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Abstract- We propose an image file format that can be read in two ways, where two images are 
recorded in a single file as a bit sequence, and the forward reading the bit sequence makes one 
of the two images visible, or the backward reading makes another image visible. Such a way of 
looking at a binary data in two ways resembles that of an ambigram, which is a piece of 
calligraphy that can be read in two ways by rotating it or introducing other perspectives. The 
proposed ambigramic image file format is compared with the graphics interchange format (GIF) 
experimentally, and the results show the better quality of the ambigramic images than that of GIF 
images.
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I. Introduction 

mbigram is a typographical design that can be 
read in multiple orientations as shown in Fig. 1, 
where a word ‘ambigram’ is written in a 

rotationally symmetric manner. There are other types of 
ambigrams such as mirror, perceptual shift and 3D 
ambigrams [1]. Langdon [2], [3] has made a lot of 
interesting ambigrams for a long time. Those 
ambigramic artworks give pleasure to the viewers, and 
provide great inspiration for artists and engineers. 

 

Figure 1: Example of ambigram 

Inspired by such successful ambigrams, in this 
paper we suggest an application of the idea of 
ambigram to an ambigramic interpretation of a bit 
sequence. In other words, we propose a method for 
describing two images with a bit sequence, which is a 
digital ambigram that can be seen as one of the two 
images if the bit sequence is read forward direction, or 
as another image if the bit sequence is read backward 
direction. The proposed ambigramic images are 
compared with the graphics interchange format (GIF) 
images [4], and the effectiveness of the proposed 
method is demonstrated in the experiments using 
natural images, where an image quality measure is used 
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for evaluating the quality of halftone images including 
palette-based images such as GIF images. 

The rest of this paper is organized as follows: 
Section 2 describes the proposed algorithm for 
generating ambigramic bit sequences. Section 3 shows 
experimental results. Finally, Section 4 concludes this 
paper. 

II. Proposed Ambigramic Image Data 
Structure 

In this section, we propose a method for 
formatting image data into an ambigramic data 
structure, which is recorded in a binary file. Assume that 
two images are given as an input data as A = [aij] and B 
= [bij], where aij and bij denote color vectors at the pixel 
position (i; j) in the images A and B, respectively, for i = 
1; 2; : : : ;m and j = 1; 2; : : : ; n, i.e., A and B are the 
same size. Then we attempt to store A and B in a 
storage as a single file. Figure 2 illustrates the situation, 
where A and B are represented by a bit sequence, and 
stored in some place of a storage. If we read the bit 
sequence from left to right, then we see the image A. On 
the other hand, if we read it from right to left, then we 
see the image B. The procedure for constructing such a 
bit sequence from A and B is described as follows. 

 

Figure 2: Illustration of an ambigramic bit sequence 

    
  

 
         

  
  

 
 

 
 

      
 

A 

© 2021 Global Journals

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
X
I 
Is
su

e 
I 
V
er
sio

n 
I 

  
  
 

  

1

  
 (

)
F

Y
e
a
r

20
21

Abstract- We propose an image file format that can be read in 
two ways, where two images are recorded in a single file as a 
bit sequence, and the forward reading the bit sequence makes 
one of the two images visible, or the backward reading makes 
another image visible. Such a way of looking at a binary data 
in two ways resembles that of an ambigram, which is a piece 
of calligraphy that can be read in two ways by rotating it or 
introducing other perspectives. The proposed ambigramic 
image file format is compared with the graphics interchange 
format (GIF) experimentally, and the results show the better 
quality of the ambigramic images than that of GIF images.

{k-inoue, hara}@design.kyushu-u.ac.jp

Let us consider a typical case that aij and bij are 
24-bit RGB color vectors as aij = [𝑟𝑟𝑖𝑖𝑖𝑖𝐴𝐴 , 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴 , 𝑏𝑏𝑖𝑖𝑖𝑖𝐴𝐴 ] and bij

=[𝑟𝑟𝑖𝑖𝑖𝑖𝐵𝐵 , 𝑔𝑔𝑖𝑖𝑖𝑖𝐵𝐵 , 𝑏𝑏𝑖𝑖𝑖𝑖𝐵𝐵 ], each element of which is represented by 
8 bits. Here, we introduce a binary representation of 𝑟𝑟𝑖𝑖𝑖𝑖𝐴𝐴

as ( 𝑟𝑟𝑖𝑖𝑖𝑖1
𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖2

𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖3
𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖4

𝐴𝐴 | 𝑟𝑟𝑖𝑖𝑖𝑖5
𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖6

𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖7
𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖8

𝐴𝐴 )2, where the third 
subscript in each element ranging from 1 to 8 indicates 
the significance of each digit, i.e., 𝑟𝑟𝑖𝑖𝑖𝑖1

𝐴𝐴 denotes the most 
significant bit (MSB), and 𝑟𝑟𝑖𝑖𝑖𝑖8

𝐴𝐴 denotes the least 
significant bit (LSB) in this binary representation. Other 
elements in aij and bij are also represented in binary in 
the same manner as 𝑟𝑟𝑖𝑖𝑖𝑖𝐴𝐴 . Moreover, we abbreviate a 
series of four bits 𝑟𝑟𝑖𝑖𝑖𝑖1

𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖2
𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖3

𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖4
𝐴𝐴 to 𝑟𝑟𝑖𝑖𝑖𝑖1:4

𝐴𝐴 for the sake of 
simplicity.



    
 
 
 
 
 
 

where the horizontally adjacent pixels are separated by 
semicolons.

 
Next, we reverse the order of the bit 

sequence in (2)
 
as follows:

 
 
 
 

where note that the third subscripts (1:4) is also 
reversed as

 
(4:1), e.g., 𝑟𝑟1,1,4:1

𝐵𝐵
 
denotes

 

𝑟𝑟1,1,4
𝐵𝐵

 
𝑟𝑟1,1,3
𝐵𝐵

 
𝑟𝑟1,1,2
𝐵𝐵

 
𝑟𝑟1,1,1
𝐵𝐵 . Then we

 
combine (1) and (3) as 

follows:
 

 
 
 
 
 

 
 
 

 
 

 
  

 
 

The proposed error diffusion algorithm is 
described as follows.

 

For one image A, all pixels are 
processed in a standard

 

raster scan order, and at the 
same time, for another image B,

 

all pixels are processed 
in the inverse raster

 

scan order. For the

 

first pixel in 
image A, the original color vector a1,1

 

changes

 

to

 
 
 
 
 
 

 
 

 
 

 
 
 

Where k and l denote relative indices to access the 
neighboring pixels, and wk,l denotes error diffusion 
coefficients or error filter [5]. On the other hand, for the 
last pixel in image B, the original color vector bm,n 
changes to 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Subtracting b̃m,n from bm,n, we define an error vector by 
 
 

which is diffused to unprocessed neighboring pixels as 
 
 

where note that the sign of the relative indices k and l is 
reversed except in wk,l because of the inverse raster 
scan. 

After the above error diffusion procedures in (7) 
and (10), we proceed to the next pixels a1,2 and bm,n−1, 
and the error diffusion procedures are repeated until the 
end of the scan. 

 
 

rA1,1,1:4, g
A
1,1,1:4, b

A
1,1,1:4; rA1,2,1:4, g

A
1,2,1:4, b

A
1,2,1:4; · · ·

· · · ; rAm,n,1:4, g
A
m,n,1:4, b

A
m,n,1:4 (1)

rB1,1,1:4, g
B
1,1,1:4, b

B
1,1,1:4; rB1,2,1:4, g

B
1,2,1:4, b

B
1,2,1:4; · · ·

· · · ; rBm,n,1:4, g
B
m,n,1:4, b

B
m,n,1:4 (2)

bBm,n,4:1, g
B
m,n,4:1, r

B
m,n,4:1; · · ·

· · · ; bB1,2,4:1, g
B
1,2,4:1, r

B
1,2,4:1; bB1,1,4:1, g

B
1,1,4:1, r

B
1,1,4:1 (3)

(rA1,1,1:4|bBm,n,4:1)2,(g
A
1,1,1:4|gBm,n,4:1)2, (b

A
1,1,1:4|rBm,n,4:1)2;

· · · ;

(rAm,n,1:4|bB1,1,4:1)2,(g
A
m,n,1:4|gB1,1,4:1)2, (b

A
m,n,1:4|rB1,1,4:1)2

(4)

ã1,1 =

(rA1,1,1:4|bBm,n,4:1)2
(gA1,1,1:4|gBm,n,4:1)2
(bA1,1,1:4|rBm,n,4:1)2

 . (5)

eA1,1 = a1,1 − ã1,1, (6)

a1+k,1+l a1+k,1+l + wk,le
A
1,1, (7)

b̃m,n =

(rBm,n,1:4|bA1,1,4:1)2
(gBm,n,1:4|gA1,1,4:1)2
(bBm,n,1:4|rA1,1,4:1)2

 . (8)

Algorithm 1 Constructing ambigramic bit sequence

1: procedure AMBIGRAMIC(A,B)
2: Ã zeros like(A) where A = [aij ]

3: B̃ zeros like(B) where B = [bij ]
4: m,n, A.shape
5: for i 1 to m do
6: iR m + 1− i
7: for j 1 to n do
8: jR n + 1− j
9: Round the elements of aij and biR,jR to 8-bit

integers

10: ãij

(rAi,j,1:4|bBiR,jR,4:1)2
(gAi,j,1:4|gBiR,jR,4:1)2
(bAi,j,1:4|rBiR,jR,4:1)2


11: b̃iR,jR

(rBiR,jR,1:4|bAi,j,4:1)2
(gBiR,jR,1:4|gAi,j,4:1)2
(bBiR,jR,1:4|rAi,j,4:1)2


12: eAij aij − ãij

13: eBiR,jR
biR,jR − b̃iR,jR

14: for (k, l) ∈ KLij do
15: ai+k,j+l ai+k,j+l + wk,le

A
i,j

16: biR−k,jR−l biR−k,jR−l + wk,le
B
iR,jR

17: end for
18: end for
19: end for
20: return Ã = [ãij ] and/or B̃ = [b̃i,j ]
21: end procedure

eBm,n = bm,n − b̃m,n, (9)

bm−k,n−l bm−k,n−l + wk,le
B
m,n, (10)
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Our basic principle is to preserve more 
significant bits of the original image data in the resultant 
ambigramic image file. Following this principle, we first 
extract four MSBs from both A and B as follows:

which can be viewed as an ambigramic bit sequence, 
because if we read the bit sequence in (4) from left to 
right then the four MSBs in every pixel show the image 
A, on the other hand, if we read it from right to left then 
the four LSBs in every pixel are inversely read to show 
the image B. However, the resultant images can be 
corrupted by the replacement of the original four LSBs 
with others. To alleviate such a quality deterioration in 
the images, we next propose an error diffusion algorithm 
for generating better bit sequence, which improves the 
visual quality of the images.

Subtracting ã1,1 from a1,1, we define an error vector by

which is diffused to unprocessed neighboring pixels as

←

←

←
←

←
←

←

←

←
←

←
←
←

←
←

The proposed error diffusion procedure is 
summarized in Algorithm 1, where the function 
‘zeros_like’ returns an array of zeros being the same 



 
   

           
  

III. Experimental Results 

In this section, we demonstrate the 
performance of the proposed method for formatting 
image data into an ambigramic data structure. 

First, we show an example of the proposed 
ambigramic image data with two images selected from 
the standard image database SIDBA [6]. Figures 3(a) 
and (b) show the two standard images from SIDBA. 
Assume that Figs. 3(a) and (b) are images A and B, 
respectively. Then Algorithm 1 returns the 

corresponding ambigramic images Ã = [ãij] and B = [b̃ij] 
as shown in Figs. 3(c) and (d), which can be saved as 
an ambigramic bit sequence, the forward reading of 
which shows Fig. 3(c), and the backford reading shows 
Fig. 3(d). For example, the RGB values at the top left 
pixel of Fig. 3(c) and at the bottom right pixel of Fig. 3(d) 
are shown in Fig. 4, where the top left and the bottom 
right pixels ã11 and mn have the RGB values (232; 130; 
116) and (46; 65; 23), which are also expressed as 
binary numbers. If we reverse the order of the bit 
sequences of RGB values in ãij, then we have the bit 

sequences of BGR values in b̃mn, and vice versa. 

     

(a) Image A                       (b) Image B 

     

(c)  by Alg. 1              (d)  by Alg. 1 

Figure 3: Original images (a) and (b) converted into 
ambigramic data (c) and (d) 

 
Figure 4: Comparison of pixel values 

Figures 5(a) and (b) show two original images 
each of which has 640     480 pixels, and the following 
figures show the format-converted images from the 
original ones (a) and (b). Figures 5(c) and (d) show the 
graphics interchange format (GIF) images, and the GIF 
format is widely used on the Web due to its wide 
support and portability [4]. Figures 5 (e) and (f) show 
the results of the proposed ambigramic method without 
error diffusion (ED), where a daruma (dharma) doll and 
a beckoning cat can be seen as well as the above GIF 
images. Figures 5(g) and (h) show the results with ED 
(Algorithm 1), where we used Floyd and Steinberg’s 
error filter [7] for wk,l in (7) and (10) as shown in Fig. 6 
where “#” denotes the current pixel being processed, 
and “-” denotes the past pixel, and the visual quality is 
improved compared with the former results (e) and (f). 

  

(a) Image A            (b) Image B 

  

(c) GIF image A (d) GIF image B 

B̃Ã

×
˜

b̃
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size as the argument array, A.shape is a property to get 
the array dimensions of A, and KLij denotes a set of the 
pair of the relative indices k and l satisfying 1 ≤ i + k ≤ m
and 1 ≤ j + l ≤ n.



  

(e) Ã without ED (f) B̃ without ED 

  

(g) Ã by Alg. 1 (h) B̃ by Alg. 1 

Figure 5: Examples of file format conversion 

The GIF images are palette-based ones each of 
which has a palette table of 256 colors. That is, the GIF 
images are a sort of halftone images [5] as well as the 
proposed ambigramic images. To evaluate the quality of 
those images objectively and quantitatively, we present 
a parameter-free measure based on integral image [8]. 

- # w0,1 = 7
16

 

w1,−1 = 3
16

 w1,0 = 5
16

 w1,1 = 1
16

 

Figure 6: Error diffusion coefficients by Floyd-Steinberg 

First, we compute the integral images of both 
reference (original) R and test (format-converted) T 
images, which are denoted as  = [  ] and  =[ ], 
respectively. Then we compute the signal-to-noise ratio 
(SNR) [9] of the integral images  and   as follows: 

 
 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

  
 

 
 

 

 
 

  

  

           
      
      

        
        
         

         

  

 
 

 
 

 

  
 

 
 

 
 

 

 
 

   

    

 
 

  
 

ISNR(R, T ) = SNR
(
R̄, T̄

)
(11)

= 10 log10

m∑
i=1

n∑
j=1

r̄2ij

m∑
i=1

n∑
j=1

(r̄ij − t̄ij)
2

. (12)

format for both images, which demonstrates the 
effectiveness of the proposed algorithm.

Figure 7: Integral image-based SNR (ISNR)

Additionally, we examine the applicability of the 
proposed algorithm to natural images shown in Fig. 8, 
where Fig. 8(a) shows five pairs of natural images where 
the top row shows the first images A, and the second 
row shows the corresponding second ones B. Figures 
8(b), (c) and (d) show the corresponding format-
converted images by GIF, the proposed ambigramic
method without ED and Algorithm 1. Although, in Fig. 
8(c), we can see false contours, they are removed in
Fig. 8(d).

The ISNR values for those images in Fig. 8 are 
summarized in Table 1, where the proposed Algorithm 1 
achieves higher values than the GIF images and 
ambigramic images without ED.

Table 1: ISNR values (dB)

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5

GIF image A 49.97 49.39 46.80 48.41 50.13

GIF image B 46.51 50.96 46.26 48.82 47.08

A˜ without ED 38.05 46.97 33.59 47.34 45.28

B˜ without ED 34.87 45.56 35.46 50.90 40.00

A˜ by Alg. 1 73.93 60.81 82.48 95.21 75.76

B˜ by Alg. 1 63.61 88.92 53.09 94.37 85.13

IV. Conclusions

In this paper, we proposed an algorithm for 
formatting an ambigramic image file into which two 
images of the same size are recorded. If we read it 
forward direction, then we see the first image, on the 
other hand, if we read it backward direction, then we see 
the second one. We compared the proposed
ambigramic image file format with the GIF format which 
has acquired a widespread use on the Web, and 
demonstrated that the proposed ambigramic images 
achieved higher quality than the GIF images based on 
an image quality measure. Experimental results showed 
that the proposed algorithm is also applicable to natural 
images.

R̄

R̄

T̄

T̄

r̄ij t̄ij
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We call this measure the integral image-based SNR 
(ISNR).

For the format-converted images in Fig. 5, their 
ISNRs are plotted in Fig. 7, where the vertical and 
horizontal axes denote the ISNR value and image name, 
respectively, and green, yellow and orange bars denote 
the file formats, GIF, ambigramic format without ED and 
the final ambigramic format by Algorithm 1, respectively. 
Algorithm 1 achieves higher ISNR values than GIF 
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(a) Original images 

 

(b) GIF images 

 

(c) Ambigramic images without ED 

 

(d) Ambigramic images by Algorithm 1 

Figure 8: Examples with natural images 
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