
© 2021. Wenyi Cui, Kohei Inoue & Kenji Hara. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Volume 21 Issue 1 Version 1.0 Year 2021
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals

An Ambigramic Image File Format

By Wenyi Cui, Kohei Inoue & Kenji Hara
 Kyushu University

AnAmbigramicImageFileFormat

 Strictly as per the compliance and regulations of:

Graphics & Vision
Global Journal of Computer Science and Technology: F

Abstract- We propose an image file format that can be read in two ways, where two images are
recorded in a single file as a bit sequence, and the forward reading the bit sequence makes one
of the two images visible, or the backward reading makes another image visible. Such a way of
looking at a binary data in two ways resembles that of an ambigram, which is a piece of
calligraphy that can be read in two ways by rotating it or introducing other perspectives. The
proposed ambigramic image file format is compared with the graphics interchange format (GIF)
experimentally, and the results show the better quality of the ambigramic images than that of GIF
images.

Keywords: ambigram, image file format, error diffusion, integral image-based signal-to-noise ratio
(ISNR).

GJCST-F Classification: I.3.3

Online ISSN: 0975-4172 & Print ISSN: 0975-4350

An Ambigramic Image File Format
Wenyi Cui α, Kohei Inoue σ & Kenji Hara ρ

Keywords: ambigram, image file format, error diffusion,
integral image-based signal-to-noise ratio (ISNR).

I. Introduction

mbigram is a typographical design that can be
read in multiple orientations as shown in Fig. 1,
where a word ‘ambigram’ is written in a

rotationally symmetric manner. There are other types of
ambigrams such as mirror, perceptual shift and 3D
ambigrams [1]. Langdon [2], [3] has made a lot of
interesting ambigrams for a long time. Those
ambigramic artworks give pleasure to the viewers, and
provide great inspiration for artists and engineers.

Figure 1: Example of ambigram

Inspired by such successful ambigrams, in this
paper we suggest an application of the idea of
ambigram to an ambigramic interpretation of a bit
sequence. In other words, we propose a method for
describing two images with a bit sequence, which is a
digital ambigram that can be seen as one of the two
images if the bit sequence is read forward direction, or
as another image if the bit sequence is read backward
direction. The proposed ambigramic images are
compared with the graphics interchange format (GIF)
images [4], and the effectiveness of the proposed
method is demonstrated in the experiments using
natural images, where an image quality measure is used

Author α σ ρ: Department of Communication Design Science, Kyushu
University, 4-9-1, Shiobaru, Minami-ku, Fukuoka, 815-8540 Japan.
e-mails: cuiwenyi1996@outlook.com,

for evaluating the quality of halftone images including
palette-based images such as GIF images.

The rest of this paper is organized as follows:
Section 2 describes the proposed algorithm for
generating ambigramic bit sequences. Section 3 shows
experimental results. Finally, Section 4 concludes this
paper.

II. Proposed Ambigramic Image Data
Structure

In this section, we propose a method for
formatting image data into an ambigramic data
structure, which is recorded in a binary file. Assume that
two images are given as an input data as A = [aij] and B
= [bij], where aij and bij denote color vectors at the pixel
position (i; j) in the images A and B, respectively, for i =
1; 2; : : : ;m and j = 1; 2; : : : ; n, i.e., A and B are the
same size. Then we attempt to store A and B in a
storage as a single file. Figure 2 illustrates the situation,
where A and B are represented by a bit sequence, and
stored in some place of a storage. If we read the bit
sequence from left to right, then we see the image A. On
the other hand, if we read it from right to left, then we
see the image B. The procedure for constructing such a
bit sequence from A and B is described as follows.

Figure 2: Illustration of an ambigramic bit sequence

A

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
I
V
er
sio

n
I

1

 (

)
F

Y
e
a
r

20
21

Abstract- We propose an image file format that can be read in
two ways, where two images are recorded in a single file as a
bit sequence, and the forward reading the bit sequence makes
one of the two images visible, or the backward reading makes
another image visible. Such a way of looking at a binary data
in two ways resembles that of an ambigram, which is a piece
of calligraphy that can be read in two ways by rotating it or
introducing other perspectives. The proposed ambigramic
image file format is compared with the graphics interchange
format (GIF) experimentally, and the results show the better
quality of the ambigramic images than that of GIF images.

{k-inoue, hara}@design.kyushu-u.ac.jp

Let us consider a typical case that aij and bij are
24-bit RGB color vectors as aij = [𝑟𝑟𝑖𝑖𝑖𝑖𝐴𝐴 , 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴 , 𝑏𝑏𝑖𝑖𝑖𝑖𝐴𝐴] and bij

=[𝑟𝑟𝑖𝑖𝑖𝑖𝐵𝐵 , 𝑔𝑔𝑖𝑖𝑖𝑖𝐵𝐵 , 𝑏𝑏𝑖𝑖𝑖𝑖𝐵𝐵], each element of which is represented by
8 bits. Here, we introduce a binary representation of 𝑟𝑟𝑖𝑖𝑖𝑖𝐴𝐴

as (𝑟𝑟𝑖𝑖𝑖𝑖1
𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖2

𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖3
𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖4

𝐴𝐴 | 𝑟𝑟𝑖𝑖𝑖𝑖5
𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖6

𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖7
𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖8

𝐴𝐴)2, where the third
subscript in each element ranging from 1 to 8 indicates
the significance of each digit, i.e., 𝑟𝑟𝑖𝑖𝑖𝑖1

𝐴𝐴 denotes the most
significant bit (MSB), and 𝑟𝑟𝑖𝑖𝑖𝑖8

𝐴𝐴 denotes the least
significant bit (LSB) in this binary representation. Other
elements in aij and bij are also represented in binary in
the same manner as 𝑟𝑟𝑖𝑖𝑖𝑖𝐴𝐴 . Moreover, we abbreviate a
series of four bits 𝑟𝑟𝑖𝑖𝑖𝑖1

𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖2
𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖3

𝐴𝐴 𝑟𝑟𝑖𝑖𝑖𝑖4
𝐴𝐴 to 𝑟𝑟𝑖𝑖𝑖𝑖1:4

𝐴𝐴 for the sake of
simplicity.

where the horizontally adjacent pixels are separated by
semicolons.

Next, we reverse the order of the bit

sequence in (2)

as follows:

where note that the third subscripts (1:4) is also
reversed as

(4:1), e.g., 𝑟𝑟1,1,4:1

𝐵𝐵

denotes

𝑟𝑟1,1,4
𝐵𝐵

𝑟𝑟1,1,3
𝐵𝐵

𝑟𝑟1,1,2
𝐵𝐵

𝑟𝑟1,1,1
𝐵𝐵 . Then we

combine (1) and (3) as

follows:

The proposed error diffusion algorithm is
described as follows.

For one image A, all pixels are
processed in a standard

raster scan order, and at the
same time, for another image B,

all pixels are processed
in the inverse raster

scan order. For the

first pixel in
image A, the original color vector a1,1

changes

to

Where k and l denote relative indices to access the
neighboring pixels, and wk,l denotes error diffusion
coefficients or error filter [5]. On the other hand, for the
last pixel in image B, the original color vector bm,n
changes to

Subtracting b̃m,n from bm,n, we define an error vector by

which is diffused to unprocessed neighboring pixels as

where note that the sign of the relative indices k and l is
reversed except in wk,l because of the inverse raster
scan.

After the above error diffusion procedures in (7)
and (10), we proceed to the next pixels a1,2 and bm,n−1,
and the error diffusion procedures are repeated until the
end of the scan.

rA1,1,1:4, g
A
1,1,1:4, b

A
1,1,1:4; rA1,2,1:4, g

A
1,2,1:4, b

A
1,2,1:4; · · ·

· · · ; rAm,n,1:4, g
A
m,n,1:4, b

A
m,n,1:4 (1)

rB1,1,1:4, g
B
1,1,1:4, b

B
1,1,1:4; rB1,2,1:4, g

B
1,2,1:4, b

B
1,2,1:4; · · ·

· · · ; rBm,n,1:4, g
B
m,n,1:4, b

B
m,n,1:4 (2)

bBm,n,4:1, g
B
m,n,4:1, r

B
m,n,4:1; · · ·

· · · ; bB1,2,4:1, g
B
1,2,4:1, r

B
1,2,4:1; bB1,1,4:1, g

B
1,1,4:1, r

B
1,1,4:1 (3)

(rA1,1,1:4|bBm,n,4:1)2,(g
A
1,1,1:4|gBm,n,4:1)2, (b

A
1,1,1:4|rBm,n,4:1)2;

· · · ;

(rAm,n,1:4|bB1,1,4:1)2,(g
A
m,n,1:4|gB1,1,4:1)2, (b

A
m,n,1:4|rB1,1,4:1)2

(4)

ã1,1 =

(rA1,1,1:4|bBm,n,4:1)2
(gA1,1,1:4|gBm,n,4:1)2
(bA1,1,1:4|rBm,n,4:1)2

 . (5)

eA1,1 = a1,1 − ã1,1, (6)

a1+k,1+l a1+k,1+l + wk,le
A
1,1, (7)

b̃m,n =

(rBm,n,1:4|bA1,1,4:1)2
(gBm,n,1:4|gA1,1,4:1)2
(bBm,n,1:4|rA1,1,4:1)2

 . (8)

Algorithm 1 Constructing ambigramic bit sequence

1: procedure AMBIGRAMIC(A,B)
2: Ã zeros like(A) where A = [aij]

3: B̃ zeros like(B) where B = [bij]
4: m,n, A.shape
5: for i 1 to m do
6: iR m + 1− i
7: for j 1 to n do
8: jR n + 1− j
9: Round the elements of aij and biR,jR to 8-bit

integers

10: ãij

(rAi,j,1:4|bBiR,jR,4:1)2
(gAi,j,1:4|gBiR,jR,4:1)2
(bAi,j,1:4|rBiR,jR,4:1)2

11: b̃iR,jR

(rBiR,jR,1:4|bAi,j,4:1)2
(gBiR,jR,1:4|gAi,j,4:1)2
(bBiR,jR,1:4|rAi,j,4:1)2

12: eAij aij − ãij

13: eBiR,jR
biR,jR − b̃iR,jR

14: for (k, l) ∈ KLij do
15: ai+k,j+l ai+k,j+l + wk,le

A
i,j

16: biR−k,jR−l biR−k,jR−l + wk,le
B
iR,jR

17: end for
18: end for
19: end for
20: return Ã = [ãij] and/or B̃ = [b̃i,j]
21: end procedure

eBm,n = bm,n − b̃m,n, (9)

bm−k,n−l bm−k,n−l + wk,le
B
m,n, (10)

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
I
V
er
sio

n
I

2

 (

)
Y
e
a
r

20
21

An Ambigramic Image File Format
F

Our basic principle is to preserve more
significant bits of the original image data in the resultant
ambigramic image file. Following this principle, we first
extract four MSBs from both A and B as follows:

which can be viewed as an ambigramic bit sequence,
because if we read the bit sequence in (4) from left to
right then the four MSBs in every pixel show the image
A, on the other hand, if we read it from right to left then
the four LSBs in every pixel are inversely read to show
the image B. However, the resultant images can be
corrupted by the replacement of the original four LSBs
with others. To alleviate such a quality deterioration in
the images, we next propose an error diffusion algorithm
for generating better bit sequence, which improves the
visual quality of the images.

Subtracting ã1,1 from a1,1, we define an error vector by

which is diffused to unprocessed neighboring pixels as

←

←

←
←

←
←

←

←

←
←

←
←
←

←
←

The proposed error diffusion procedure is
summarized in Algorithm 1, where the function
‘zeros_like’ returns an array of zeros being the same

III. Experimental Results

In this section, we demonstrate the
performance of the proposed method for formatting
image data into an ambigramic data structure.

First, we show an example of the proposed
ambigramic image data with two images selected from
the standard image database SIDBA [6]. Figures 3(a)
and (b) show the two standard images from SIDBA.
Assume that Figs. 3(a) and (b) are images A and B,
respectively. Then Algorithm 1 returns the

corresponding ambigramic images Ã = [ãij] and B = [b̃ij]
as shown in Figs. 3(c) and (d), which can be saved as
an ambigramic bit sequence, the forward reading of
which shows Fig. 3(c), and the backford reading shows
Fig. 3(d). For example, the RGB values at the top left
pixel of Fig. 3(c) and at the bottom right pixel of Fig. 3(d)
are shown in Fig. 4, where the top left and the bottom
right pixels ã11 and mn have the RGB values (232; 130;
116) and (46; 65; 23), which are also expressed as
binary numbers. If we reverse the order of the bit
sequences of RGB values in ãij, then we have the bit

sequences of BGR values in b̃mn, and vice versa.

(a) Image A (b) Image B

(c) by Alg. 1 (d) by Alg. 1

Figure 3: Original images (a) and (b) converted into
ambigramic data (c) and (d)

Figure 4: Comparison of pixel values

Figures 5(a) and (b) show two original images
each of which has 640 480 pixels, and the following
figures show the format-converted images from the
original ones (a) and (b). Figures 5(c) and (d) show the
graphics interchange format (GIF) images, and the GIF
format is widely used on the Web due to its wide
support and portability [4]. Figures 5 (e) and (f) show
the results of the proposed ambigramic method without
error diffusion (ED), where a daruma (dharma) doll and
a beckoning cat can be seen as well as the above GIF
images. Figures 5(g) and (h) show the results with ED
(Algorithm 1), where we used Floyd and Steinberg’s
error filter [7] for wk,l in (7) and (10) as shown in Fig. 6
where “#” denotes the current pixel being processed,
and “-” denotes the past pixel, and the visual quality is
improved compared with the former results (e) and (f).

(a) Image A (b) Image B

(c) GIF image A (d) GIF image B

B̃Ã

×
˜

b̃

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
I
V
er
sio

n
I

3

 (

)
Y
e
a
r

20
21

An Ambigramic Image File Format

F

size as the argument array, A.shape is a property to get
the array dimensions of A, and KLij denotes a set of the
pair of the relative indices k and l satisfying 1 ≤ i + k ≤ m
and 1 ≤ j + l ≤ n.

(e) Ã without ED (f) B̃ without ED

(g) Ã by Alg. 1 (h) B̃ by Alg. 1

Figure 5: Examples of file format conversion

The GIF images are palette-based ones each of
which has a palette table of 256 colors. That is, the GIF
images are a sort of halftone images [5] as well as the
proposed ambigramic images. To evaluate the quality of
those images objectively and quantitatively, we present
a parameter-free measure based on integral image [8].

- # w0,1 = 7
16

w1,−1 = 3
16

 w1,0 = 5
16

 w1,1 = 1
16

Figure 6: Error diffusion coefficients by Floyd-Steinberg

First, we compute the integral images of both
reference (original) R and test (format-converted) T
images, which are denoted as = [] and =[],
respectively. Then we compute the signal-to-noise ratio
(SNR) [9] of the integral images and as follows:

ISNR(R, T) = SNR
(
R̄, T̄

)
(11)

= 10 log10

m∑
i=1

n∑
j=1

r̄2ij

m∑
i=1

n∑
j=1

(r̄ij − t̄ij)
2

. (12)

format for both images, which demonstrates the
effectiveness of the proposed algorithm.

Figure 7: Integral image-based SNR (ISNR)

Additionally, we examine the applicability of the
proposed algorithm to natural images shown in Fig. 8,
where Fig. 8(a) shows five pairs of natural images where
the top row shows the first images A, and the second
row shows the corresponding second ones B. Figures
8(b), (c) and (d) show the corresponding format-
converted images by GIF, the proposed ambigramic
method without ED and Algorithm 1. Although, in Fig.
8(c), we can see false contours, they are removed in
Fig. 8(d).

The ISNR values for those images in Fig. 8 are
summarized in Table 1, where the proposed Algorithm 1
achieves higher values than the GIF images and
ambigramic images without ED.

Table 1: ISNR values (dB)

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5

GIF image A 49.97 49.39 46.80 48.41 50.13

GIF image B 46.51 50.96 46.26 48.82 47.08

A˜ without ED 38.05 46.97 33.59 47.34 45.28

B˜ without ED 34.87 45.56 35.46 50.90 40.00

A˜ by Alg. 1 73.93 60.81 82.48 95.21 75.76

B˜ by Alg. 1 63.61 88.92 53.09 94.37 85.13

IV. Conclusions

In this paper, we proposed an algorithm for
formatting an ambigramic image file into which two
images of the same size are recorded. If we read it
forward direction, then we see the first image, on the
other hand, if we read it backward direction, then we see
the second one. We compared the proposed
ambigramic image file format with the GIF format which
has acquired a widespread use on the Web, and
demonstrated that the proposed ambigramic images
achieved higher quality than the GIF images based on
an image quality measure. Experimental results showed
that the proposed algorithm is also applicable to natural
images.

R̄

R̄

T̄

T̄

r̄ij t̄ij

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
I
V
er
sio

n
I

4

 (

)
Y
e
a
r

20
21

An Ambigramic Image File Format
F

We call this measure the integral image-based SNR
(ISNR).

For the format-converted images in Fig. 5, their
ISNRs are plotted in Fig. 7, where the vertical and
horizontal axes denote the ISNR value and image name,
respectively, and green, yellow and orange bars denote
the file formats, GIF, ambigramic format without ED and
the final ambigramic format by Algorithm 1, respectively.
Algorithm 1 achieves higher ISNR values than GIF

Acknowledgments

This work was supported by JSPS KAKENHI
Grant Number JP16H03019.

References références referencias

1. Wikipedia, “Ambigram — Wikipedia, the free ency-
clopedia,” https://en.wikipedia.org/wiki/ Ambigram,
2020, [Online; accessed 06-March-2020].

2. John Langdon, “Ambigrams, logos, & word art.,”
http://www.johnlangdon.net/, 1996, [Online; ac-
cessed 07-February-2019].

3. J. Langdon, Wordplay: The Philosophy, Art, and
Science of Ambigrams, Bantam, 2005.

4. Wikipedia, “GIF — Wikipedia, the free
encyclopedia,” https://en.wikipedia.org/wiki/GIF,
2020, [Online; accessed 06-March-2020].

5. Daniel L. Lau and Gonzalo R. Arce, Modern Digital
Halftoning, Second Edition, CRC Press, Inc., Boca
Ra- ton, FL, USA, 2007.

6. M. Sakauchi, Y. Ohsawa, M. Sone, and M. Onoe,
“Man- agement of the standard image database for
image pro- cessing researches (sidba),” ITEJ
Technical Report, vol. 8, no. 38, pp. 7–12, 1984.

7. Robert W. Floyd and Louis Steinberg, “An Adaptive
Al- gorithm for Spatial Greyscale,” Proceedings of
the So- ciety for Information Display, vol. 17, no. 2,
pp. 75–77, 1976.

8. Paul Viola and Michael Jones, “Robust real-time
object detection,” International Journal of Computer
Vision, vol. 57, no. 2, pp. 137–154, 2002.

9. Wikipedia, “Signal-to-noise ratio — Wikipedia, the
free encyclopedia,” https://en.wikipedia.org/wiki/
Signal-to-noise_ratio, 2020, [Online; accessed 06-
March-2020].

(a) Original images

(b) GIF images

(c) Ambigramic images without ED

(d) Ambigramic images by Algorithm 1

Figure 8: Examples with natural images

© 2021 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
I
Is
su

e
I
V
er
sio

n
I

5

 (

)
Y
e
a
r

20
21

An Ambigramic Image File Format

F

	An Ambigramic Image File Format
	Author
	Keywords
	I. Introduction
	II. Proposed Ambigramic Image DataStructure
	III. Experimental Results
	IV. Conclusions
	Acknowledgments
	References références referencias

