
© 2020. Jing Su, Yafei Yuan, Chunmin Liu & Jing Li. This is a research/review paper, distributed under the terms of the Creative 
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non 
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

  
 

  
 

 
  

 
Multi-Task Learning by Multi-Wave Optical Diffractive 
Network 

By Jing Su, Yafei Yuan, Chunmin Liu & Jing Li   
 Fudan University 

Abstract- Recently, there has been tremendous researches in Optical neural networks that could complete 
comparatively complex computation by optical characteristic with much more fewer dissipation than 
electrical networks. Existed neural networks based on the optical circuit are structured with an optical 
grating platform with different diffractive phase at different diffractive points. In this study, it proposed a 
multi-wave deep diffractive network with approximately 106 synapses, and it is easy to make hardware 
implementation of neuromorphic networks. In the optical architecture, it can utilize optical diffractive 
characteristic and different wavelengths to perform different tasks. Different wavelengths and different 
tasks inputs are independent of each other. Moreover, we can utilize the characteristic of them to 
inference several tasks, simultaneously. The results of experiments were demonstrated that the network 
could get a comparable performance to single-wavelength single-task. Compared to the multi-network, 
single network can save the cost of fabrication with lithography. We train the network on MNIST and 
MNIST-FASHION which are two different datasets to perform classification of 32*32 inputs with 10 
classes. Our method achieves competitive results across both of them. In particular, on the complex task 
MNIST-FASION, our framework obtains an excellent accuracy improvement with 3.2%. On the meanwhile, 
MNSIT also have the improvement with 1.15%. 
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Abstract- Recently, there has been tremendous researches in 
Optical neural networks that could complete comparatively 
complex computation by optical characteristic with much more 
fewer dissipation than electrical networks. Existed neural 
networks based on the optical circuit are structured with an 
optical grating platform with different diffractive phase at 
different diffractive points. In this study, it proposed a multi-
wave deep diffractive network with approximately 106 
synapses, and it is easy to make hardware implementation of 
neuromorphic networks. In the optical architecture, it can 
utilize optical diffractive characteristic and different 
wavelengths to perform different tasks. Different wavelengths 
and different tasks inputs are independent of each other. 
Moreover, we can utilize the characteristic of them to inference 
several tasks, simultaneously. The results of experiments were 
demonstrated that the network could get a comparable 
performance to single-wavelength single-task. Compared to 
the multi-network, single network can save the cost of 
fabrication with lithography. We train the network on MNIST 
and MNIST-FASHION which are two different datasets to 
perform classification of 32*32 inputs with 10 classes. Our 
method achieves competitive results across both of them. In 
particular, on the complex task MNIST-FASION, our framework 
obtains an excellent accuracy improvement with 3.2%. On the 
meanwhile, MNSIT also have the improvement with 1.15%. 

I. Introduction 

tore and retrieve data units based on the Von-
Neumann architecture are far more time-
consuming and power-hungry than optical device 

[1-4]. Different from modern computers, cis integrated 
of data computation, storage and fetch, which more 
effective, less power, large storage capacity and higher 
integration level [5-7]. Besides, Artificial neural network 
is [8] similar to the way in which human and animal 
store and process data is successful in a wide range of 
tasks such as image analysis [9], speech recognition 
[10] and language translation [11]. Artificial neural 
network can get comparable or even superior 
performance than the human with the increasing data 
volume, problem complexity and structure depth. Most 
of tasks cannot be migrated well in smart portable 
devices for its complexity and power. The less-power, 
more-efficiency and faster speed is becoming more and 
more critical for deep learning implemented on 
embedded device. 
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The neuromorphic computing seeks a brain-like 
processing, which overcome the limitation from 
conventional computers. IBM [12] built a 5.4-billion 
transistor chip with 4096 neurosynaptic cores called 
True North - a fully functional digital chip. To provide the 
extreme complexity of the human cerebral cortex, M 
Prezioso [13] et al combined complementary metal 
oxide-semiconductors (CMOS) and two-terminal 
resistive device with electric circuits. Spin-transfer torque 
magnetic memory [14] (STTMRAM) with non-volatility, 
high-speed and high endurance, is suitable as a 
stochastic memristive device, considering the functional 
implication of synaptic neuronal plasticity. Alexander N. 
Tait [15] inspired by spiking neural networks integrated 
laser devices to explore highly interactive information at 
speeds with optical-electronic systems. This approach 
promises to incorporate photonic spike processing in 
the training system. Besides, Carlos Rios dramatically 
improve storage capacity to implement all-photic 
nonvolatile [16] multi-level where memory electric-photic 
interconnect technologies bring not only opportunities 
but also challenges to the unconventional circuits and 
systems. To overcome the wastage of optical-electric 
conversions coupling, all photic device can be 
performed with fast computational speed and lower 
power. On-chip nonvolatile photic [17] device would 
dramatically improve performance in existing brain-like 
neural networks [18] to eliminate electronic latency and 
reduce electronic consuming. The on-chip optical 
architecture is designed for network protocol 
computational element and waveguide medium to 
communicate among high-performance spiking 
neurons. 

The architecture of fully-optical network with 
Mach-Zehuder interferometer [19] promises the 
reduction of data-movement energy cost. All-optical 
diffractive deep neural network architecture (D2NN) [20] 
utilize passive component and optical diffraction. D2NN 
can be easily scaled up and fabricated by 3D 
lithography [21] in a power-efficient manner. 

In general, optical networks have more trainable 
parameters with complex-value modulation which 
provide phase and amplitude of each neuron rather than 
only amplitude in electric networks. Unfortunately, 
optical device to forming neural network has some 
problems. Firstly, all-optical neural network is designed 
for a single task, but multi-tasks [22] are significant and 
important. Secondly, learning rates for different tasks are 
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important to the accuracy. It is non-trivial to balance the 
tasks and learning rates. 

In this paper, to address above two issues, we 
make most of the optical characteristics to express 
different tasks with different wavelengths. The one 
wavelength to use as baseband, the other is used as a 
carrier frequency. Therefore, the base band wave can 
be set to a large learning rate and vice versa. Extensive 
experiments based on MNIST and MNIST-Fasion [23] 
are conducted to investigate the efficacy and properties 
of the proposed multi-wavelength diffractive network 
(MWDN). In both two tasks, The MWDN significantly 
performs the baselines even better in the same network. 

II. Multi-Wavelength Diffractive 
Network 

Spatial domain implies per-wave in-plane 
propagation reasoning about diffractive in the particular 
phase and frequency which can analyze and integrate 
different direction waves. It operates in the frequency 
domain. The wave distribution of the observation and 

aperture plane can be viewed as the linear combination 
with a great many monochromatic plane wave of 
different direction propagation. The amplitude and 
phase of each plane wave lies on the angular spectrum. 
The angular spectrum can be acquired by FFT analysis 
[24] process. The plane wave propagation is a complex 
task that take into consider many affecting factors, such 
as direct, phase and amplitude. 

As shown in Fig. 1, we adjust optical grating 
parameters (height and the complex index of refraction), 
the height is altered by 3D printed, and the complex 
index of refraction is altered by laser light with different 
power.  Different power can alter different refraction of 
phase change materials. We input images in MNIST and 
MNIST-FASHION simultaneously, the input optical 
wavelength of MNIST and MNIST-FASION task is λ1 and 
λ2, respectively. The diffractive network with the different 
task has the same optical parameters. The bottom of 
the figure is the optical carrier. Fig. 2 shows the 
framework of diffractive network and different color 
denotes different index of refractive. 

 
Fig. 1: The architecture of Multi-wavelength diffractive network 

 
Fig. 2: The framework of Multi-wavelength diffractive network 
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Firstly, we convert image information to the 
phase and amplitude of optical information as the input 
of systems. Then, the optical grating is manufactured by 
3D-printing device with different height. In the following 
sections, we discuss that MWDN tackles the tasks 
predominately using the angular spectrum. MWDN by 
the 3D-printing would influence the amplitude and 
phase of the wave to 0~1and 0~2π, for two tasks in the 
same network. For each layer of MWDN, we set the 
neuron size range 200μm to 700μm, which is an effect 
tunable. 

Following the Fresnel diffraction equation, we can 
consider the optical signal from the spatial domain to 
the frequency domain. The angular spectrum method of 
plane wave explains how wave propagate. It is the 
primary method of analyzing diffraction in the frequency 
domain. Based on the angular spectrum, the free space 
transfer function is to control free propagation. The wave 
plane can transfer angular spectrum by FFT process, 
where diffractive data processing is more evident as 
follows: 

 

    
           

 
 

            
 

  

  

 
    

 

   

 

 
 
 
 
 
 
 

 
The output wave plane distribution propagates through 3D material and the field distribution is changed by 

the refractive index. 
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Where, fx, fy  are space frequency correspond to x, y 
location (fx =1/(x-x0)), x-x0 is gaps in the optical map, N 
and M is the number of grooves on optical grating in 
height and width direction, U0(x, y) is the original field 
distribution, U(x, y) is the field distribution after free 
space transfer, H(fx, fy) is transfer function, A0(fx, fy) is 

the original angular spectrum, A(fx, fy) is the angular 
spectrum after free space transfer. The results of the 
inverse Fourier transform to transfer function, are the 
impulse response function. The equation can view as 
the Fourier transform.

Where α is extinction efficiency, n is the refractive index 
real part of 3D material, n0 is the refractive index real 
part of the vacuum, k is the refractive index imagery 
part, λ is the wavelength, Δd is the height of material
map, ϕ is the phase difference. If we choose transparent
material (k→0) ignoring the optical losses, the 
transmission coefficient of a neuron is composed of only 
phase term; if we select non-transparent material, the 

transmission coefficient of a neuron is composed of 
amplitude and phase in MWDN architecture.

According to the size of input data, an effective 
and flexible linear interpolation algorithm is to fit the 
diffractive input layer. The interconnection rate between 
adjacent layers relates to the distance and diffraction 
angle, which approach the critical value (1.0).



Furthermore, the number of the network layers 
and the axial distance is also a tunable. The output layer 
can part into ten regions corresponding to ten classes, 
where the summation of light intensity can be detected 
in the wave plane region. Mean square error (MSE) uses 
to train MWDN parameters compared to the target. We 
aim to minimize a loss function, which increases target 
region wave intensity and decrease other regions. The 
training batch size set to be 10 for the classifier. 

III. The Backward of Multi-Wavelength 
Diffractive Network 

To train MWDN, we use the back-propagation 
algorithm with a dam optimization method. 

We focus on the intensity of wave and define 
loss function with MSE between output and target. 
 
 
 
 
 

where K is the number of training data, ok is the output 
of the MWDN, and tk is the label of the corresponding 
input. The optimization problem can be written follows: 
 
 
 
 
 
where l is the layer, i is the lth layer location. The 
gradient of loss to all parameters can be calculated, 
which is used to update MWDN architecture parameters 
during the training process. Each batch of the training 
data is fed into MWDN, where each layer gradient can 
be calculated to update. 

IV. The Backward of Multi-Wavelength 
Diffractive Network 

The optical diffractive network and deep neural 
network are markedly different. The function of the 
optical diffractive network is determined by wavelength 
and the parameters of the optical grating (height and 
complex refractive index). Multi-wavelength diffractive 
network has a broad range of requirements that differ 
from the conventional network. 

Different wavelength has different effectiveness. 
We set different wavelength for different tasks. 
Meanwhile, the network needs to ensure that different 
wavelengths do not affect each other. By setting one to 
baseband and the other to the carrier, the diffractive 
network is used to adjust optical plane wave 
independently. The algorithm can be considered as an 
efficient carrier algorithm. The ratio of baseband and 
carrier wavelengths is 1:30. The short wavelength is little 
influence to long wavelength and vice versa. If the phase 

difference of long wavelength is ϕ1 and the phase 
difference of short wavelength is ϕ2, the corresponding 
relationship as follows: 
 
 
 
So, the equation can be as follows: 
 
 
 
 
 
 
 
 

The second terms of ϕ2 is relative to the first 
term can be ignore, the equation can be shown as 
follows: 
 
 
 
 The multi-wavelength diffractive network can be 
effective, and more powerful than deep neural network. 
Phase difference ϕi (i=1, 2) can be obtained easily by 
adjusting the height on the diffractive network. Due to ϕ2 

<<  ϕ1 , then we adjust ∆d for minor learning rate for ϕ2, as 
well as for large learning rate for ϕ1, without one 
impacting the other. 
 
 
 

V. Experiment 

In this work, we apply the proposed MWDN to 
implement on two different dataset MNIST and MNIST-
Fashion. 

a) Model setup 
By comparing to the state-of-the-art methods 

with accuracy and speed of, MNIST and MNIST-FASION 
in this method achieve better performance. The size of 
the network is set to 200×200, 500×500 and 
1500×1500, each having a trainable height of the map. 
The optical network possesses two types, one for phase 
modulation, and the other for complex-modulation. The 
MNIST and MNIST-FASION tasks with different optical 
wavelengths, the input is altered by optical grating 
mask. 

Using the backward propagation, the model is 
trained with two task datasets alternately, validated its 
effectiveness. We train the network with different 
learning rate for different tasks, which overcome the 
drawbacks of local optimum to solve. As well as, all the 
parameters of the network are adjusted by the gradient 
descent algorithm to minimize the error. 
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𝜙1𝜆1 = 𝜙2𝜆2 ,    𝜆1 𝜆2⁄  = 1: 30

𝜙2 𝜙1⁄  = 1: 30,        𝜙2 ≪  𝛷1 

𝜙1 = 2𝜋𝑛 + 𝜙1
′ , 𝑛 = 0,1,2 … …

𝜙2 = πn 15⁄ +
𝜙1

′

30
, 𝜙1

′ = 0~2π

𝜙2 ≈ πn 15⁄

∆𝑑 ≈ 𝜙λ 2𝜋Δ𝑛⁄



b) Dataset 
We evaluate the approach on two datasets and 

input information for neurons in the form of phase fed 
into the network. The two datasets have different data 
distribution, which is difficult to classify in the same 
network. The conventional networks require the input 
information to be independent and identical distribution. 
The task is to handle two different distribution data in a 
same network. 

c) Experimental analysis 
For better performance, we set a different 

learning rate and different signal frequency to two 
datasets. The maximum half-cone diffraction angle is 
formulated as follow: 

The light wavelength is 0.4THz, 14.4THz for 
MNIST and MNIST fashion. The neuron size is set to be 
200μm. The height of the map and axial distance 
between two successive layers are trainable. As 
comparing the performance of MWDN and DN methods 
with single task, the results was shown in Table 1. It is 
clearly that the performance of MWDN would improve 
the accuracy of 1.15% and 3.2%, independently. To 
evaluate the multi-wavelength for multi-task, so we 
compare the multi-task to a single task in Table 2. The 
multi-task diffractive network enables consistent 
performance with a single task. The result can perform 
well in the same parameters. The experiment set of 
setting 1 is the same wavelength for comparison. 
Setting 2 is performed by a different wavelength. The 
DN-FASION and DN-MNIST are evaluated by 
independent diffractive network.

 

Table 1:
 
The performance of MWDN and DN methods

 

Method
 

MNIST
 

λ
 
(THZ)

 
MNIST-Fasion

 
λ
 
(THZ)

 

MWDN(PCM)
 

92.85%
 

0.4
 

84.33%
 

14.4
 

DN-MNIST
 

91.75%
 

0.4
 

81.13%
 

0.4
 

Table 2:
 
The performance of MWDN and DN methods with multi-task

 

Method
 

MNIST
 

MNIST-Fasion
 

λ1 (THZ)
 

λ2(THZ)
 

Setting 1
 

23.45%
 

12.12%
 

0.4
 

0.4
 

Setting 2
 

90.45%
 

76.67%
 

14.4
 

0.144
 

DN-Fasion
 

/
 

78.70%
 

14.4
 

/
 

DN-MNIST
 

91.75%
 

/
 

/
 

14.4
 

d)
 

Convergence analysis
 

Fig3 demonstrate two classifiers for two 
datasets, where each dataset has ten target class. One 
classifier is set to classify in the same region and 

another is set to a different region. The different 
frequency setting to different datasets is effective and 
different regions in the MWDN has high accuracy.

 

Fig. 3:
 
The training process of different method
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max sin ( / 2 )fd −=



Finally, we report the performance on the 
validation data of MNIST and MNIST_FASION, a 
challenging task with different datasets. Using only a 
single network, two datasets classification can be 
accomplished simultaneously we investigate the effects 
of various combinations of different datasets for MWDN. 
The results are shown in Fig 3. We find that we can 
implement two classes to the same network with MWDN 
algorithm. Compared to other approach that use only 
single dataset as input, our approach even yields a 
boost. 

VI. Conclusion 

In this paper, we propose a novel and multi-
tasks optical network named as the multi-wavelength 
diffractive network (MWDN). Based on plane wave 
propagation, our method can achieve comparable 
accuracy against the single-task network. We 
successfully apply MWDN to multi-tasks with different 
datasets distribution and provide a multi-wavelength 
method with different model size. In the future, we aim to 
develop a more effective network to achieve complex 
tasks and reach better performance. 
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