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model is required to predict stress levels for targeted prevention and intervention in the personal 
healthcare domain. Before preventing the event of stress-related diseases, stress should be 
detected and managed early. However, surveys are used to evaluate an individual's stress 
condition with ease of measurement and requiring little time. However, anything that puts high 
demands on a person makes it stressful. This includes positive events such as getting married, 
buying a house, going to college, or receiving a promotion. Of course, not all stress is caused by 
external factors. Stress can also be internal or self-generated, when a person worries excessively 
about something that may or may not happen, or have irrational, pessimistic thoughts about life. 
This article aims to develop a predictive model to find the interruption of stress using an efficient 
way. One of the successive machine learning algorithm is SVM. This paper proposed to enhance 
the parameters of SVM which is used to improve the efficiency for predicting stress. This article 
proposed an Enhanced Support Vector Machine classifier to predict Stress. The stress dataset is 
downloaded from the Kaggle repository with 951 instances and 21 attributes.  
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Machine Learning Algorithm for Development of 
Enhanced Support Vector Machine Technique 

to Predict Stress 
T. Mohana Priya α, Dr. M. Punithavalli σ & Dr. R. Rajesh Kanna ρ 

Abstract- Stress is a common risk factor for many diseases. A 
correct and efficient prediction model is required to predict 
stress levels for targeted prevention and intervention in the 
personal healthcare domain. Before preventing the event of 
stress-related diseases, stress should be detected and 
managed early. However, surveys are used to evaluate an 
individual's stress condition with ease of measurement and 
requiring little time. However, anything that puts high demands 
on a person makes it stressful. This includes positive events 
such as getting married, buying a house, going to college, or 
receiving a promotion. Of course, not all stress is caused by 
external factors. Stress can also be internal or self-generated, 
when a person worries excessively about something that may 
or may not happen, or have irrational, pessimistic thoughts 
about life. This article aims to develop a predictive model to 
find the interruption of stress using an efficient way. One of the 
successive machine learning algorithm is SVM. This paper 
proposed to enhance the parameters of SVM which is used to 
improve the efficiency for predicting stress. This article 
proposed an Enhanced Support Vector Machine classifier to 
predict Stress. The stress dataset is downloaded from the 
Kaggle repository with 951 instances and 21 attributes. This 
research work takes the stress data on employee-related 
stress attributes. 
Keywords: stress, classification, SVM, KNN, machine 
learning.  

I. Introduction 

tress or depression may lead to mental disorders. 
Work pressure, working environment, traveling 
distance, height, weight, food habits, etc. are 

some of the major reasons behind building stress 
among the people. Many researchers had tried to 
predict stress interruption using machine learning 
techniques including Decision Tree, Naïve Bayes, 
Random Forest, KNN and SVM, etc. 

The primary objective of the chapter is to 
develop an enhanced Support Vector Machine (SVM) 
classifier for Stress prediction. 
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The research work of this article implements the 
machine learning algorithm for predicting whether a 
person is interrupted by stress or not. The 
implementation for the stress dataset has been 
developed by Enhanced Support Vector Machine, and 
its performance is compared with KNN and SVM. 

II. Literature Study 

The below table 1 shows that the performance 
of existing machine learning techniques[23] to predict 
the accuracy. The literature study was conducted by 
reviewing 23 articles which were published in reputed 
journals [1-23]. 

Table 1: Existing Machine Learning algorithms for Stress 
Dataset[1-23] 

Classifier Accuracy Precision Recall 

Bayes Net 88.59% 0.824 0.834 
Multilayer 

perceptron 
85.43% 0.836 0.867 

Naive 
Bayes 

84.2105% 0.717 0.890 

Logistic 
regression 

84.9649% 0.824 0.838 

J48 86.42% 0.871 0.879 
Random 
Forest 

83.333% 0.833 0.825 

According to the existing study the highest 
accuracy is obtained by J48 (i.e) Decision Tree.  So the 
proposed system concentrates on to develop a model 
which provides highest accuracy than the existing 
works. 

III. Objectives 

The primary objective of the chapter is to 
develop an enhanced Support Vector Machine (SVM) 
classifier for Stress prediction. Support Vector Machine is 
enhanced for this research by tuning its Hyperparameters. 
The Hyperparameter for SVM is its kernel function. This 
research uses the RBF kernel function, which is used as 
a way of computing the dot product of two 
vectors x and y in some (very high dimensional) 
feature space. 
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RBF is tuned with its parameters; “Gamma” and 
“C’ complexity parameter. “Gamma” can be seen as the 
inverse of the radius of influence of samples selected by 
the model as support vectors. “C” parameter is used to 
increase the complexity level of “gamma”. The accuracy 
level is increased when the RBF kernel is tuned with 
“Gamma” and “C” parameters. The concerns received 
from the existing study are resolved by the proposed 
research work(i.e) Enhanced SVM when using RBF 
kernel functions. Finally, the efficiency is measured by 
the performance obtained by the Enhanced SVM 
classifier. 

IV. The Research Flow for Stress 
Prediction 

Research framework involves the steps taken 
to implement SVM to predict Stress through the 

research. This section presents the Enhanced SVM 
methodology used by the research work (i.e) model to 
predict stress. The following Figure 6.1 shows that the 
methodology used in this research work. It has several 
steps. 
 The firststep is collecting the dataset. Dataset for 
this research work is downloaded from the Kaggle 
repository which contains 951 instances and 21 
attributes.   
 The second step of the research, the dataset is 
applied for Data preprocessing which makes the data to 
be nominal values. This preprocessing work is done by 
using WEKA tool using by “Discretize” filter. 
 
 

 

 

Figure 1: The Research flow for Stress Prediction

 The third step is feature selection.  In this step 
of the research is to select the subset of attributes based 
on certain conditions. This research uses “Correlate 
Attriburte Eval” from “Attribute Evaluator” and “Ranker” 
approach in “Search Method”. At the end of this step, 
top ranking attributes are grouped into subset. 

The fourth step is developing Enhanced SVM 
classifier to predict the Stress interruption. Existing SVM 
classifier is enhanced by tuning the RBF(Radial Basis 
Function) kernel function with its Hyperparameters.  
There are two parameters are tuned to increase the 
efficiency of RBF kernel function. 1. Gamma 2. C-
Complexity parameter.After tuning these two parameters, 
SVM works efficiently than any other method performedto 

predict Stress interruption. After implementing the 
Enhanced SVM classifier, the expected output is either 
‘Yes-1’ or ‘No-0’. 

Finally the performance is evaluated in terms of 
Accuracy, Precision, Recall and F-Measure with existing 
methodologies. 

a) Data Collection 
The data for the research is taken from Kaggle 

repository.  The below table 6.3 shows that the list of 
attributes of Stress dataset. This Stress dataset contains 
951 instances and 21 attributes. The below table 6.1 list 
out the name of attributes and the range of values for 
each attribute is given. 

Stress 
Dataset 

Feature Selection 
1. Attribute Evaluator:  CorrelationAttributeEval  2. Search Method:  Ranker 

 

Preprocessing 
Discretization 

Enhanced SVM Classifier

 

Kernel Function:  RBF kernel

 

Parameters:  Gamma and 
Complexity parameter

 

Performance Evaluation 

Accuracy F-measure Recall Precision 
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Table 2: Description of Stress Dataset 

S.No. Name of the Attribute Values 

1  ID Number 
2  Reason for absence Disease 
3  Month of absence Jan -1   to Dec-12 

4  Day of the week 
Monday -2, Tuesday -3, Wednesday -4, Friday -5, 

Saturday -6 
5  Seasons Summer -1, Autumn-2, Winter -3, Spring -4 
6  Transportation expense In amount 

7  
Distance from Residence to 

Work 
In Kilometers 

8  Service time In hours 
9  Age In Numbers 
10  Work load Average/day In hours 

11  Hit target 
Achieved-1 

Not Achieved -0 
12  Disciplinary failure Yes -1, No-0 
13  Education School-1, Graduate -2, PG-3, DR-4 
14  Son Summer-1, Autumn -2, Winter -3, Spring -4 
15  Social drinker Yes-1, No-0 
16  Social smoker Yes-1, No-0 
17  Pet Number of pet 
18  Weight In Kilogram 
19  Height In Centimeters 
20  Body mass index In Kilogram 
21  Stress Interruption Yes-1, No-0 

The above table 2 shows that the dataset which 
is related to Stress of working people. There are several 
reasons for the working people to be stressful.  

b) Data Pre-Processing 
The data set is pre-processed with a machine 

learning tool WEKA. In this step the data values are 
converted into nominal values.  Dataset may contain 
numeric data but classifier handles only nominal values. 
In that case research needs to discretize the data, 
which can be done with the following filters: 

weka.filters.supervised.attribute.Discretize 

The “Discretize” filter is stored in the package 
“weka.filters.supervised.attribute”. Here Weka is the root 
package for all other sub packages. 

c) Feature Selection 
In Machine Learning, feature selection also 

known as attribute selection or variable subset selection.  
It is the process of selecting a subset of relevant 
features for model construction.  Feature selection 
techniques are used for the research is  

Feature Selection involves two steps. In the first 
step “Attribute Evaluator” will be chosen. In the second 
step suitable “Search method” will be selected for 
“AttributeEvaluator” to select the highly relevant 
attributes from the dataset. 

This research work uses the “Correlation
 

Attribute
 

Eval” approach in “Attribute
 

Evaluator” to 
choose the relevant attributes for the subset. To find

 
the 

relevant attributes for the subset generation “Ranker” 
method is chosen in the “Search Method” which gives a 
ranking for the correlated values.
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Figure 2: Ranking for Attribute 

An efficient machine learning technique 
required only top ranking i.e. dominant attributes for 
prediction of stress accurately. Because, the top ranking 
attributes are only highly relevant attributes for predicting 
the class.  To choose the top ranking value, “Ranker” 
method is tuned with “Threshold” value. 

Threshold value for ranking: In ranker 
“Threshold” is its property which takes number as 
values. Threshold value is used to select the subset of 
ranked attributes either from positive or negative by 
given its initial rank value. This research work uses 
threshold value is 0, which uses only positive ranked 
values for feature selection. 

 
 
 
 
 
 
 
 
 
 
 

=== Run information === 
Evaluator:    weka.attributeSelection.CorrelationAttributeEval  
Search:       weka.attributeSelection.Ranker -P 3 -T -1.7976931348623157E308 -N -1 
Relation:     Stress-weka.filters.unsupervised.attribute.Remove-R1 
Instances:    951 
 
Search Method: 
 Attribute ranking. 
 Ignored attributes: 03  
 
Attribute Evaluator (supervised, Class (numeric): Stress in hours): 
 Correlation Ranking Filter 
 
Ranked  attributes: 
 0.11376   13 Son 
 0.06576    8 Age 
 0.06507   14 Social drinker 
 0.02758    5 Transportation expense 
 0.0267    10 Hit target 
 0.02475    9 Work load Average/day  
 0.02435    6 Distance from Residence to Work 
 0.01903    7 Service time 
 0.01579   17 Weight 
 0.0144   18 Height 
-0.00561    4 Seasons 
-0.00894   15 Social smoker 
-0.02828   16 Pet 
-0.04624   12 Education 
-0.04972   19 Body mass index 
-0.08836    2 Month of absence  
-0.12425   11 Disciplinary failure 
-0.17312    1 Reason for absence 
 
Selected attributes: 18,13,8,14,5,10,9,2,7,17,4,15,16,12,19,6,11,1 : 18 
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Figure 3:  Ranking Attributes after Threshold value 

The above Figure 3 shows that the list of 
attribute in the subset after “Threshold” value is 
assigned to the “Ranker” method. Figure 6.2 shows that 
both positive and negative ranked values.  To remove 
the negative values, set Threshold=0. It filters the 
attributes which are negatively ranked. Finally, out of 18 
attributes from subset, only 10 attributes are chosen for 
new subset after applying “Threshold” value. After 
completion of feature selection, the new subset will be 
given as input for the proposed classifier, SVM.  

V. Enhanced Support Vector Machine  
for Predicting Stress 

 This research work is carried out to enhance 
SVM features for the prediction of Stress interruption 
accurately. To reach the objective, SVM is enhanced 
with RBF (Radial Basis Function) kernel function and 
with tuning parameters of RBF.  

This research uses the RBF kernel function to 
map the data. RBF kernel works by mapping the data to 
a higher dimensional feature space using an 
appropriate kernel function and a maximum margin is 
found for separating hyperplane in feature space [15].  

The accuracy problem is usually represented by 
the proportion of correct classifications. A soft margin 
can be obtained in two different ways. It is important to 
add a constant factor to the kernel function output 
whenever the given input vectors are identical.  

And, the magnitude of the constant factor to be 
added to the kernel or the bound size of the weights 
controls the number of training points that the system 
misclassifies. The setting of this parameter depends on 
the specific data at hand. 

To completely specify the support vector 
machine it requires to specify two parameters; a) the 
kernel function and b)the magnitude of the penalty for 
violating the soft margin. Hence, to improve the 
accuracy of SVM, the RBF kernel function is applied in 
this research; this is the best criterion used for achieving 
better results. The next section discussed the procedure 
for Enhanced SVM methodology. 

a) Enhanced SVM Algorithm 
Algorithm 6.2 explains the necessary steps to 

be followed to improve the performance of Support 
Vector Machine. 

Algorithm 1:  Enhanced Support Vector Machine Algorithm for Stress prediction 

Input: Initial Stress Dataset S={1,2,…n} 

 Ordered Stress dataset based on rank score R={  } 

Enhanced SVM –to test values for number of top most ranking attributes with RBF kernel 

Output: obtain and evaluate performance metrics such as Accuracy, Precision, Recall 

Procedure:   

Step 1:  Collect Stress dataset S 

Step 2: Pre-process the data using “Discretize” 
Step 3: Select the subset of attributes using “CorrelationAttributeEval” and “Ranker” method 

=== Attribute Selection on all input data === 
Search Method: 
 Attribute ranking. 
 Ignored attributes: 11 
 Threshold for discarding attributes:   0      
Attribute Evaluator (supervised, Class (numeric): Stress in hours): 
 Correlation Ranking Filter 
Ranked attributes: 
 0.1138  13 Son 
 0.0658   8 Age 
 0.0651  14 Social drinker 
 0.0276   5 Transportation expense 
 0.0267  10 Hit target 
 0.0247   9 Work load Average/day  
 0.0243   6 Distance from Residence to Work 
 0.019    7 Service time 
 0.0158  17 Weight 
0.0144  18 Height 
 
Selected attributes: 18,13,8,14,5,10,9,2,7,17 : 10 
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Step 4:  Eliminate the minimum ranked attributes by using “Threshold”.  Set Threshold=0 

Step 5:  Update the subset after eliminating minimum ranked value. 

Step 4:  Implement the classifier Enhanced SVM on subset 

Step 5:  Tune the parameters of SVM 

 Step 5.1: Select RBF (Radial Basis Function) kernel function 
 Step 5.2: Use the “Gamma” parameter.  Set  “Gamma” =1 

 Step 5.3:  Tune the “Gamma” by “C “Complexity parameter.  Set C=0 

Step 6:  Evaluate the performance  

Step 7:  End 

This article is proposed by applying the RBF 
kernel function with gamma factor and complexity factor 
C in Support Vector Machine algorithm.  This parameter 
tuning helps to improve the efficiency of Support Vector 
Machine Algorithm in proposed work. 

b) Kernel Function 
Kernel functions are used to linearly or non-

linearly map the input data to a high-dimensional space 
(feature space). The idea of the kernel function is to 
enable operations to be performed in the input space 
rather than the potentially high dimension feature space. 
Hence the inner product does not need to be evaluated 
in the feature space 

This research work chooses RBF kernel function 
in SVM for searching values in feature space. 

The RBF kernel on two samples x and x', 
represented as feature vectors in some input space, is 
defined as 

 

where ||x−x′||2||x−x′||2 is the squared Euclidean 
distance between two data points x and x′. SVM 
classifier using an RBF kernel has two 
parameters: gamma and C. 

c) Gamma Parameter 
Gamma is a parameter of the RBF kernel and 

can be thought of as the ‘spread’ of the kernel and 
therefore the decision region. When gamma is low, the 
‘curve’ of the decision boundary is very low and thus the 
decision region is very broad. When gamma is high, 
the ‘curve’ of the decision boundary is high, which 
creates islands of decision-boundaries around data 
points.  

When Gamma = 0.01, low gamma like 0.01, 
the decision boundary is not very ‘curvy’, rather it is just 
one big sweeping arch. When Gamma = 1.0, the big 
difference in curve when increase the gamma to 1. 
Now the decision boundary is starting to better cover the 
spread of the data. So, the research chooses the best 
Gamma parameter is 1.0 after experimenting successive 
incremental of “Gamma” parameter. 

d) C-Complexity Parameter 
 The C parameter in support vector machine 
trades off correct classification of training examples 
against maximization of the decision functions margin. 
The only thing will change by the C is the penalty for 
misclassification. 

Larger value of C will be accepted and the 
decision function will be working better at classifying all 
training points correctly.  Therefore, the complexity 
parameter is increased from 1 to 10 in this research 
work.   

When C = 1, the classifier is clearly tolerant of 
misclassified data point. When C = 10, the classifier is 
highly tolerant of misclassified data point.  

Table 3: Performance of Gamma and Complexity 
parameter in RBF kernel function 

S. 
No. 

Gamma 
value 

Complexity 
parameter 

Accuracy 
Execution 
Time (in 

seconds) 
1 2 10 92.76 0.98 
2 1 10 96.33 0.33 
3 0.9 10 91 0.30 
4 0.07 10 90.1 0.28 
5 0.05 10 88.19 0.21 
6 0.01 10 82.13 0.17 
7 0.01 1 62.01 0.16 

From the above table 3, it is observed that the 
accuracy is increasing up to certain level of Gamma 
factor and Complexity parameter. The most dangerous 
and common effect of increasing gamma 
parameter is overfitting.  The experiment starts from the 
Gamma =0.01 and the Complexity parameter C is not 
specified.  But it is produced low accuracy and the time 
taken is also very low.   
 To increase the accuracy and also to choose 
misclassification values, the Complexity parameter C is 
applied as 10 after experimenting the C value in the 
research. The accuracy is 82% when “Gamma=0.01” and 
“C=10”. It is better than when “C=0”. So the research 
work decided to increase the “Gamma” factor for the 
constant “C” parameter. The highest accuracy (96%) is 
produced by enhanced SVM when Gamma = 1 and 
Complexity parameter =10. 
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 This study also analyzed the performance of 
RBF Kernel with Polynomial and Linear Kernel functions 
by using Accuracy and Execution Time.   

Table 4:  Accuracy and Execution Time for Different 
Kernel functions 

Kernel function Accuracy (%) 
Execution Time  

(in seconds) 

RBF Kernel 96.33 0.33 
Polynomial 

Kernel 
91.69 0.71 

Linear Kernel 85 0.323 

It is observed from the above table 4 
that SVM with RBF kernel performance is higher than 
that of the polynomial kernel and linear kernel in 
prediction of stress. The SVM with RBF kernel produced 
96% accuracy compared to the polynomial kernel. 

This section implemented the parameter tuning 
in Enhanced Support Vector Machine, and the efficiency 
will be measured by evaluating its performance with 
existing methodology SVM and KNN.   

VI. Performance Evaluation 

For experimental work, the open source 
Machine Learning tool WEKA is used.  

The following metrics are used to evaluate the 
performance of proposed Machine Learning Algorithm 
which is discussed detail in Research Methodology. 

Accuracy = TP+TN/ TP+FP+TN+FN  …1 

Precision= TP/ TP+FP     …2 

Recall=TP / TP+FN     …3 

F-Measure= (2 * Precision * Recall) / (Precision + 
Recall)   …4 

VII. Result and Discussion 

Various experiments are conducted with Stress 
datasets to evaluate the performance of the proposed 
Enhanced Support Vector Algorithm. To assess the 
performance of the proposed algorithm, the results are 
compared with the earlier studies results (i.e) SVM and 
KNN.   

Table 5: Performance Evaluation of ML Techniques in 
Stress dataset 

S.No. Techniques Accuracy Precision Recall 
1 Enhanced SVM 96.33% 92.63% 90.26% 
2 SVM 91.69% 89.96% 88.25% 
3 KNN 90.78% 89.68% 87.21% 

The above table 6.7 shows that the experiment 
results of Enhanced Support Vector Machine, KNN and 
SVM for stress dataset. From the above table, it is 
understood that the Enhanced Support Vector Machine 
yields very good accuracy (96%) than the existing KNN 
(91%) and SVM (92%) uses polynomial kernel. The 
highest accuracy of enhanced SVM is achieved by 
tuning the RBF Kernel function, Gamma Factor and 
increasing the Complexity parameter. 

Figure 4:  Accuracy vs ML Algorithms 

Figure 4 shows that Accuracy vs Machine 
Learning algorithms in stress dataset. Proposed SVM 
algorithm achieves better accuracy 96% compared to 
other techniques like KNN(91%) and SVM (92%) in the 
Stress data set. 
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Figure 5: Comparison of Precision vs ML Algorithms 

Figure 5 shows that precision rate in Enhanced SVM, KNN and SVM. Proposed SVM algorithm achieves better 
precision 93% which is higher than the other techniques KNN (90%) and SVM (90%) in the Stress data set. 
  

Figure 6: Comparison of Recall vs ML Algorithms 

Figure 6 shows that comparison of recall rate in 
Machine Learning algorithms, Proposed SVM algorithm 
achieves better precision (i.e) 90% which is higher than 
KNN (87%) and SVM (88%) in the Stress data set. 

 
 
 

88%

89%

89%

90%

90%

91%

91%

92%

92%

93%

93%

Enhanced SVM SVM KNN

Pr
e c

is
io

n 
%

ML Algorithms

86%

86%

87%

87%

88%

88%

89%

89%

90%

90%

91%

Enhanced SVM SVM KNN

Re
ca

l l 
%

ML algorithms



Figure 7: Comparison of Classifiers 

Figure 7 summarized the comparison of all the 
performance metrics, which is used in stress dataset. 
Among the different category machine learning algorithms, 
Enhanced SVM produces better results when compared 
to exiting machine learning algorithms such as SVM and 
KNN. 

VIII. Conclusion 

In this research, an Enhanced SVM which 
improves the efficiency of the machine learning 
algorithm to prediction of Stress. The performance of 
enhanced SVM is compared with the existing SVM and 
KNN method.  Those techniques are studied and 
evaluated using Stress dataset. It has been analyzed 
that tuning the RBF kernel with Gamma and Complexity 
parameter, Enhanced SVM can outperform than KNN 
and earlier works. Proposed SVM algorithm achieves 
better accuracy i.e. 96% when compared to other 
techniques like KNN(91%) and SVM (92%) in the Stress 
data set with minimum execution time. This research 
work also recommends that the significantly evaluated 
classifier Enhanced SVM can be used for real-time 
prediction of stress and early-stage heart failure can be 
avoided. However, more training data whether from 
hospitals or from domain-experts can be added for 
increasing the prediction performance of the classifiers. 
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