitable methodologies and techniques
for their project. When acquiring the understanding that
they can find answers to these questions:

“What natures of project they have in hand the
possibility of changes while the project in progress?”

T

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

8

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

“What is an appropriate balance of effort
between documenting the work and getting the product
implemented?” (Lindvall et al., 2002)

“When does it pay to spend major effort on
planning in advance and avoid change, and when is it
more beneficial to plan less rigorously and embrace
change?” (Lindvall et al., 2002)

In order to answer properly to above questions
and to make the correct decision proper knowledge
should be implemented and should be disseminated
within the industry. This research aims to develop a set
of guidelines to help an organization in their decision
making, when selecting the best software development
methodology to a given nature of a project or projects,
by doing a review on the different traditional and agile
methods.

a) Aims of the Research

The aims of the research project are:

1. Review a number of different software development
methods, both traditional and Agile.

2. “Can agile methods be used in any type of software
development project?” find out the answer of this
question.

3. Come up with a set of guidelines for a software
organization to select the most suitable software
development methodology for their software
projects.

b) Objectives of the Research

The objectives are:

1. Carry out a literature survey on different software
development methodologies.

2. Understand the lifecycles, roles and practices of
these development methodologies.

3. A comparison for agile and traditional development
methodologies to understand the similarities and
differences.

4. Carry out a survey in the software industry with
practitioners and professional in software
engineering.

5. Analyze the gathered data from the survey and
summaries them to fulfill the final aim with the help
of the knowledge from the literature.

c) Research Question
What are the significant factors for a project to

consider the most appropriate type of process model,
after comparing agile and traditional software
development methods?

d) Structure of this Research
The first chapter introduces what is the aim and

objective of this research and what is the research
question of this research. The second chapter
introduces the literature review of this research to
answer the research question. The third chapter
introduces the research design and makes a questioner

for the target audience of this research. After a survey
from the audience the result of this research is
discussed in chapter four. Basically this questioner
helps to collect data for this research. Chapter five
analyzes the research result and tries to bring out proper
methodology for specific software. The final chapter tries
to bring out limitation of this study and future aspect of
this research.

II. Literature Review

a) Outline
The Manifesto for Agile Software Development

(MAD) was published in 2001 by a group of seventeen
methodologists. This group of experts agreed on a
common set of guiding principles and practices around
effective software development. The focus was for
modeling and documentation of software development
projects. The methodologists introduce the guidelines
which are: (Fowler and Highsmith, 2001)

• Individuals and interactions over processes and
tools

The main concern in this section is the relationship
and communication between the software
developers and any other persons involve in the
software development process. The dependency on
just tools and processes will be minimal.

• Working software over comprehensive
documentation

The main purpose here is to keep the
documentation as small as possible and thus
concentrating more on building and delivering
tested and quality products. Different teams can
handle the deliveries differently. Some may deliver
hourly or per week while others releases product
every two weeks or once a month.

• Customer collaboration over contract negotiation
The main concern of this section is the relationship
between the development team and the client. The
relationship has to be very high. However, the
importance of having a contract and changing it
accordingly is important as well. Agile starts to
release functional program modules as soon as the
development process starts and thus it effectively
minimizes the risk and disappointment of not
meeting the actual requirement at the far end of the
project.

• Responding to change over following a plan

The people who are involved in the software
development like programmers, clients and any
other should be well knowledgeable about the
progress and any changes. Any party have the
authority to consider possible changes to the
product When it is been developed.

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

9

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

The founders of MAD say “while we value the
items on the right, we value the items on the left more”
(Fowler and Highsmith, 2001), so there are different
debates on these values. There are other practitioners
including Steven Rakitin (2001) who thinks that items on
the left are just an excuse for hackers with no regard for
engineering discipline.

Traditional software development
methodologies or plan-driven software can be explained
as a more formal approach to software development.
These methodologies come with a fully completed set of
systems requirements followed by an architectural and
high level-design development and inspiration.
However, during mid 1990’s some practitioners found
some steps such as full documentation frustrating and
unnecessary time wasting (Highsmith, 2002). Due to
these heavy aspects, this methodology is known as
heavyweight development methods.

Traditional development methodologies all
include with the following (Williams & Heckman, 2008):

• Repeatability and predictability
• A defined incremental process
• Extensive documentation
• Up-front system architecture
• Detailed plans, process monitoring
• Controlling and education
• Risk management

• Verification and validation.
The Personal Software Process (PSP), Team

Software Process (TSP), and Rational Unified Process
(RUP) are the three of the most popular and widely used
plan-driven methodologies. Among these plan driven
methodologies waterfall model and spiral model are
well-known.

According to Davis and Sitaram (1994) waterfall
model have the ability to capture the gross state of the
project. Using this model therefore a project manager
can track the progress through all major phases of
development of major intermediate products. On the
other hand spiral model captures the iterative nature of
software versions and helps the project manager to
isolate the key decision points to select a development
strategy. They further argue “Neither of these two
models, nor any other published model, provides a
project manager with a picture of the true state of the
project. Project managers who track project status in
terms of the major phases have no idea of the status of
their projects.”

The following table which was published by
Abrahamsson et al., (2002) demonstrates the
differences of privileged and marginalized
methodological information systems development
process. These were a collection of views from different
authors in the field.

Table 1: Privileged v Marginalized text (source: Abrahamsson, 2002)

Privileged methodological text Marginalized methodological text

Information systems development is

A managed controlled process
Random, opportunistic process driven by

accident

A linier sequential process
Processes are simultaneous and overlapping

and there are gaps in the between

A replicable universal process
Occurs in completely unique and idiographic

forms

A rational, determined and goal driven
process

Negotiated, compromised and capricious

The marginalized methods have much more
things in familiar with the original agile development
methods. The privileged method projects use more of a
process oriented software development methods. These
methods also called plan-driven methods.

McCauley (2001) argues that the underlying
philosophy of Traditional methods which is referred to
as process-oriented methods in the article, is that the
functional requirements of a project is utterly frozen or in
other words sealed before move in to the next phases
such as the design and development. The article also

states that this approach is not feasible for most of the
software projects. So the need of a flexible and agile
development methods is necessary for developers to
make changes or amendments to the specifications
while it is been built. Further according to McCauley
(2001) there is no software model that suits any nature
of software project. It is the project management who
should be able to select the best suitable methodology
according to the project in hand. There are different
other experts in the field who support this argument.

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

10

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

b) Characteristics of Agile Methods
“Battlefields are messy, turbulent, uncertain,

and full of change. No battlefield commander would say,
‘If we just plan this battle long and hard enough, and put
repeatable processes in place, we can eliminate change
early in the battle and not have to deal with it later
on’.”(Highsmith, 2002) In this piece of writing Highsmith
(2002) explains that a growing number of software
projects which are work the same as a battle and they
are called ‘extreme projects’. This is where the concept
of agility becomes important.

The origin of Agile methods go back a long way
even though they were properly introduced and started
to gain interest in the software industry during the last
few years. As mentioned earlier, as a result of built up
frustration within the software developers on structured
and planed methods in the mid-1990s, development
teams started to use early versions of some of the agile
methodologies such as Extreme Programming (XP),
SCRUM and Dynamic Systems Development Method
(DSDM).

The Agile methodologies describe a number of
principles which in summary put the human factor
(customers and developers) first over processes and
plans. The highest priority principle is to satisfy the
customer through early and continuous delivery of
software. According to Miller (2001) there are a number
of characteristics of agile methods from a fast delivery
view, which ultimately shortens the software project life-
cycle:

1.

Modularity –

This is on the process level of
development

2.

Iterative –

Consider short development cycles which

enables to clear error faster and more accurate

3.

Time bound –

iterative cycles ranging from one to

six weeks

4.

Parsimony –

remove all the unnecessary activities in

the development

5.

Adaptive –

Take faster action against possible new

emerging risks

6.

Incremental –

A functioning application software,
build up in smaller steps

7.

Convergent –

Minimizes risks

8.

People-oriented –

Agile favour people who are
involved over

the process and technology

9.

Collaborative –

Active communication.

In Barry Boehm’s IEEE computer article (2002) it
is mentioned that according to Highsmith and Cockburn
(2001) there are several critical people-factors which
agile highlights, such as amicability, talent, skill, and
communication. Highsmith and Cockburn (2001) further
describes, what is new in agile is not the behaviors or
practices they use but the recognition of users or any
other people involved as the primary sources which
drive the

project to a success.

Agile does not require highly-capable people to
execute its practices in a software project environment.
However, it requires tacit knowledge and lot of expertise
to function successfully. Due to this reason agile has a
minimum use of fully completed documents. Boehm
warned that there is a possible risk that this situation
may lead to architectural mistakes, which are hard to
find and correct by any external party.

c) Definition of Agile
Agile cannot be given with a constant definition.

Different practitioners have different wordings according
to their experience and understanding. But agile can be
explained in few characteristics that are considered as
the core characteristics.

• Iterative and incremental process
• Simple and easily adoptable
• Collaboration of all the parties such as users,

customers, developers, project managers, etc.
• Produce high quality software within the

requirements, budgets and the time scale.

Following are different definitions from different
expert practitioners.

“Agile is an iterative and incremental
(evolutionary) approach to software development which
is performed in a highly collaborative manner by self-
organizing teams with ‘just enough’ ceremony that
produces high quality software in a cost effective and
timely manner which meets the changing needs of its
stakeholders.”(Ambler, 2001)

“Agile is a conceptual framework generally
centred on iterative and incremental delivery of working
software, driven by the customer. The iterative part
suggests that we are repeating, or iterating, a complete
lifecycle of development over a short, fixed span of time.
With each of these iterations, we ship some working
subset, or increment, of features.” (Langr, 2006)

d) SDLC for Agile
According to Ambler agile SDLC composed of

four phases Iteration0, Development, Release and
production.

Iteration 0:
1. Initial time of the agile project.
2. Modeling and initial architecture of the project.
3. Setting up the environment of the project.

Development Phase:
Incrementally deliver high quality software which

meets the changing needs of the use.

Release Phase:

In this phase agile practitioners transition the
system into production.

Production Phase:
The fundamental goal of this phase is to keep

the system running and help users to use the software.

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

11

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

e) Agile Methodologies
Agile manifesto provides an ideological

environment to modern so called “agile” software
development with its defined values and principles. A
survey conducted by Cutter Consortium with regard to
the methods been used in the software development
field revealed that 54% of the users use their own in-
house development methods, which can be explained
within the agile boundaries. Among the defined
methodologies in agile the most popular methods were
Extreme programming, Feature Driven Development
and Adaptive Software Development. The purpose of
this section is to introduce few of the widely used agile
methodologies identifying the roles, process,
responsibilities and practices. The following methods
will be included for discussion: Extreme Programming
(XP), Dynamic Systems Development Method (DSDM)
and SCRUM.

i. Extreme Programming
a. Outline

Extreme programming (XP) evolved from the
frustrations and the problems caused from traditional
plan-driven methods, which were the only development
solutions in the software industry for a long time (Beck,
1999). XP was developed and brought in to practice in
the mid 1990’s by Kent Beck, Ward Cunningham and
Ron Jeffries (Paulk, 2001) as a result of a project they
been working. The main features which XP emphasizes
are those that they identify as the prerequisite for
effective software development which are improving
communication, getting feedback, simplicity and
proceeding with courage (Cockburn, 2001). Even
though these practices started as just a better ways of
development rather than traditional methods with time
they showed success. This was the root for XP. XP has
widely influence on the principles in the agile manifesto
(Kalermo & Rissanen, 2002).

There are different theories and arguments
about XP whether it is actually a method and how
extreme this methods is. Paulk (2001) argues that these
practices are actually just commonsense practices that
any discipline method would have and not something
extreme. Beck (1999) who is one of the founders of XP
states that XP is a fresh and new methodology and the
term “Extreme” comes from taking these commonsense
practices to extreme levels.

XP is based on the following five important values.
• Communication - “Problems with projects can

invariably be traced back to somebody not talking
to somebody else about something important.”
(Beck, 2000).
XP focuses lot on face to face or oral
communication and its techniques encourages in
maximizing interaction. This is valued on the
observation that most project difficulties occur
because individuals or teams have not spoken with

other parties to clarify questions, to collaborate, or
to obtain help.

• Simplicity – Rather than try to capture all features
and complicate, Design the project in the simplest
way to meets the customer’s needs. The value
highly stresses on the point, only design and code
the current requirements obtained rather than to
anticipate and plan for unstated requirements.

• Feedback – The development team(s) obtain
feedback from the customers at the end of each
iteration and release. The next iteration drives with
the consideration of this feedback. There are very
short design and implementation feedback loops
built into the methodology via pair programming
and test-driven development (Williams, 2003).

• Courage - The best thing about XP is that the other
three values give the team to have courage in their
actions and decision making. The team decides
which parts will be done at which stages. Further,
this encourages the team to avoid any pressure for
unrealistic deadlines or requirements.

• Respect - Team members always have to care
about each other and about the project.

b. XP Lifecycle
The life cycle of XP consists with five phases.

There are Exploration, Planning, Iteration to Release,
Product ionizing, Maintenance and Death. The following
diagram illustrates how these phases work together in
the life cycle.

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

12

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Figure 1: XP Life cycle process (Source: Abrahamsson et al. (2002))

• Exploration phase – Story cards are used by
customers to express the features they want in the
system. In each story card they have to write a
feature they wish to have in the system. Mean while
the technical teams focus on the tools and
technologies they are going to use in the project.
They get familiar with those tools as well. They test
the technologies and the proposed architecture
possibilities by building a prototype of the system.
Depending on the project scope and the teams’
familiarity with the technologies this phase spans
from few weeks to few months.

• Planning phase – Considering all the stories,
prioritize the features to be delivered in the first set
of the release of the system. The development
teams estimate the time required for different
features and then agree upon the deliveries for the
first release. The first release of the system can take
up to two months and the planning phase may take
few days.

• Iteration to release phase – The schedule set up for
the first release is divided into small iterations before
the actual first release. The first iteration builds
system architecture for the whole system by
selecting and analyzing the stories which includes
the features. The customers decide which story to
include in each of the iterations. Further the
customers can create functional test for the system.
These will be used to check the accuracy of the
system and may use in the future. Iteration is around
one to four weeks each for implement. Once the

iterations are done the system is ready for
production.

• Product ionized phase – This phase runs faster than
the others, which means that the iterations can be
reduced to one week instead of three weeks. The
system has to be extra tested for performance
before release to the customers. New changes
found here has to be decided before start working
on them. Postponed ideas will be documented to
build later.

• Maintenance phase – After the product is product
ionized and released for customer use, teams have
to make sure that system in the production running
and also produces new iterations. This phase need
an effort for customer support tasks In order to
maintain these operations. Thus, the maintenance
phase may require new people into the team and
also changes in the development structure.

• Death phase –The project comes to this phase
when there are no more requirements from the
customers. But there are other concerns such as
reliability and performance before reaching this
point. Since there are no more requirements to be
added to the system all the documents been written
at this stage. On the other hand when the project
does meet the requirements and it is expensive for
further development, it can reach death phase.

c. Responsibilities and Roles of XP
There are specific roles in XP for different tasks.

This makes work much easier to handle as they are
divided with clear roles. The following describes these

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

13

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

roles according to Beck (2000) and Abrahamsson et al.
(2002).
• Manager – Makes all the decisions and is

responsible for the team and its issues. He or she
has the right to form the team, obtain and allocate
resources, manage people and problems. In order
to do all above, he or she communicates with the
team to understand the present situation. The
manager interfaces with external groups as well
including the customers.

• Coach – Responsible for the whole process as a
whole. Teaches team members about the XP
process as necessary, intervene in case of issues.
Keep of track of the ongoing process. A sound
knowledge of XP is very important to this role. The
coach is typically a programmer and not a manager.

• Tracker – Provides feedback. He or she regularly
collects user story and acceptance test case
progress and other estimates from the developers
and gives feedback on how accurate they are to
make better future estimates. Further tracker traces
the progress of iterations and evaluate if the project
goals are reachable within the allocated time with
the current resources. The tracker is a programmer,
not a manager or customer.

• Programmer – Writes tests, design, and code and
try to keep them simple and definite as possible.
They refactor code identify and estimates tasks and
stories.

• Tester – Helps customers write and develop
functional tests. They run functional test often to
broadcast results and they maintain the test tools.

• Customer – Writes stories and acceptance tests.
Selects stories for a release and for an iteration.
One individual from the customer organization or a
group of customers can be involved in the sections,
or a customer representative can be chosen from
within the development organization that is external
to the development team.

d. Technical Practices
The initial version of XP had defined

programmer- centric technical practices. This was
published in 2000 by Beck.

• Planning game
• Short releases
• Metaphor
• Simple design
• Testing
• Refactoring
• Pair programming
• Collective ownership
• Continues integration
• 40 hour week
• On-site customer
• Coding standards

• Open workspace
• Just rules

XP practices were changed to include 13
primary practices and 11 corollary practices in 2005
(Beck, 2005). The primary practices are intended to be
useful independent of each other and the other
practices used, though the interactions between the
practices may amplify their effect (Williams, 2007).

ii. SCRUM
a. Outline

"The relay race approach to product
development may conflict with the goals of maximum
speed and flexibility. Instead, a holistic or ‘rugby’
approach – where a team tries to go the distance as a
unit, passing the ball back and forth – may better serve
today’s competitive requirements.” (Takeuchi and
Nonaka, 1986)

SCRUM is also a member from the agile
development processes family. Scrum is a process
skeleton that includes a set of practices and predefined
roles. It provides you a set of guidelines to develop
software from its design stage to its completion. Scrum
is best suited for the projects with rapidly changing or
highly emergent requirements. It is a Simple and
scalable method which means easily combined with
other methods and doesn’t prescribe engineering
practices. According to the article on scrum by Clifton
and Dunlap (2003b) there are few software development
issues scrum addresses for a better software
production.
• Chaos due to changing requirements - The real or

perceived requirements of a project usually change
drastically from the time the product is designed to
when it is released. Under most product
development methods, all design is done at the
beginning of the project, and then no changes are
allowed for or made when the requirements change.

• Unrealistic estimates of time, cost, and quality of the
product - The project management and the
developers tend to underestimate how much time
and resources a project will take, and how much
functionality can be produced within those
constraints. In actuality, this usually cannot be
accurately predicted at the beginning of the
development cycle.

• Developers are forced to lie about how the project is
progressing - When management underestimates
the time and cost needed to reach a certain level of
quality, the developers must either lie about how
much progress has been made on the product, or
face the indignation of the management.

b. SCRUM Lifecycle
Scrum has a process which has to be followed

by any organization or team that adopt this
methodology. As figure 2 illustrates the projects

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

14

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

development happens via a series of month-long
iterations called Sprints. Scrum is ideally suited for
projects with frequently changing or highly emergent
requirements. The Product Backlog lists the work to be
done on a Scrum project. It lists all desired changes to
the product. A Sprint Planning Meeting is held at the

start of each sprint during which the Product Owner
prioritizes the Product Backlog and the Scrum Team
selects the tasks they can complete during the coming
Sprint. These tasks are then moved from the Product
Backlog to the Sprint Backlog.

Figure 2: Scrum lifecycle (Source: www.davenicolette.net)

In order to help the team stay on track, a brief
daily meeting, called the Daily Scrum, is conducted
each day during the sprint. At the end of each sprint the
team demonstrates the completed functionality at a
Sprint Review Meeting (Mountain Goat, 2008).

c. Responsibilities and Roles of SCRUM
Scrum implements its iterative and incremental

process through three roles. All management
responsibilities are divided between these three roles
(Schwaber, 2007).
• Product Owner – The product owner is responsible

for the project, managing, controlling and creating
and prioritizing the Product Backlog. He or she is
selected from the other parties such as
management, customers and the scrum master.
Product owner selects what will be included in the
next iteration/Sprint, and reviewing the system (with
other stakeholders) at the end of the Sprint and
makes the final decisions related to the product
backlog (Abrahamsson et al., 2002).

• Scrum Master – Scrum master makes sure that the
project runs according to the plan. He also makes
sure that the team follows the practices and rules in
scrum. It is his responsibility to reinforce the product
iteration and goals and the Scrum values and to
conducts the daily Scrum Meeting. Scrum master
interacts with the management and the customers
during the project and also responsible in the
iteration demonstration (the Sprint Review), listens
to progress, removes impediments (blocks), and
provides resources. The Scrum Master is also a

Developer. He takes part in product development as
well (Schwaber, 2007).

• Developer – Member of the Scrum team. The Scrum
Team is committed to achieving a Sprint Goal and
has full authority to do whatever it takes to achieve
the goal. The team may consist of developers
between 5 and 10.

• Customer – Involves in the tasks of creating the
product backlog. They provide ideas and other
information for feature to be developed in the
system.

d. Technical Practices
SCRUM does not mention any particular

practices like other methodologies. Instead Scrum focus
on some management practices and tools to avoid
chaos in different stages of the process. Following are
the practices used in scrum development (Schwaber
and Beedle, 2002, cited by Abrahamsson et al. (2002)).

• Product backlog
• Effort estimations
• Sprint
• Sprint planning meeting
• Sprint backlog
• Daily Scrum meeting
• Sprint review meeting

Throughout the life cycle of SCRUM these
practices are been carried out. Each and every role has
their duties towards the success of the project during
these practices.

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

15

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

iii. Dynamic Systems Development Method
a. Outline

The Dynamic Systems Development Method
(DSDM) was first developed in the United Kingdom
around the mid to late 1990s by a group of people from
a business background. It was totally not related with
technical perspective. This can be said as one of the
heavier Agile approaches available (Coffin and Lane,
2007). It was initially developed as an addition to Rapid
Application Development (RAD), incorporating best
practices from the business-oriented environments.

DSDM is a well ordered, commonsensical
process focused on delivering business solutions
quickly and efficiently. It has similarities to SCRUM and

XP in many ways, but it has its best uses where the time
requirement is fixed (CliftonandDunlap, 2003a). DSDM
focuses on delivery of the business solution, rather than
just team activity. It ensures the feasibility and business
sense of a project before it is created. The cooperation
and collaboration between all interested parties is an
important fact in DSDM. This method makes heavy use
of prototyping to ensure all the involved parties have a
clear picture of all aspects of the system.

Unlike in traditional development methodologies
where functionality is fixed, and time and resources are
variable, in DSDM, time is fixed, and functionality is
variable (CliftonandDunlap, 2003a). The following figure
best illustrates this scenario.

Figure 3: Traditional and DSDM (Source: http://www.codeproject.com)

DSDM respect the needs that larger
organisations have to manage portfolios of projects,
architectural diversity, resources and to make project
decisions on the foundations of a fully considered
Return on Investment. DSDM, then, had to, and still
does, accommodate these corporate pressures more
readily than most other agile approaches by considering
a project in a wider context than software delivery alone
(DSDM Consortium, 2008). It does this by having a more
liberal lifecycle, by presenting and operating the agile
development techniques in a way that makes as much
sense to the wider organisation as it does to the project
teams and by defining responsibilities within key roles to
manage the corporate dependencies and preconditions
(DSDM Consortium, 2008).

b. DSDM Lifecycle
The DSDM lifecycle consists of 4 main phases.

The diagram below explains these phases. The phases
are Feasibility Study, Business Study, Functional Model
Iteration, Design and Build Iteration and Implementation.
These phases operate in an iterative manner and have
ability to jump to any other phase if required. This is the
significant difference made in DSDM compared with the
traditional water fall model.

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

16

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Figure 4: DSDM Lifecycle (source: www.topdownsoftware.com)

There are nine important guiding principles
defined for DSDM. These principles describe what
DSDM should be and how it should operation when
using for a specific project. The following are from
Moonzoo (2007)
• Active user involvement is imperative.
• DSDM teams must be empowered to make

decisions.
• The focus is on frequent delivery of products.
• Fitness for business purpose is the essential

criterion for acceptance of deliverables.
• Iterative and incremental development is necessary

to converge on an accurate business solution.
• All changes during development are reversible.
• Requirements are base lined at a high level
• Testing is integrated throughout the life-cycle.
• Collaboration and cooperation between all

stakeholders is essential.

c. Responsibilities and roles of DSDM
Following are several key roles that should be

filled by members of the team as describe in an article
by Clifton and Dunlap (2003a).

• Ambassador - The person who acts as intermediate
between the users and the development team. He
manages the development team, and usually has a
good overall understanding of how the system will
work.

• Visionary – This role is the driving force behind the
project. This role keeps the project steered on
course towards the business goals. Often is the
person who started/thought of the project.

• Advisers - People who have practical knowledge in
areas of the business that need to be automated,
and/or in the technologies needed to automate
these areas.

d. Technical Practices
There are nine principles at the core of the

DSDM methodology. Some clearly overlap with XP and
similar approaches. However, DSDM’s principles are
sufficiently robust to minimize damage to schedules and
resources when a business process radically changes
or a major component’s design is faulty—problems that
could cripple an XP project (Robinson, 2002).
• Active user involvement is a must.
• Design groups are empowered to make system

development decisions.
• Frequent and regular delivery of components is a

priority.
• The primary acceptance criterion for a system or

component is its fitness for business purposes—the
design driver is business benefit.

• The business solution is the goal, and iterative and
incremental development is necessary to converge
on that solution.

• All changes made during development are
reversible.

• Initial requirements are defined very generally.
• Testing is not a specific project phase; it occurs

constantly.
• It’s essential to have collaboration and cooperation

between all project participants.

f) Traditional Software Development

i. Outline
“By applying a methodology to the

development of software insights are gained into the
problems under consideration and thus, they can be
addressed more systematically. Software should comply
with the important quality requirements of timeliness,
relevance, accuracy and cost effectiveness. Software
engineering aims to bring to bear the more rigorous

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

17

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

methods used in the engineering world in the software
development world.” (Georgiadou, 2001).

Traditional software development
methodologies are the first methods of software
development. They are also known as heavyweight
methodologies. They are considered to be the classic
way of developing software. These methodologies are
mostly based on a series of sequential steps, such as
requirements definition, solution building, testing and
deployment.

Traditional software development
methodologies require defining and documenting a
stable set of requirements at the beginning of a project.

ii. Waterfall Model
a. Outline

The Waterfall model is known as the classic
model of software development. The Waterfall model
also known as the “top down” approach, was proposed
by Royce (1970). Until the mid 80's it was the only model
with a level of general acceptance. It was derived from
models used in traditional engineering activities with the

objective of establishing an order in the development of
large software products. It is more rigid and less
manageable compared with other software development
models.

The Waterfall Model is one of the most
important models ever published. It is a reference to
others, and serves as the basis for many modern
projects as well. Its original version was improved over
time and is still frequently used today (Peters and
Pedrycz, 2000). A great part of the success of the
Waterfall Model is due to the baseline management,
which identifies a fixed group of documents produced
as a result of each phase of the life cycle (Peters and
Pedrycz, 2000). The produced documentation includes
more than text files, it has graphical representations of
the software and even simulations.

b. Waterfall Model Life Cycle
Waterfall model phases are executed

systematically in a sequential order. The model usually
has the following phases: Analysis, Design,
Implementation, Testing, Deployment and Maintenance.

Figure 5: Waterfall model (Source: www.Buzzel.com (2000-2009))

Requirement gathering and Analysis – This is the
phase where all the requirements to be developed are
captured. This is done by conducting consultations,
interviews, observation and so on. A document called
requirement specification is created including all the
gathered requirements at the end of this phase (Parekh,
2005a).

System design – Looks at the overall system in
a design and architectural level before starting actual
coding. This is to get an idea how the system look like at
the end of the project. All hardware, software and
resource requirements are considered here and finally
create the system design specification to start the next
phase.

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

18

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Implementation and unit testing – The actual
coding begins in this phase. According to the system
design spec system is built in small units. Each of these
units are tested to ensure that it servers the purpose that
unit is built (Parekh, 2005a).

Integration and system testing - In the previous
phase the system is built in units. This phase focuses on
getting these units together. The system is build by
putting the units together. Units are tested with each
other to ensure that they work and communicate with
each other and give the final outputs which are expected
from the whole system (Parekh, 2005a).

Operations and maintenance – This phase is
normally considered the longest of all. Issues and errors
of the system which were not found during the
development stages come alive once the system starts
to operate in a live environment. This will normally
happen time to time. So this phase is called
maintenance (Parekh, 2005a).

iii. Spiral Model
a. Outline

The spiral model was introduced by Barry
Boehm in 1980s, based on experience with various
refinements of the waterfall model as applied to large
software projects. This method combines elements of
both design and prototyping-in-stages, in an effort to
combine advantages of top-down and bottom-up
concepts (Boehm, 1988). There are four main phases of
the spiral model (Boehm, 1988):
• Objective setting – Specific objectives for the project

phase are identified.
• Risk assessment and reduction – Key risks are

identified, analyzed and to reduce these risks
information is obtained.

• Development and Validation –For the next phase of
development an appropriate model is chosen.

• Planning – For the next round of spiral the project is
reviewed and plans are drawn up.

b. Spiral Model Lifecycle
As shown in figure 6 there are four main phases

in spiral model. They are Planning, Evaluation, Risk
Analysis and Engineering. These phases follow one after
another in an iterative manner. The objective is to
eliminate the problems occurred in the waterfall model.
In an article by Parekh (2005b) mentions that even
though the iterative approach became a solution to
waterfall model issues, spiral model requires people with
high skills in the area of planning, evaluation, risk and
customer relations. The project becomes more costly
than planned due to the demand for more than one
iteration cycle. Following describes the main phase in
spiral model.

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

19

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Figure 6: Spiral model (Source: Boehm (1988))

Plan phase – This phase gather and finalize the
objectives and constraints of the project and
documented. These are kept locked in order to decide
on the approaches and strategies of the project.
Risk analysis – This is considered as the most important
phase of the model. All the approaches and strategies
are analyzed for risk factors. Prototyping is used to find
solutions and to develop a low cost and quality system if
there are any indications of risk.
Engineering – This is the development phase.
Development outputs are carried through all the phases
iteratively for improvements.
Customer evaluation – The built product is passed on to
the customer in order to receive feedback. This phase is
expected to come across possible errors and/ or
changes. This is similar to system testing.

iv. Unified Process
a. Outline

Unified process is actually not a process rather
it can be called as an extensible process which can be
customized according to the nature of different projects
or organisations. Every approach such as modeling is
organized into workflows in the Unified Process (UP). UP

is performed in an iterative and incremental manner and
some of the key features of the UP are described below
(Booch, 1994):

• UP consists with an architecture based on
components which creates a system that is easily
extensible, supports software reuse and intuitively
understandable. The component commonly being
used to coordinate object oriented programming
projects.

• It uses modeling software such as UML to represent
its code graphically as a diagrammatic notation to
allow less technically capable individuals, but with a
better understanding of the problem to come up
with a greater input.

• The use of use-cases and scenarios to manage
requirements seems to be very effective at both
capturing functional requirements and help in
keeping sight of the anticipated behaviors of the
system.

• Since the design is done in an iterative and
incremental manner it helps reduce project risk
profile. Further it allows greater customer feedback
and help developers stay focused.

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

20

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

• Verifying software quality is very important in a
software project. UP assists in planning quality

control and assessment built into the entire process
involving all member of the team.

b. UP Lifecycle

Figure 7: UP lifecycle (Source: Wikipedia at http://en.wikipedia.org/wiki/Unified_Process)

The above diagram indicates the four phases in
UP lifecycle. These four phases are described below
(devdaily).

• Inception – This phase creates a business case at
the end of the process. The feasibility of the system
is measured and the scope of the system is defined.

• Elaboration – The basic architecture of the system
have been produced and a construction plan is
agreed. Furthermore a risk analysis takes place and
major risks are addressed.

• Construction – The system is produced and
released for testing. This is not a full functioning
system. A working system should be available and
sufficient enough for testing under realistic
conditions.

• Transition – The system is finally up to the standard
to go in a live environment. So it is introduced to the
stakeholders and intended users. Once the
customers and the project team agreed that the
intended target is met and the user is satisfied the
system is completed.

There are approximately 50 work steps that has
to be completed in UP during the process (Larman,
2004). All this documentation and this rigid approach
add a lot of complexity to UP. UP has predefined roles
to the project team making it less flexible in working.

g) Comparison of Agile and Traditional Methods.
In the previous section some discussions were

there on both agile and traditional methods to identify
the characteristics of these methods. It is important to
do a comparison on these two methods in order to
understand the differences that will affect different
projects.

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

21

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Table 2: Comparison of Agile and Traditional (Source: Khan and Balbo, 2004)

It is mentioned in the early sections that
traditional methodologies were ruling the software
industry for a long time until practitioners begin to
understand some of the drawbacks largely affecting the
software projects. Extreme programming became
popular in the industry when it was introduced in late
90’s by Kent Beck. Then agile was introduced based on
the concepts used in XP. Agile handle projects mostly in
a volatile and uncertain environments. But with the
passage of time practitioners came to realize that agile
cannot handle all types of software projects as it has
some limitations as well. Both of these methodologies
have their strengths and weakness. Now the
organizations tend to use the strengths of both together
in their projects. There are three main factors which
need to be considered when selecting a methodology.
They are people, project size and risk.

i. People
This is one of the main important factors

considered in software development. Especially agile
methodologies strongly believe in human factor. Bohem
and Turner (2003) believe that “In essence, software
engineering is done ‘of the people, by the people, and
for the people.’” The agile manifesto stresses about the
importance of the human interactions and customer
collaboration in their basic values of agile
methodologies (Fowler and Highsmith, 2001).

Developers and customers are the most
important categories in people needed for software
development. When using agile methodologies the
people factors for developers were identified as skill,
talent, communication and amicability (Bohem and
Turner, 2003). Agile unlike traditional methodologies
encourage working closely with the customers. This is
important for a successful development environment.

The organization’s culture has an impact on the
people factor. If the developers are under the tight rules
of the organization, it is hard to adopt agile since the
developers will not get the maximum out of agile
methodologies.

ii. Project Size
Project size of software is another major factor

and considered as a challenging factor. In the early
stages of project size estimation it was measured by
predicting the number of lines of code the project may
need (Dekkers, 2005). This is one of the limitations agile
is facing today. For most of the large scale projects
which involve more than 50 software developers agile
seems to be working in a negative manner. This was
shown in a study conducted by ambler (2008).
Cockburn (2008) states that “A larger methodology is
needed when more people are involved. Larger means
containing more control elements.” This statement is
further supported by the following figure.

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

22

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Figure 8: The effect on communication with people

The communication load rises when the number
of people is increasing. Then the need of a bigger
methodology occurs since that is a media of managing
the people and therefore the communication. With this
graph Cockburn further explains that “one should not
expect a small-team methodology to work properly for a
big team, and one need not use a big-team
methodology for a small team.” However Vaihansky et al
(2006) argues that agile methods such as XP and
SCRUM can be used successfully for large projects.
“Best current Scrum practice is for local Scrum teams at
all sites to synchronize once a day via a Scrum of
Scrums meeting.” The organization should decide on
which type of methodologies they are going to use
depending on the time and project size.

iii. Software Risk
Software project risk may result in lots of

problems. Budget and plan overruns and unable to
meet the expectations of the uses and many more
(Renhui and Fengyong, 2007). There are few categories
of risk according to Renhui and Fengyong (2007), and
there are;

• Team risk
• Environmental risk of organization
• Demand risk
• Plan and control risk
• User risk
• Complexity risk

An organization should be careful when
handling these risks. Traditional methodologies are
used for large critical systems with security and reliability
such as military systems. However, for the systems that
can be made quickly and have lots of uncertainty, Agile
is the most appropriate methodology. For example a
system expected lots of change of requirement during
the development phase through customer involvement
agile is the best methodology as it can respond to
changes faster.

III. Research Methods

a) Introduction
This chapter discuss about the methodology

used by the researcher to present a research into the
statement of aim. The main purpose of this section is to
evidently define the specific guidelines which will make
possible the researcher to substantiate the achieved
hypothesis. In brief, this section discusses about the
ideas, which are used in the course of primary and
secondary.

b) Research Philosophy
Research philosophy depends on the way a

researcher thinks about his/ her development of
knowledge (Saunders et. al., 2003). The major research
philosophy theories are Positive, Phenomenology and
Realism (Maylor & Blackmon, 2005).

Positive or scientific method affirms that there is
just one truth about the world. It is understood that such
truth is objective and does not entail any value
judgments. Finding this truth requires a process based
on a deductive method for which data must be
collected. In this sense positivist researchers stand that
the data is not affected by the researcher opinion and
that the more objective the data collection the better.
(McNeill, 1985)

Usually the data is collected, interpreted and
analyzed following the quantitative method and
according to a statistical approach. Data collection
might be achieved through surveys. The survey aim is to
test the original hypothesis and therefore, to establish
the truth of a specific phenomenon. The relevance of
this kind of approach resides in its objectivity, since the
results obtained are independent of the subjectivity of
those involved in that process.(McNeill, 1985)

Phenomenology (ethno methodology), has as
main principle that there is not a unique truth.
According, the explanation of a phenomenon emerges

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

23

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

from different points of view people affected and
involved have in relation to the phenomena analyzed.
This is an action- reaction process. Every single person
has his own interpretation of the world and
phenomenon. In this sense, there are different truths
and realities, and sharing meanings and interpretations
vary depending on the context. (McNeill, 1985)

Realism shares some philosophical views with
positivism, since it is based on the impression that there
is an intention reality, which is self-governing of human
beings’ thoughts and beliefs. However, realism also

recognizes that humans are not substance to be
considered in the style of natural science. On the other
hand it takes social influences into account. Realism
recognizes the importance of the fact that those social
influences, although are independent of individuals,
affect the way people make sense of their world,
whether they are conscious of these forces or not.
(Saunders et. al., 2003)

The comparison between the characteristics of
each research philosophy is summarized in the
following Table 3.

Table 3: Characteristics of Positivism, Phenomenology and Realism research philosophy
(Source: Adapted from Saunders et. al., 2003)

Positivism Phenomenology Realism

Objective truth analysis
Value-free data collection

Law-like generalization
Quantitative approach

Subjective truth analysis
People’s account, motives and

intentions
Complex and dynamic
Qualitative approach

Socially constructed environment
analysis

Independent reality
Social influences recognized

Qualitative approach

In this research, researcher uses realism
philosophy because it helps to find out the research
questions more efficiently.

c) Research Design
According to Kerlinger (1994) “A research

design is the plan, strategy and structure of exploration
conceived so as to achieve answers to research
questions and to control variance.”

Sekaran (1992) states, research has been
defined as:

“An organized, data based critical, systematic,
scientific enquiry and exploration into a particular
difficulty, undertaken with the intention of finding
answers or solutions to it.”

According to Saunders et. al.(2003), there are
three different types of research design, which are; 1)
Exploratory 2) Descriptive 3) Explanatory.

The concept of each is discussed below.

i. Exploratory
Exploratory research is a kind of investigate

conducted because a problem has not been evidently
defined. Exploratory research helps decide the best

research design, data collection process and variety of
subjects. Investigative research relies on Secondary
research. Though, research that is conducted with a
desire to discover are called an exploratory research.

ii.

Descriptive

Descriptive analysis describes data and
characteristics about the society or phenomenon being
studied. If the function of the study is to describe, the
study is measured to be descriptive in character. It
mainly gives the researcher a choice of aspects,
perspective, levels, terms and concepts, as well as to
observe, register, systemize, classify and interpret.

iii.

Explanatory

Explanatory research is useful when the issue is
previously known and has a explanation of it. The
ambition to know “why” to provide details is the point of
explanatory research. It builds on descriptive and
exploratory research and goes on to identify the cause
for something that occurs. Explanatory research looks
for reasons and causes.

The different between exploratory, descriptive
and explanatory research design

Table 4: Characteristics of exploratory, descriptive and explanatory research design (Source: Adapted from
Saunders et. al., 2003)

Exploratory Descriptive Explanatory

A study to find new insights

Useful for clarifying the
understanding of the problem

Qualitative approach

A study to describe an accurate
profile of persons, events or

situations
Useful for giving details of incidence

or phenomena and for predictive
findings

Quantitative approach

A study to find casual relationship
between variables

Useful for explaining the relationship
of two or more incidents in terms of

cause and effect
Quantitative approach

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

24

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

In this research, the researcher has explored
“Marketing strategy in fast food restaurant” in particular
through his own literature view. The researcher has tried
to explore the relationship between the impacts of
marketing strategy in fast food restaurants and
consumer intentions of coming back to the restaurant.
On the beginning of this correlation the researcher has
been capable to explore the various features of the
marketing strategy. Consequently, the researcher has
coined his research as an exploratory research.

d) Data collection Method
Data collection method is an important stage of

a research and must be well planned to ensure that
researchers will not face the problem of being
overwhelmed by the data, which become a barrier rather
than an aid to the research project. In order to be able to
plan and organize data collection systematically, an
understanding of the various types of data depending
on different approaches to, methods of, and techniques
of data collection is significantly required.

According to Saunders et. al. (2003), data
comes in various shapes and forms, but can be
distinguished between two main categories: 1.
Secondary data, and 2. Primary data.

i. Secondary Data
Secondary data is data which has been

composed by agencies or individuals for purposes other
than those of our meticulous research study. For
example, if a management has carried out a review of,
say, expenditures of family food, and then a food
producer might apply this information in the
organization’s assessments of the whole probable
market for a fresh product. Similarly, statistics arranged
by a ministry on agricultural production will demonstrate
useful to whole lots of people and organizations,
including those marketing agricultural supplies.

The most frequent exercise of secondary data in
marketing research is to achieve familiarity and to create
a background in which primary data are composed,
reported and analyzed, the problem is defined, and the
research is planned. This approach is a literature search
– an assessment of exiting material, penetrating for
information pertinent to the present marketing research
project. Materials are typically scholarly magazines,
journals, books, newspapers, and company records
(accessed through computer data bases). (Patzer L.
Gordon, 1995)

Secondary data can give information about
performance and procedures for conducting marketing
research. For example, these data can help learn
language for communication with the research sample
members, questions and topics to avoid, problems likely
to be encountered, and statistical techniques to engage.
(Patzer L. Gordon, 1995)

Secondary data are potentially misleading term
for people not experienced with marketing research. For

example, it is misleading to think of secondary data as
being of second importance, minor importance, inferior
value, or in any way not necessary. Their worth, like that
of all data, depends instead on the marketing research
project. However, it is reasonable to conclude that
secondary data play a significant role in almost all
marketing research projects. Another misconception is
to think of secondary data as coming second in a
sequence. The sequential order is just the opposite:
secondary data typically are collected and analyzed
first, before primary data. (Patzer L. Gordon, 1995)

ii. Secondary data sources

Book reviews: The external research will be carried out
through the reading and understanding of published
material. This includes books and articles written on
online shopping, catalogue shopping and consumer
perception and satisfaction. Book and journal reviews
are a very good source of collecting data as can get a
wide variety of theories and authors references.

Internet Research: Internet research is another source of
secondary data. This will be used to gather historical
and present information about online shopping,
catalogue shopping and consumer perception and
satisfaction. This will also help to get contact details
about the bottom level consumer as a whole. Helps to
gather and analyses articles and journals about
catalogue shopping and consumer perception and
satisfaction. Collecting data from internet search is
widely used now a days and is very quick and also you
can get a wide variety of data through internet search.

Documents: Documents can be treated as a source of
data in their own rights. In effect it can be an alternative
to questionnaires, interviews or observation. This
includes published materials of company details, like
annual and financial reports of the proposed banks as
well as other banks.

iii. Primary Data
Primary data means the data that are to be

collected by the researchers themselves through a
variety of data collection methods and techniques, for
example, interviews, questionnaires, experiments,
observations etc. Although the process of collecting
primary data may have more requirements than
secondary data in terms of time , effort and resources,
the result is likely more relevant for answering the
research question.

Regarding collecting data primarily, we can
distinguish the type of data collected into two sub-
categories; 1.quantitative data and 2. Qualitative data

Quantitative Data
Quantitative data means data which is number

based or can expressed numerically as well as
classified by some numerical value. In contrast,
qualitative data means data which is in the form of

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

25

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

descriptive accounts of observation or classified by
type. (Ghos B.N & Chopra P.K., 2003)

Quantitative data is more objective and
scientific than qualitative data. It involves the implication
that what is being researched can be quantified, and,
therefore, is only applicable to incidence that can be
quantified and measured.

Qualitative Data
Qualitative data explained items in terms of

some feature or category that possibly informal or may
use comparatively imprecise characteristics such as
benevolence and flavor. However, qualitative data can
contain well-defined aspects such as gender, nationality
or object type.

Qualitative research apply individual in detail
interviews, focus groups or questionnaires to gather
examine and interpret information by observing what

people do and say. It reports on the concepts,
meanings, definitions, characteristics, symbols
metaphors, and descriptions of things. It is more
individual than quantitative research and is often
investigative and open-ended. A little numbers of people
are interviewed in detail or a relatively small numeral of
focus groups is performed. Qualitative research
engages the deliberate exercise and selection of a
variety of practical materials, such as personal
experiences, case study, introspection, interview, life
story, artifacts, observational, historical, interactional,
cultural text and productions, and visual texts that
describe typical and controversial moments and
meanings in individuals’ lives. Saunders et. Al. (2003)
suggest the distinctions between quantitative and
qualitative data as shown in the Table 5 below

Table 5: Distinctions between quantitative and qualitative data (Source: Saunders et.al., 2003)

Quantitative Data Qualitative Data

Based on meaning derived from numbers

Collection results in numerical and standardized data

Analysis carry out throughout the use of statistics and
diagram

Based on meanings expressed through words

Collection results in non-standardized data requiring
classification into categories.

Analysis conducted through the use of conceptualization

iv. Primary Data Sources
Interviews: Direct Interview is one of the major sources
of primary data today. This method is would be used for
the internal research. The internal research will focus on
a few semis structured interviews with a few senior and
top managers. The intention is to ascertain a true
picture of the perceptions and satisfactions that a
consumer feels when they eat in a fast food restaurant.
These interviews will help to find out the secrets of their
success or reasons for failure.

Interviews are a good source of collecting data.
Also it is relatively cheap and quick to collect data
through conducting interviews. But also there are some
disadvantages in conducting an interview: -

1. As the nature of topic suggests it will be highly
impossible to contact top level officials of the
company and to ask them to give information about
their company.

2. The second disadvantage is that the nature of the
topic is so complex that there is a chance of getting
biased opinion and it will be highly risky to rely on
these answers.

Questionnaires:

Another methodology that is the
questionnaires. In this research, researcher uses
seventeen relevant questions to find out the findings of
this research which are given in APPENDIX 1.
Questionnaires are more economical, easier to arrange,
the answers will be standardized. In situations of
difficulty to get appointments with the top-level

managers this method would be used to. Postal
questionnaires will be sendingto top managers of the
banks and the responses can be analyses.

Collecting data from questionnaires is often for
getting information and also it is relatively cheap. But it
also has got some disadvantages like: -

1. Collecting data from questionnaires is a long
procedure and takes long time to collect and
analyze such data.

2. The second disadvantage is that people generally
don’t like to spend time in giving answers in writing.

e) Data Analysis
After the data have been composed, the

researcher turns to the responsibility of analyzing them.
Analysis of this data needs a number of closely
connected operations such as creation of category, the
importance of these categories to unprocessed data
through tabulation, coding and then sketch arithmetical
inferences. Scrutiny work after tabulation is mainly
based on the calculation of various coefficients,
percentages, etc. in brief the researcher can analyse the
collected data with the assist of various numerical
equipment.

f) Reliability
According to Joppe (2000)

“The extent to which results are consistent over
time and an accurate representation of the total
population under study is referred to as reliability and if
the results of a study can be reproduced under a similar

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

26

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

methodology, then the research instrument is
considered to be reliable.”

In this study, the researcher used the method of
qualitative research in order to explore and understand
the implementation of marketing strategies in the fast
food restaurants, so that the researcher was then able to
compare and contrast the findings with the literature,
and eventually, was able to give suggestions about the
issue. The case to be explored is dynamic and complex,
and, therefore, it cannot be ensured that the research
can be replicated and will give the consistent result
when the time and circumstances have changed.

g) Validity
According to Winter (2000) “The traditional

criteria for validity find their roots in a positivist tradition,
and to an extent, positivism has been defined by a
systematic theory of validity. Within the positivist
terminology, validity resided amongst, and was the
result and culmination of other empirical conceptions:
universal laws, evidence, objectivity, truth, actuality,
deduction, reason, fact and mathematical data to name
just a few.”

Researcher built the validity by establishing
correct operational measures for the concepts of study.
Researcher used the structured questionnaire as the
mean to obtain the data.

The questions were designed and pre-tested in
order to minimize as much as possible the
misunderstanding and problems for the respondents;
meanwhile it also increased the internal validity and
reliability of the data.

h) Limitations of the research project
Researcher found some limitation at the time o

research work. These are: a) Extent of research will
provide a general overview of the entire outsourcing
operations rather than complete audit. b) Limited
amount of time available for completing the study. c)
May not be possible to conduct interview with all of the
firm’s clients. d) Some of the data gathered may not be
totally relevant to the research topic. e) Research needs
to be conducted on a very low budget. f) There could
also be a problem with translating the questionnaires
and interviews as the company is located in a region
where English not the main language in use. So there
are chances that some data corruption might occur.

i) Methods for this Research
The chapter describes the methodologies used

in the research. The project used both qualitative and
quantitative methods. Using the following methods, a
detailed study of the software development
methodologies were carried out. The research is in two
sections. Primary research carried out with a
questionnaire. It consists of a survey. The Secondary
research comprises of Literature survey from various
sources.

i. Completing the Questionnaire
The questionnaire has been created in a way so

that responders can answer quickly and easily. It is
divided in to three main sections and contains all close-
ended questions. The time taken to complete the
questionnaire was approximately 15 minutes to 17
minutes.

Individual and organizational questions – This
section contains questions on respondent’s position in
the industry as well as the position of the organization. It
also contains question on the size of the organization
including the number of employees, the projects they
adopt and the likeness of adopting new technologies.

Methodology knowledge questions – This
section focused on the knowledge of the respondent on
the methodologies

Software development questions – This section
contains questions on the different agile and traditional
methodologies used on different projects. This is scaled
on the project sizes measured in person months. The
scales are selected as small scale, medium scale and
large scale projects. There are questions to capture the
opinion of the respondents on how effective the used
methodologies were with regard to cost and quality of
the software. Finally questions were included to capture
their opinion on the preferred characteristics of both
development methodologies from their point of view.
The questionnaire is included in Appendix 1.

ii. Target Audience
The questions were distributed among software

companies of various sizes and types. The respondents
involved were mainly software architects, software
engineers, and project managers. However, there were
some other roles involved in software development as
well.

j) Research Audit
Different resources were used for the research.

The resources include various books on software
engineering and development methodologies from
different authors including Cockburn, journals related
with software industry, white papers on agile and
traditional methods, and websites from the internet
which are related with the subject area.

IV. Research

The following are based on the data that were
collected from various companies in the software
industry. A questionnaire was prepared and provided in
order to collect these data.

a) Data Collection
Most of the respondent was from Bangladeshi

21 different organizations. Among the organization 15
organizations were Information technology related
organizations, 3 organizations were from

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

27

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Telecommunication, 2 organizations were from the
Engineering and 1 was other organization.

i. Organizational Characteristics
When analyze the results from the sample

question it was discovered that about 70% of the
respondents were from organizations with an

Information Technology background. There were other
respondents from telecommunication, engineering and
medical organizations as well. There were some cases
that projects were outsourced to information technology
organizations. It is shown in the table below in a ratio of
100

Table 6: Survey Response from the organizations

Information technology Telecommunication Engineering Others

70% 15% 10% 5%

Figure 9 represent the results

Figure 9: The type of organisations involved in the survey

ii. Individual Knowledge Gathering from Different
Organization

Among the organization the number of the
respondent was 21 and majority of the respondents to

the questionnaire were software developers. The other
respondent were System Analysts, software engineer
and software architects. It is shown in table below in a
ratio of 100.

Table 7: Survey response by job position

Developers Analyst Software engineer Project manager Executive
53% 13% 20% 7% 7%

Figure 10 represent these results.

 Respondents’ job positions

iii. Organization size based on employee
The organizations were in different sizes of

course. Around 73% of the organizations employed staff
between 10 and 100.Most of them is employees who are
working in Information Technology .The remaining 27%
of the organizations fall under more than 200 employees
or less than 10 employees working for the organization.
It is shown in the table below in a ratio of 100.

70%

15%

10%
5%

Information technology

Telecommunication

Engineering

Others

53%

13%

20%

7%
7% Developers

Analyst

Software engineer

Project manager

Executive

Figure 10:

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

28

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Table 8: Employees’ in software development in organizations

Less than 10 Between 10 and 20 Between 21 and 50 Between 51 and 100 More than 100
7% 20% 26% 27% 20%

Figure 11 represent these results

Figure 11: Employees’ in software development in organizations

iv. Agile and Traditional Software methodology
Knowledge of the respondents

When it comes to the knowledge rating for
different methodologies more than 90% of the
respondents have an understanding about agile and
traditional methodologies in an average or higher level.
12 out of the 15 respondents have rated their knowledge
of agile methodologies as average or broader, out of
that 6 of the respondents rated their knowledge as

broad or very broad. For traditional methodologies the
rating was broad or very broad for 12 respondents.
When compare the experience they have in the software
industry it was revealed that with less experience in the
field or in other words people who have experience less
than four years have less practical knowledge in
traditional methodologies. Figure 12 presents the results
below.

Figure 12: The methodology knowledge of the respondents’

v. Knowledge of adopting new methodology by the
respondents

According to the respondents, the result found
on adopting technologies in different organizations was
interesting. More than 75% of the organizations were
either Leaders in adopting a methodology or followers.
But there are other organizations who describe

themselves as conservatives. This means that there are
organizations which will hang onto their accepted
methods and not willing to experiment something new. It
is illustrates in figure 13.

7%

20%

26%
27%

20% Less than 10

Between 10 and 20

Between 21 and 50

Between 51 and 100

More than 100

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Very
poor

Poor Average High
Very high

Agile

Traditional

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

29

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Figure 13: Adopting new methodologies in the industry

According to a survey results published by
Ambler in early 2006 he has found that even though
more than 60% were fully or partially using agile, there is

a considerably a large number of organizations who are
still have no idea of adopting agile. In that survey result
shown below

 Figure 14: Ambler survey result of Adopting agile methodology (www. ambysoft.com)
In this survey about 75 % of the respondents

are either leader or follower to adopt agile
methodologies, on the other hand in Ambler survey 65%
of the respondent said yes for adopting agile
methodology.

So with the result of this survey, it proves that
other than the organizations who adopted agile at the
beginning, the potential of organizations adopting agile
at a later stage without any assurance is minimal. A
possible reason could be that these organizations are
just waiting to see how agile projects will result in the
future.

b) Methodologies used in Organizations
In this section focus on which type of agile and

traditional methodology used on different organizations.
If the organization is small which types of agile and
traditional development methodologies they are using.
In similar way it is focused for the medium and large
scale organizations.

i. Use of Agile Methodologies
According to the respondents of the different

types of organization indicate that Extreme
programming (XP) is the most popular method used in
the industry. But SCRUM also maintains a good position
within the industry even though it is not up to XP level.
There was a remark about XP stating that it sometimes

gives bit of a fear because of the steps it includes and
also the “Name itself”. There is an interesting point that
was found during the analysis. The next most popular
was in-house build methods by organizations for their
own use. In an article published by Sliwa (2002)
mentions that agile methods can be mixed for different
organizations purposes. The article further stated that;

“Schwaber, a Scrum co-creator, said it makes
sense to combine Scrum and XP because Scrum
focuses on management practices and XP centers on
engineering practices for building object-oriented
software.”

The result proves this point as organizations are
already using combined methods according to their
needs for a better result. Another point was that some
organizations tend to mix other new techniques built for
specific tasks in software development with their
development methodology. For example they use
scheduling techniques such as planning porker for
estimating time for development tasks. Planning poker is
a technique which is used in Scrum in most cases to
estimate time for development tasks. It has a deck of
cards with different estimates which the developers can
use (Cohn, 2005) cited by planningpoker). Figure 14
represent the results of respondent.

34%

44%

22% Leader

Follower

consevative

Yes
65%

No
35%

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

30

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Figure 15: The use of agile methodologies

In figure 15 it is indicate that for small, medium
and large scale organizations Extreme programming
(XP) is most popular among the agile methodologies
and SCRUM is in second position. Other methodologies
are using in a very small scale in different organizations.

ii. Use of Traditional Software development
Methodologies

According to the respondents of the
questionnaire, for traditional methodologies more than

50% respondents use the waterfall model, 23% of
respondents were interested in unified process and the
rest was on in-house build methods for different type
and sized projects. Figure 16 represent the results.

Figure 16: The use of traditional methodologies

0

1

2

3

4

5

6

Small-Scale
Medium-Scale

Large-Scale

Extreme Programming

SCRUM

DSDM

Feature Driven

Adaptive Software
Development

Other(please specify)

0

1

2

3

4

5

6

7

8

9

Small-Scale
Medium-Scale

Large-Scale

Waterfall

Unified process

Spiral

Other(please specify)

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

31

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

V. Analysis

In this chapter the discussion will be focused on analyzing these collected data and find out the responses
from the software industry professionals.

a) Most Appealing Agile Values over Traditional Characteristics

Figure 17: Most appealing agile values

When consider the small scale software
projects more than 30% of the respondents think that
working software is more important. People interactions
and responding to change come after respectively. All
the respondents’ believe that human interaction is an
important fact for better software development
regardless of the project size. Cockburn (2001) point out
that;

“Core to agile software development is the use
of light-but sufficient rules of project behaviour and the
use of human and communication-oriented rules”
proving the point made out from the survey results.

Respondents’ have a different view about
Medium and large projects. For both of these project
types, customer collaboration have obtain the highest
votes. This means that when the system is getting
bigger more customer collaboration helps to keep the
development on the track. Medium projects have a
higher percentage of votes for people interaction than
large projects. Even though this is outside the expected
result for large projects, it may be due to the reasons
that respondents think it is hard to communicate within
large projects. Figure 17represents the results obtained.

b) Factors that Influence to use Agile Methods over
Traditional Methods

Cost and quality of software products are the
main concerns in the industry when it comes to software
engineering. It is important for both software
organization as well as the customers (Krasner, 1998).

Due to this in the questionnaire, it was necessary to
include questions regarding the cost and software
quality. The reason was to find out how agile
methodologies have affected on these two features of a
software project compared with traditional
methodologies.

The questions were targeted to capture the
opinions of the respondents, whether they believe by
adopting agile methodologies will affect the software
cost and quality of a project than the traditional
methodologies. Since agile is making a huge entrance
to software industry I was expecting a very higher
positive feedback. Even though the result was rather
different from what I was expecting.

When it comes to cost of the software project
50% of the respondents agreed that there were no
change in cost at all by using agile methodologies but
according to Ambler (2007) it was 47 % (in Figure 19).
Surprisingly 22% of the respondents have voted as the
affect of the cost has slightly decreased than the
traditional methodologies but according to Ambler
(2007). Only about 18% of the respondents believe that
agile methodologies have made a slight increase affect
on cost. The rest of the respondents falls both sides to
the far end of the ratings.

0%

5%

10%

15%

20%

25%

30%

35%

40%

Small-Scale
Medium-Scale

Large-Scale

Individuals and interactions
over Processes and tools

Working software over
Comprehensive documentation

Customer collaboration over
Contract negotiation

Responding to change over
following a plan

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

32

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Figure 18: Affect on software cost from agile methodologies

But with regard to software quality the result I
obtain was different than the cost. Overly respondents
have a positive feedback on the quality. More than 30%
of the respondents believe that adopting agile
methodologies have slightly increased the affect on
quality compared with traditional methodologies. 13% of
the votes were even higher. They believed that the affect

was in a very higher state. But again there were huge
number respondents who really did not believe in agile
methodologies as 39% was on the no change state. The
rest was in the low side of the rating.

Figure 18 and figure 19 show the results for the
software cost and quality I discovered.

Figure 19: Affect on software Quality from agile methodologies

So comparatively organizations believe that
there is a higher effect to quality from agile than the
effect to cost. In the survey done by Ambler in early
2008 the results on quality was noticeably different. In

his survey 67% of the votes said that they experienced
better or significantly better affect on the quality of
software projects with the adaptation of agile
methodologies.

Figure 20: According to Ambler affect on software quality from agile methodologies

7%

22%

50%

18%

3%

Very Low

Little Low

No Change

Little High

VeryHigh

5%
10%

39%
33%

13% Very Low

Slightly low

No Change

Slightly high

Very high

1% 2%

31%

47%

19%
Much Lower

Somewhat Lower

No Change

Somewhat Higher

Much Higher

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

33

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

The difference to my results is that considerably
a large number of respondents voted for no change.
Since the results I got mentioned about medium size
projects than other two there can be issues occur when
practicing agile values such as team communication

and customer feedback. Due to these reasons there
may be problems when try to capture the quality of the
project. The cost affect was slightly tally with the results
from the Ambler’s survey. Figure 18 and figure 19 show
the results for the software cost and quality I discovered.

Figure 21: According to Ambler affect on software cost from agile methodologies

i. Comparison of software cost from agile methodologies between Ambler and this survey

Table 9: Comparison of software cost from agile methodologies between Ambler and this survey

Cost This surver Ambler (2007) survey
Very low 7% 2%

Slight low 22% 20%
No change 50% 54%
Slight High 18% 21%
Very high 3% 3%

This two survey result on software cost are closely similar and their correlation coefficient is 0.991039.

ii. Comparison of software quality from agile methodologies between Ambler and this survey

Table 10: Comparison of software quality from agile methodologies between Ambler and this survey

Quality This Survey Ambler (2007) survey
Very low 5% 1%

Slight low 10% 2%
No change 39% 31%
Slight High 33% 47%
Very High 13% 19%

This two survey result on software quality are closely similar and their correlation coefficient is 0.87579.

c) Preferences for Agile and Traditional Methodologies
When an organization uses a methodology,

there are processes and techniques they have to follow
regardless of the type of the methodology. From the
past experiences in the industry I had the understanding
that there were some processes which development
teams think is useless for the success of the project
objectives. To have a broader view in these aspects
questions were included in the questionnaire to find out

respondents opinion on certain characteristics in both
methodologies.

According to the results shown in figure 22
more than 50% of the respondents’ believe that low
management control is a drawback for small scale and
medium scale projects. In fact they believed that low
management affects all sizes of projects in a
considerable amount. The other major aspect was the
project structure. Again all the respondents’ believed

3%

21%

54%

20%

2%

Much Higher

Somewhat Higher

No Change

Somewhat Lower

Much Lower

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

34

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

that lack of project structure affects all sizes of projects.
By looking at the figure 21 it is possible to come to an

understanding that large projects do not adopt agile
methodologies because of this factor.

Figure 22: Low preferences of agile characteristics

Traditional methodologies always had the
drawback on documentation. The results shown in
figure 23 clearly indicate the respondents’ opinion on

the heavy documentation for all types of projects.
Especially when it comes to small scale projects nearly
60%.

Figure 23: Low preferences of traditional characteristics

Agree that heavy documentation is a waste.
Lindvall et al. (2002) clarify this in a survey paper by
stating;

“Documentation should be assigned a cost and
its extent be determined by the customer.

Many organizations demand more than is
needed. The goal should be to communicate effectively
and documentation should be the last option.”

d) Methodology preferred

When analyzing data to find out which
development methodology is preferred by the
respondents I have realized that agile has come a long
way during the past few years after it was properly

published. But on the other hand it still has to go further
to take over the whole software market.

i. Methodology selection for different project sizes
The results discover that almost all the

respondents have agreed that agile methodologies are
the best for small scale projects. This means that
software organizations getting to know how to get their
hands on agile methodologies to manage the tasks in
small scale project environments. For medium scale
projects both methodologies were voted. The gap
between the results for the two methodologies was very
less. This shows that agile is adopted by organizations
than before for medium scale projects. But respondents
had a different idea about large scale projects. Nearly

0%

10%

20%

30%

40%

50%

60%

70%

Small-Scale
Medium-Scale

Large-Scale

Less Documentation

Less planning

Low Management Control

Lack of Project Structure

0%
10%
20%
30%
40%
50%
60%

Heavy Documentation

Comprehensive Upfront
Planning

Autocratic management
Style

Not able to change

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

35

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

90% of the responds were bias to traditional
methodologies. Only the remaining was for the agile and
other methodologies.

The interesting fact was that organizations are
using a mix of both methodologies when it comes to

medium and large scale projects. Medium size projects
are in this process more than the large size projects but
it seems within the next few years large scale projects
may also start to use a mix of both methodologies.
Figure 24 below represents the methodology selection.

Figure 24: Methodology selection for different project sizes

ii. Ratings for other mix techniques into development
process

The other fact was that some organizations mix
other techniques also into their methodologies. Some

respondents have rated for Scrum or Scrums and also
planning poker which are new techniques to make the
development processes more efficient. Figure 25
represents the total results.

Figure 25: Ratings for other techniques

iii. Use of agile methodologies
Around 40% to 50% of the respondents’ agree

that for medium and large scale projects autocratic
management is not necessary. This type of a

management would keep the teams stick to the
standard work and have no agility leaving the teams
work without any innovation or creativity.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Small-Scale
Medium-Scale

Large-Scale

agile

traditional

Other

0
2
4
6
8

10

12

Very low

Low

High

Very high

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

36

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Figure 26: Use of agile methodologies

methodologies are used for different types of projects
sizes. Only for small scale projects some organizations
use 100% of the agile methodologies. Other than that for
both small and medium scale projects majority of the
respondents’ agree only up to 50% of agile
methodologies are used. There was a comment from a
respondent saying that “It is hard to stick to agile
methods especially when it comes to large projects.
There are other techniques been used mixing with the
practices in both agile and traditional methods?” This
means that organizations are tend to use their own in
house methodologies created to suits the projects they
handle.

The findings of this project research study also
confirm the appropriateness of the use of agile
methodologies for small scale projects, traditional and
agile methodologies for medium scale projects and
traditional methodologies for large scale projects of an
organization.

VI. Conclusion

The purpose of this research is to present a set
of guide lines for a software organization to help choose
the most appropriate development methodology
according to most of the software projects they have in
hand. The thesis starts with an overview of the software
industry and explanation of the problem domain which is
focused in the research. Through traditional and agile
development methodologies, this discusses the different
software development approaches used in the software
industry. Further a discussion about the life cycles of
selected approaches from both traditional and agile
methodologies were carried out with identifying the
roles, responsibilities and practices of each
development approach. This would give the reader clear
idea about the two methodologies and also the

differences they have. Chapter 2 briefly presents a
comparison on the methodologies and focuses on the
problems in both methodologies. Finally, in order to get
the professional opinions, the document presents the
analyzed results from the survey conducted.

Throughout the research it was understood that
the traditional methodologies were apparently handling
a considerable portion in software industry. The basis
was the complete planning, heavy documentation and
extensive designs. Traditional approaches will still be
useful in large, long lived projects that require special
safety, reliability or security requirements. The military
and defense industry gives a perfect example to prove
this point. Lijek (2007) in a presentation discusses the
reasons why agile methodologies are not adopted in the
military and defense industry.

• Defense Contractor Mentality regarding change
• Safety Critical Systems
• Long development cycles
• Large teams
• Customer Relations

But in the near future with the improvements
agile will be able to be adopted in these industries.

Agile methodologies cannot be defined by a
small set of rules and practices. From the literature
review and the survey results it became obvious that
agile methods have the capability to respond to change
faster, the ability to extract the hidden creativity and
innovations out of the teams, the capability in balancing
the structure and flexibility and to drive the organization
through rough situations and uncertainty. Agile is more
likely to dominate volatile environments with uncertainty
and unpredictability where the exact customer needs
are not clear. Organizations tend to respond to the
market changes quickly with the customer needs. They
make plans for the system but do not tie their view to it.
Rather than making models they want to focus more on

0

1

2

3

4

5

6

7

8

Small-Scale
Medium-Scale

Large-Scale

100% follow all agile
techniques

75% follow all agile
techniques

50% follow all agile
techniques

25% follow all agile
techniques

Figure 26 represents the extent which agile

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

37

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

the working software. They focus on constant interaction
within the team members, customers and management
and individual skills as well. With all the readings and
findings it is clear that there is no “one-size-fits-all”
solution.

a) Limitations
There were some obstacles on the way to the

success of this thesis. At first, Gathering the information
from the professionals and practitioners in the industry
was a problem as it takes long time for most of them to
respond to the questionnaire. There were some returned
questionnaires half-completed which had to be
discarded. Another barrier was the time factor. Even
though there are lots of areas that can be focused under
this topic it was not possible since the allocated time
was limited. But within the time period a good and
original piece of work was produced with great attention.

b) The Guidelines
The guide lines presented are to support an

organization to select the most appropriate software
development methodology for software projects they
undertake. For an organization, it is hard to have more
than single software methodologies operating. Generally
the top management and human resources would prefer
all projects to use the same method for ease of
handling.

However, software developing is a complex and
uncertain process. To cater for specific needs, Project
requirements and different teams may have to produce
different results. Therefore, it is important to consider
adopting different methodologies or a mix and match of
several techniques from different methodologies at least
between two departments or two different project
sections which operate independently in the same
organization.

The following guidelines are created with the
knowledge obtained from the research on the literature
and the analysis and understanding gained from the
survey results which involved the real software
development organizations.

• Flexibility – Everybody involved with software
development needs to be flexible, starting from the
top management. They should understand different
projects have different needs and there are different
ways to make them successful.

• Priority on the needs – Different projects need
Different techniques and artifacts. Therefore, it is
important to identify them and prioritize them. For an
example the use of other techniques and artifacts
outside the working methodology (e.g. planning
poker) for certain types of projects may lead the
project to greater success. But the management
has to remember that, this may need some training
to the team members as a person may have to deal
with a range of methods and/or artifacts.

• Cater according to the team – For different projects,
Development teams may be different in size. So it is
important to use suitable methodology or mix of
methodology to cater for that requirement. As an
example, XP and scrum are suitable for projects
with small-scale to medium-scale development
teams with 4 to 20 members. However, for large and
medium scale teams Unified Process can be used.

• Define targets – There are specified artifacts for
each approach in traditional development. So
organizations rely on these artifacts and always try
to stick to them. Rather defining the targets with the
help of the customers on what to build may be more
productive. The artifacts will be decided along with
the targets which is more useful for all the parties
involved in that specific project.

• The use of methods – Organizations with large or
medium scale projects can combine subsets of
different methods. SCRUM is a methodology which
can be mixed with different other methodologies
including XP and waterfall. However, for
organizations, who handle small scale projects can
settle with a single methodology.

Come up with a specific set of rules is not that
easy in a rapidly changing field with uncertainty like
software engineering. For different organizations, these
guidelines can be used in different ways. With time and
experience these can be improved more. The best way
is to experiment these in a real time environment and
observe the validity and the success, which will give an
understanding on how to improve them for better
results.

Acknowledgement

I would like to acknowledge and state my total
pleasure to those whose efforts and support in one way
or the other contributed to the successful completion of
this research study. I particularly wish to convey
profound gratitude to my supervisor, Dr. Nigel Kermode,
for his invaluable support, encouragement, useful
suggestions and supervision throughout this research
work. I also wish to thank my friend Mr. Khondker
Razeeb-us-Saleheen, my class mates and my brother,
Mr. Channa punchihewa for his support during my
study. I am as ever, especially indebted to my parents,
Mr. and Mrs. Rahman for their love and support
throughout my life. Moreover, to my Almighty who made
all the things possible.

References Références Referencias

1. Agile Alliance.2002. Agile Mainfesto http://www.
agilealliance.org/

2. Abrahamson et al,P. 2002. Agile software
development methods – review and analysis.
VTTPublications 478. http://www.inf.vtt.fi/pdf/
publications/2002/P478.pdf.

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

38

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

3. Fowler, M and Highsmith, J. 2001. The Agile
Manifesto. Software Development Magazine.
August.http://www.sdmagazine.com/documents/s=
844/sdm0108a/0108a.htm.

4. Ambler, S. 2008. Agile Adoption Survey. Web site
accessed at http://www.ambysoft.com/surveys/
agileFebruary2008.html

5. Heckman, S. and Williams, L. A Model Building
Process for Identifying Actionable Static Analysis
Alerts , 2nd IEEE International Conference on
Software Testing, Verification, and Validation,
Denver, CO, USA, to appear.

6. Beck, K. 2000. Extreme Programming Explained:
Embrace Change. Reading, Addison-Wesley.

7. Beck, K. 1999. Embracing change with Extreme
Programming. IEEE Computer, 13, 10. Pp 70-77.

8. Beck, K. 2005. Extreme Programming Explained:
Embrace Change, Second ed. Reading, Addison-
Wesley.

9. Booch, G. 1994. Object Oriented Analysis and
Design with Applications, 2nd edition. Addison
Wesley Longman.

10. Boehm, B. W. 1988. A Spiral Model of Software
Development and Enhancement. Computer, IEEE
software.

11. Boehm, B. and Turner, R. 2003. People Factors in
Software Management: Lessons From Comparing
Agile and Plan-Driven Methods. CROSSTALK; the
Journal of Defense Software Engineering.

12. Highsmith, J. and Cockburn, A. (2001). Agile
Software Development: the Business of Innovation.
IEEEComputer, 34 (9), 120-122.

13. Schwaber, K and A. Beedle (2002). Agile Software
Development with SCRUM. Prentice-Hall,
UpperSaddle River, NJ.

14. DSDM Consoritum. (2008). Dynamic Systems
Development Method, version 3, Ashford, Eng.Ehn,
P. (1989). Work-oriented design of computer
artifacts, Lawrence Erlbaum, Hillsdale, NJ.

15. McCauley, R. (2001). Agile Development Methods,
Poised to Upset Status Quo, SIGCSE Bullentin
33(4):14-15.

16. Miller,G.G.(2001),The Characteristics of Agile
Software process, The 39th International
Conference of Object Oriented Languages and
Systems.

17. Larman, C. (2004), Agile and iterative development:
a manager's guide, Addison-Wesley.

18. Dekkers, R. (2005), International Journal of
Networking and Virtual Organizations, Volume 3: 1-
24.

19. Langr, J. (2006).Agile Java™: Crafting Code with
Test-Driven Development.

20. Rakitin, S. (2001). Manifesto Elicits Cynicism. IEEE
Computer, 34(12): 4.

21. Rakitin, S. (2005) Agile Methods - Beyond the Hype.
Food for Thought newsletter from Software Quality

22. Consulting. July/August 2005, 2 (7). http://www.
swqual.com/newsletter/vol2/no7/vol2no7.html#articl
e, last visited 04/05/2007.

23. Cockburn, A. 2008. A Methodology Per Project.
Website accessed at http://alistair.cockburn.us/
Methodology+per+project

24. Cockburn, A. 2001. Agile software development.
Addison-Wesley, Boston, MA.

25. Coffin, R. and Lane, D. 2007. A Practical Guide to
Seven Agile Methodologies. Website accessed at
http://www.devx.com/architect/Article/32836/1954

26. Cohn M. 2005. Cited by Planning Poker in Detail.
Website accessed at http://www.planningpoker.
com/detail.html

27. Moonzoo Kim. 2007. Agile development
28. Nandhakumar, J. and Avison, D. E.1999. The Fiction

of Methodological Development: A Field Study of
Information Systems Development, Information
Technology & People, 12(2), Pages 176–191

29. Highsmith, Cockburn, A. 2001. Agile software
development. Addison-Wesley, Boston, MA.

30. Renhui, L. and Fengyong, Z. 2007. Multi-Attribute
Evaluation for Software Project Risk. IEEE Xplore.
Pages 4942-4945.

31. Robinson, S. 2002. Consider DSDM as an XP
alternative. Web site accessed at http://articles.
techrepublic.com.com/5100-10878_11-1049982.
html

32. Schwaber, K. 2007. What is Scrum. Website
accessed at http://www.scrumalliance.org/
resources/227.

33. Sliwa, C. 2002. XP, Scrum join forces. Website
accessed at http://www.computerworld.com/
action/article.do?command=viewArticleBasic&articl
eId=69183

34. Takeuchi, H. and Nonaka, I. 1986. The New New
Product Development Game. Comptuer. Harvard
Business Review.

35. Vaihansky, P., Sutherland, J. and Victorov, A. 2006.
Hyperproductivity In Large Projects Though
Distributed Scrum. Agile journal. Website accessed
at http://www.offshoreagile.com/news/?doc=205

36. Devdaily. The rational unified process. Access at
http://www.devdaily.com/java/java_oo/node19.shtml

37. Paulk, M. C. 2001. Extreme programming from a
CMM perspective. Software, 18, 6. Pages 19-26.

38. Davis, A. and SITARAM, P. 1994. A concurrent
process model of software development. ACM
sigsoft. Software Engineering Notes vol 19 no 2

39. Kalermo, J. and Rissanen, J. 2002. Agile software
development in theory and practice.

40. Georgiadou E. 2003. Software Process and Product
Improvement, A Historical Perspective. International
Journal of Cybernetics. Volume1, No1. Pages 172-
197

41. Ghosh, B.N. and Chopra, P.K.(2003)A Dictionary of
Research Method, Leeds, UK.

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

39

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

42. Khan, A. and Balbo, S. 2004. A Tale of two
Methodologies: Heavyweight versus Agile. Website
accessed at http://ausweb.scu.edu.au/aw04/
papers/edited/balbo/

43. Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle,
K., Shull, F., Tesoriero, R., Williams, L.,and
Zelkowitz1, M. 2002. Empirical Findings in Agile
Methods, D. Wells and L. Williams (Eds.): XP/Agile
Universe. Pages 197–207.

44. Krasner, H., 1998. Using the Cost of Quality
Approach for Software. Computer. CROSSTALK; the
Journal of Defence Software Engineering.

45. Lijek, S., 2007. Software life cycle models in the
defense industry. Website accessed at
greenbay.usc.edu/csci577/spring2007/site/students
/presentations/Lijek.ppt

46. Parekh, N. 2005a. The waterfall model explained.
Website accessed at http://www.buzzle.com/
editorials/1-5-2005-63768.asp

47. Parekh, N. 2005b. Spiral Model - A New Approach
towards Software Development. Website accessed
at http://www.buzzle.com/editorials/1-13-2005-640
82.asp

48. Peters, J. F. and Pedrycz, W. 2000. Software
Engineering: An Engineering Approach. John Wiley
& Sons.

49. Royce, W. W. Managing the Development of Large
Software Systems. IEEE Western Conference
(Wescon). Pages 1-9.

50. Williams, L. 2003. "The XP Programmer: The Few
Minutes Programmer," IEEE Software, vol. 20, no. 3.

51. Avison D.E. and Fitzgerald, G. 1995. Information
Systems Development: Methodologies, Techniques
and Tools. McGraw-Hill.

52. Charette, R. 2001. The decision is in: Agile versus
heavy methodologies. Cutter consortium e- Project
management Advisory service, 2, 19.

53. Clifton, M. and Dunlap, J. (2003a). What is DSDM.
Website accessed at http://www.codeproject.com

54. Clifton, M. and Dunlap, J. (2003b). What is SCRUM.
Website accessed at http://www.codeproject.com

55. Saunders, M., Lewis, P. and Thornhill, A. (2003).
3rd. Research Methods for Business Students,
Prentice Hall.

56. Maylor, H., & Blackmon, K. (2005). Researching
Business and Management. Hampshire and

57. New York: Palgrave MacMillan.
58. McNeil, P. and Chapman, S.(1985).Research

Methods.
59. Kerlinger,F. and Lee,H. Foundations of Behavioral

Research (New York: International Thomson
Publishing, 2000).

60. Patzer, Gordon L. (1996): Experiment-Research
Methodology in Marketing. Types and Applications,
Quorum Books: Westport.

Appendix 1: Questionnaire

The objective of this survey is to find out various methods been used in the software industry for software
development. The data collected will be strictly confidential and will only be used for this academic research. Please
share your views about your experiences and your personal opinions. If you require a summary of the findings
please complete the optional section at the end of this questionnaire.

The questionnaire is divided in to three sections. The questions contained are all close end questions. But if
you have any comments for any of the questions please include them with the questions.

For any questions or clarifications please contact me,

A.K.M Zahidul Islam
akmzahidulislam102@gmail.com

1. What is your job Title?

Programmer / Developer
Analyst

Software Architect
Software Engineering

Project Manager
Executive

Other (Please Specify):__________________________________

2. How long have you been working in the software industry?

< 1
1-4 Years
5-7 Years

8-11 Years
> 11 Years

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

40

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

3. How would you best describe your organization type?

Information Technology
Telecommunications

Engineering
Medical

Education
Government

Other
Information Technology

Other (Please Specify):__________________________________

4. How many employees are there in your organization engaged in software development/ maintenance?

<10
10 – 20
21 – 50
51- 100
101-200

>200

5. How would your organization react in adopting new technologies/ methodologies?

Leader (Look forward to adopting new technology as it release)

Follower (Adopt the technology after the leader)

Conservative (Wait till it is proven to follow)

Static (Do not adapt new technologies)

Section 2: Methodology knowledge

6. Which of the following more appropriate to rate your knowledge in Agile Methodologies?
(Agile methods: Extreme programming, SCRUM, DSDM, etc…)

Very high High Average Poor Very Poor

7. Which of the following more appropriate to rate your knowledge in Traditional Methodologies?
(Traditional methods: Waterfall, Spiral, Unified Process, etc…)

Very high High Average Poor Very Poor

Section 3: Software development

8. Which of the following best describe the last project you were involved?

Small scale project (3 to 7 people)
Medium scale project (5 to 20 people)

Large scale project (20+ people)

9. Consider the last 5 projects undertaken at your organization; provide Yes (Y) or No (N) to the following.

 Proj1 Proj2 Proj3 Proj4 Proj5
Was it delivered on time?

Was it delivered within budget?

Did it satisfy the user’s requirements?

Did it require rework?
Was it delivered on time?

Comments (if any):

A Comparison between Agile and Traditional Software Development Methodologies

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

41

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

The following questions are based on the project sizes mentioned in question 8. Select the appropriate selections
with a tick or cross (X).

10. Which Agile methodologies you prefer for each type of software development project?

 Small scale Medium scale Large scale

Extreme Programming
SCRUM
DSDM

Feature Driven
Adaptive Software Development

Other(please specify)

11. Which Traditional methodologies you prefer for each type of software development project?

 Small scale Medium scale Large scale
Waterfall

Unified process
Spiral

Other(please specify)

12. What is the average size of teams you use for each size of development projects?

 Small scale Medium scale Large scale
2 - 15 members

16 – 50 members
51 – 200 members

More than 200

13. If you prefer to use any of the following techniques outside specific software development methodology use how
would you rate them? (Rate only the preferred else leave blank).

 1 2 3 4
Easy access to expert users

UML or other Diagrams (use cases, ERDs)
Time boxed development cycles

Scheduling with techniques like Planning porker
Pair programming

Reflective Improvement
Frequent & informal communication

Communities of practice
Use scrums of scrums for large teams

14. Compared with traditional methodologies which of the following agile values most appealing to you for the
different software development project sizes?

 Small scale Medium scale Large scale
Individuals and interactions over Processes and tools?
Working software over Comprehensive documentation?

Customer collaboration over Contract negotiation?
Responding to change over following a plan?

15. Which of the following agile characteristics would you think is not suitable for the three sizes of software
projects?

 Small scale Medium scale Large scale
Less Documentation

A Comparison between Agile and Traditional Software Development Methodologies
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
 I
ss
ue

 I
I
V
er
sio

n
I

42

Y
e
a
r

20
20

 (

)
C

© 2020 Global Journals

Less planning
Low Management Control
Lack of Project Structure

16. Which of the following Traditional characteristics would you think is not suitable for the three sizes of software
projects?

 Small scale Medium scale Large scale
Heavy Documentation

Comprehensive Upfront Planning
Autocratic management Style

Not able to change

17. How would you think the agile approaches affect cost of the three sizes of software projects than traditional
methodologies?

 Small scale Medium scale Large scale
Very high

Slightly high
No change
Slightly low

Very low

18. How would you think the agile approaches affect quality of the three sizes of software projects than traditional
methodologies?

 Small scale Medium scale Large scale
Very high

Slightly high
No change
Slightly low

Very low

19. To what extent do you follow agile techniques for the three sizes of projects?

 Small scale Medium scale Large scale
100% follow all agile techniques
75% follow all agile techniques
50% follow all agile techniques
25% follow all agile techniques

20. Which methodology do you prefer for different software projects?

 Small scale Medium scale Large scale

Agile methodologies
Traditional methodologies

Other (Please specify):

Any suggestions or comments or your views regarding software projects and methodologies.

Optional
If you would like to have a summary of the survey results, please provide contact details
Name: __
Email: __
Organisation: ___
Thank you for all your valuable time in completing this questionnaire.

	A Comparison between Agile and Traditional Software Development Methodologies
	Author
	I. Introduction
	a) Aims of the Research
	b) Objectives of the Research
	c) Research Question
	d) Structure of this Research

	II. Literature Review
	a) Outline
	b) Characteristics of Agile Methods
	c) Definition of Agile
	d) SDLC for Agile
	e) Agile Methodologies
	i. Extreme Programming
	a. Outline
	b. XP Lifecycle
	c. Responsibilities and Roles of XP

	ii. SCRUM
	a. Outline
	b. SCRUM Lifecycle
	c. Responsibilities and Roles of SCRUM
	d. Technical Practices

	iii. Dynamic Systems Development Method
	a. Outline
	b. DSDM Lifecycle
	c. Responsibilities and roles of DSDM
	d. Technical Practices

	f) Traditional Software Development
	i. Outline
	ii. Waterfall Model
	a. Outline
	b. Waterfall Model Life Cycle

	iii. Spiral Model
	a. Outline
	b. Spiral Model Lifecycle

	iv. Unified Process
	a. Outline
	b. UP Lifecycle

	g) Comparison of Agile and Traditional Methods.
	i. People
	ii. Project Size
	iii. Software Risk

	III. Research Methods
	a) Introduction
	b) Research Philosophy
	c) Research Design
	i. Exploratory
	ii. Descriptive
	iii. Explanatory

	d) Data collection Method
	i. Secondary Data
	ii. Secondary data sources
	iii. Primary Data
	iv. Primary Data Sources

	e) Data Analysis
	f) Reliability
	g) Validity
	h) Limitations of the research project
	i) Methods for this Research
	i. Completing the Questionnaire
	ii. Target Audience

	j) Research Audit

	IV. Research
	a) Data Collection
	i. Organizational Characteristics
	ii. Individual Knowledge Gathering from Different Organization
	iii. Organization size based on employee
	iv. Agile and Traditional Software methodology Knowledge of the respondents
	v. Knowledge of adopting new methodology by the respondents

	b) Methodologies used in Organizations
	i. Use of Agile Methodologies
	ii. Use of Traditional Software development Methodologies

	V. Analysis
	a) Most Appealing Agile Values over Traditional Characteristics
	b) Factors that Influence to use Agile Methods over Traditional Methods
	c) Preferences for Agile and Traditional Methodologies
	d) Methodology preferred
	i. Methodology selection for different project sizes
	ii. Ratings for other mix techniques into development process
	iii. Use of agile methodologies

	VI. Conclusion
	a) Limitations
	b) The Guidelines

	Acknowledgement
	References Références Referencias
	Appendix 1

