
© 2021. Zulfia A. Chotchaeva. This research/review article is distributed under the terms of the Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts 
of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-
nd/4.0/. 

Global Journal of Computer Science and Technology: G 
Interdisciplinary  
Volume 21 Issue 3 Version 1.0 Year 2021 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals  
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 

P vs NP: P is Equal to NP: Desired Proof 
 By Zulfia A. Chotchaeva 

 Moscow State University                                                                                    
Abstract- Computations and computational complexity are fundamental for mathematics and all computer 
science, including web load time, cryptography (cryptocurrency mining), cybersecurity, artificial 
intelligence, game theory, multimedia processing, computational physics, biology (for instance, in protein 
structure prediction), chemistry, and the P vs. NP problem that has been singled out as one of the most 
challenging open problems in computer science and has great importance as this would essentially solve 
all the algorithmic problems that we have today if the problem is solved, but the existing complexity is 
deprecated and does not solve complex computations of tasks that appear in the new digital age as 
efficiently as it needs. Therefore, we need to realize a new complexity to solve these tasks more rapidly 
and easily. This paper presents proof of the equality of P and NP complexity classes when the NP 
problem is not harder to compute than to verify in polynomial time if we forget recursion that takes 
exponential running time and goes to regress only (every problem in NP can be solved in exponential 
time, and so it is recursive, this is a key concept that exists, but recursion does not solve the NP problems 
efficiently). The paper’s goal is to prove the existence of an algorithm solving the NP task in polynomial 
running time. We get the desired reduction of the exponential problem to the polynomial problem that 
takes O(log n) complexity.  
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Abstract-

I. Introduction

Computations and computational complexity are 
fundamental for mathematics and all computer science, 
including web load time, cryptography (cryptocurrency 
mining), cybersecurity, artificial intelligence, game theory, 
multimedia processing, computational physics, biology (for 
instance, in protein structure prediction), chemistry, and the P 
vs. NP problem that has been singled out as one of the most 
challenging open problems in computer science and has 
great importance as this would essentially solve all the 
algorithmic problems that we have today if the problem is 
solved, but the existing complexity is deprecated and does not 
solve complex computations of tasks that appear in the new 
digital age as efficiently as it needs. Therefore, we need to 
realize a new complexity to solve these tasks more rapidly and 
easily. This paper presents proof of the equality of P and NP 
complexity classes when the NP problem is not harder to 
compute than to verify in polynomial time if we forget recursion 
that takes exponential running time and goes to regress only 
(every problem in NP can be solved in exponential time, and 
so it is recursive, this is a key concept that exists, but recursion 
does not solve the NP problems efficiently). The paper’s goal 
is to prove the existence of an algorithm solving the NP task in 
polynomial running time. We get the desired reduction of the 
exponential problem to the polynomial problem that takes 
O(log n) complexity.
Keywords: P vs. NP, P=NP, computational complexity, 
NP-complete problems, exponential running time.

Another mention of the underlying problem 
occurred in a … letter written by Kurt Gödel to John von 
Neumann. Gödel asked whether theorem-proving (now 
known to be co-NP-complete) could be solved in 
quadratic or linear time, and pointed out one of the most 
important consequences – that if so, then the discovery 
of mathematical proofs could be automated (Wikipedia, 
2021).

he P vs. NP problem remains one of the most 
important problems in computational complexity. 
Until now, the answer to that problem is mainly 

“no”. And this is accepted by the majority of the 
scientific world. What is the P versus NP problem, and 
why should we care? The question is represented as 
P=?NP. P-class problems take polynomial time to solve

T

a problem (less time), NP-class problems take “non-
deterministic” polynomial time to quickly check a 
problem (more time), therefore, P problems are easier to 
solve while NP problems are harder. NP-complete 
problems are the hardest and take more time than P-
class problems. If P=NP, we could find solutions to 
search problems as easily as checking since a solution 
for any NP-class problem can be recast into a solution 
for any other problem of this class. Thus, finding the 
efficient algorithm would prove that P=NP and 
revolutionize (completely turn) many fields in 
mathematics and computer science. “The development 
of mathematics in the direction of greater exactness has 
– as well known – led to large tracts of it becoming 
formalized so that proofs can be carried out according 
to the few mechanical rules (Gȍdel, 1931).” “Perhaps in 
most cases where we seek in vain the answer to the 
question, the cause of the failure, lies in the fact that 
problems are simpler and easier than the one in hand 
have been either not at all or incompletely solved 
(Hilbert, 2000).” “Do NP-complete languages exist? It 
may not be clear that NP should process a language 
that is as hard as any other language in the class. 
However, this does turn out to be the case (Arora and 
Barak, 2009).” All previous attempts to solve the 
problem did not lead to the desired solution. But we 
declare that the desired solution exists. The paper will 
get easy proof of the equality of complexity classes P 
and NP through (with) the new computational 
complexity that takes polynomial running time and 
completely rearranges these complexity classes (we will 
get an exponential-time reduction to polynomial time 
using a sorted array). The paper intends to prove that 
the use of logarithmic looping of matrices through a 
sequence of matrix loops replaces recursive iterating 
that takes O(2ⁿ) with a completely new and another 
method (approach) that is more efficient and faster than 
existing and takes O(log n) complexity instead of O(2ⁿ) 
when we solve the NP task. (Notice, we will not compare 
this work and its methods (operators) with what has 
been done before, because it is so different from 
everything that already exists that it simply makes it 
impossible, for instance, like the Boolean satisfiability 
problem (SAT), the Cook-Levin theorem, the Curry-
Howard isomorphism, the Davis-Putnam algorithm, the 
Davis-Putnam-Logemann-Loveland procedure, the 
Karp-Lipton theorem, and others that are conversions of 
the listed, that is, have nothing in common what lies at 
the basis of these approaches, except for the fractional 
differentiation, but it does not rely on old, previously 
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II. Literature Review 

a) Background 

 

 
“The precise statement of the P versus NP 

problem was introduced in 1971 by Stephen Cook in his 
seminal paper “The complexity of theorem-proving 
procedures”. …Although the P versus NP problem was 
formally defined in 1971, there were previous inklings of 
the problems involved, the difficulty of proof, and the 
potential consequences…The relation between the 
complexity classes P and NP are studied in 
computational complexity theory, the part of the theory 
of computation dealing with the resources required 
during computation to solve a given problem. The most 
common resources are time (how many steps it takes to 
solve a problem) and space…the class P consists of all 
those decision problems that can be solved on a 
deterministic sequential machine in an amount of time 
that is polynomial in the size of the input; the class NP 
consists of all those decision problems whose positive 
solutions can be verified in polynomial time … on a non-
deterministic machine. …To attack the P=NP question, 
the concept of NP-completeness is very useful. … NP-
complete problems are a set of problems to each of 
which any other NP-problem can be reduced in 
polynomial time and whose solution may still be verified 
in polynomial time. … Based on the definition alone, it is 
not obvious that NP-complete problems exist… The first 
natural problem proven to be NP-complete was the 
Boolean satisfiability problem, also known as SAT… 
However, after this problem was proved to be NP- 
complete, proof by reduction provided a simpler way to 

show that many other problems are also NP-complete, 
including the game Sudoku…a polynomial-time to 
Sudoku leads, by a series of mechanical 
transformations, to a polynomial-time solution of 
satisfiability, which in turn can be used to solve any 
other NP problem in polynomial time… In 1975, R. E. 
Ladner showed that if P≠NP, then there exist problems 
in NP that are neither in P or NP-complete. Such 
problems are called NP-intermediate problems. The 
graph isomorphism problem, the discrete logarithm 
problem, and the integer factorization problem are 
examples of problems believed to be NP- intermediate. 
…P means "easy" and "not in P" means "hard", an 
assumption known as Cobham’s thesis. It is a common 
and reasonably accurate assumption in complexity 
theory; …There are algorithms for many NP-complete 
problems, such as the knapsack problem, the traveling 
salesman problem, Boolean satisfiability problem that 
can solve to optimality many real-world instances in 
reasonable time…Decades of searching have not 
yielded a fast solution to any of these problems, so most 
scientists suspect that none of these problems can be 
solved quickly. This, however, has never been proven 
(Wikipedia, 2021)”. 

III. Methodology 

a) Definition of the Task 
Any NP class problem can be solved by 

exhaustive search of all instances, i.e., by brute force 
search that requires exponential execution time, this is 
unacceptable in practice, therefore, we need to solve 
the NP problems in polynomial time, and if one of these 
NP problems is solved in polynomial time, then the 
others will also be solved in polynomial time. To solve 
the task where the worst-case run-time on an input of 
size n is O(nⁿ) that have the highest growth rate, i.e., is 
greater than exponential and factorial time complexities 
that take O(2ⁿ) and O(!), we need to transform this task 
from infinitely exponential complexity class to polynomial 
complexity class using logarithmic looping of nⁿ if the 
value of nⁿ is explicit, but even then, when this task is 
solved, it will have no practical use as it leads to infinity 
only. Therefore, we need to solve the task of exponential 
time complexity that takes O(2ⁿ) to get the P vs. NP 
problem solution. 

Exponential runtime complexity O(2ⁿ) is often 
seen in recursive functions that make 2 recursive calls 
that mean that growth doubles with each addition to the 
input data set (every problem in NP is recursive, and 
every recursive problem is recursively enumerable). Let 
us take, for example, a set with n elements, where we 
need to find (generate) all subsets of this set (the set 
theory is commonly used as a foundational system for 
the whole of mathematics and has various applications 
in computer science; its implications for the concept of 
infinity and its multiple applications have made set 
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P vs NP: P is Equal to NP: Desired Proof

known algorithms, methods, principles, concepts, or 
models, this light tutorial is completely new and will 
easily refute the unsolvability, or intractability, of the P 
vs. NP problem. More precisely, to change the NP, we 
needed to change the P, i.e., we use a polynomial-time
reduction that is the perfect way to provide (get) the 
reducibility and computability of NP that make the 
problem of NP the problem of P.)

The P versus NP problem is a major unsolved 
problem in computer science. P-complexity is a 
deterministic polynomial, we consider this complexity 
class as O(𝑛𝑛𝑐𝑐), where the base is variable, and the 
exponent of the base is constant; and NP-complexity is 
a nondeterministic polynomial, we consider this 
complexity class as O(cⁿ), where the base is constant, 
and the exponent of the base is variable. The polynomial 
and exponential time complexities are the most 
prominently considered and define the complexity of an 
algorithm. The question is - whether every problem 
whose solution can be quickly verified in polynomial 
running time can be solved quickly in polynomial 
running time too? If NP-complete problems were 
efficiently solvable, it could advance considerably the 
solution of other complex problems.



 

 

We take S={a₀, a₁, a₂}. 

Subsets of a given set: 

0   000  { } the empty subset  

1   001  {a₀} 
2   010  {a₁} 
3   011  {a₀, a₁} 
4   100  {a₂} 
5   101  {a₀, a₂} 
6   110  {a₁, a₂} 
7   111  {a₀, a₁, a₂} 

S= {1, 2, 3, 4, 5}. 

What is the number of all possible and proper 
subsets of a given set with these 5 elements? There are 
2ⁿ subsets and 2ⁿ-1 proper subsets that means that the 
number of all subsets of a set is 2⁵ and the number of 
proper subsets is 2⁵-1. To determine the Big-O runtime 
complexity, we do not need to look at how many 
recursive calls are made (iterating over all possible 
subsets of a set) since we will not deal with Fibonacci 
trees, it will be used only the task of the recursive 
Fibonacci number calculation that is O(2ⁿ), as the 
certain patterns in the recurrence relation lead to 
exponential results too (exponential time grows much 
faster than polynomial time). Therefore, we will get this 
using a new time complexity that works without a return 
(we capture one of the NP tasks in a sequence of matrix 
loops that runs in polynomial time and hack its secret 
arrangement without recursion). You need to read the 
paper at https://doi.org/10.3844/jcssp.2020.1610.1624 
that is published recently and gets O(log n) complexity 
instead of O(n²) before continuing this reading since we 
will use this O(log n) complexity to solve this exponential 
task in polynomial running time (read this paper instead 
of the Methodology section, you can start reading at 

once from the end to clarify faster how it works, more 
exactly, see Lemma 21 and then other lemmas). 

Let’s continue if you have read. We will solve 
this NP problem using the new matrix model of 
computation concept and prove that this is a perfect 
path for its solution. 

  

 
 

 
 

 
 
 
 
 

 

 

 

 
 
 
 
 
and finally, we have 
 
 
 
  where the total a=LE=2⁵= (2∙2)∙(2∙2)∙2=(4∙4)∙2=16∙2=32=a₃.

 
 Remark 1.0.

 
There is a reference map of these matrices 

that is:
 

 
 

 

Loop1,2,3= (
2 2
8 8

) , (2 2
8 8

) , (
2
8

),

        Loop2,3=(
4 4
6 6

) , (
2
8

),

     Loop3,0=(
16 2
84 98

),

(
𝐿 𝐸
𝐼 𝑇

),
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P vs NP: P is Equal to NP: Desired Proof

As a result, we get exponential running time that will 
rising meteorically if we will add n elements to this set. 
And the third way, let us consider a set with 5 elements:

Lemma 1.0. The use of the NP task 2𝑛𝑛
partitioning into 22 particles is a key for this NP task 
solution.

Proof. We need to generate a set of matrices to 
find the number of all subsets of this set with five 
elements that is S=⦃1, 2, 3, 4, 5⦄ (see above), where are 
2⁵ subsets that are equal to 2²∙2²∙2¹. Each of these 2² 
particles gives one complete matrix. The matrices look 
like these matrix loops:

theory a field of major interest; current research into the 
set theory covers a vast array of topics, ranging from the 
real number line structure to the study of the 
consistency; many mathematical concepts can be 
defined precisely using only set theory concepts). There 
are three ways to find the number of subsets of a set S= 

expression of the trend we see would be 
2⁰+2¹+2²+23+2𝑛𝑛−¹=2ⁿ-1 that takes exponential 
running time. The second way is to translate between 
the binary representation of the rank and the subset 
when 1 means the corresponding element is in the 
subset, and 0 means the element is not in the subset, 
see below:

where we have inserted these previous 22 particles of 
our partitioned task that is 2⁵=2²∙2²∙21 in an array as one 
of the options of this array to find the number of all 
possible subsets of a given above set, and the set of 
these matrices represents this decomposition of 
2⁵=2²∙2²∙2¹, and each of them works to find these 2² 
particles, note that matrix Loop1,2,3 is not complete 
since the number of elements of the given set is odd, 
therefore, Loop 1,2,3 not works completely and carried 

over this incomplete matrix that is(2
8)to the following 

loops; we are moving ahead only (without using 
backtracking to find all subsets), i.e., we do not need to 
iterate recursively (return), we take the result obtained by 
the first matrix loop and drag it to another matrix loop till
we get to finish (terminate), and as we move ahead 
through the matrix loops, we cut the work at least in half 
and are closer to finding the last result, that is how we 
proceed, and further, we receive this:

In the first loop, L=E=2, I=T=sbasis-
L=sbasis-E=8, sbasis=10, LE=4=a₁, in the second 
loop, L=E=4=a₁, I=T=sbasis-L=sbasis-E=6, 

{a₀, a₁, …, a𝑛𝑛-1}. The Tower of Hanoi is O(2ⁿ), as the 



 

 

 

 
  

 
  

 
  

 
 

 
  

 

 
 

 

 

 
  

 
 

 
  

  

 

 

 
 
 
 

 
 
 
 

 
  
 
 
 

 
 

 

 

     
 

     
 

 

 
  

 
 

 
 

 

 

 

 
  

T(n)=(E:2-(E:2:(sbasis:(I-L))))∙sbasis

that provides the following

• Loop1,2,3 gives a₁=20:2-(20:2:(100:(80-20)))=4=2² 
- for Loop1,2 that goes to (4∙4)∙2

• Loop2,3 gives a₂=40:2-(40:2:(100:(60-40)))=16=4² 
- for Loop2 that goes to 16∙2

• Loop3,0 gives a₃=200:2-(200:2:(10000:(8400-
1600)))=32=16∙2 - for Loop3

That means that the number of all subsets of a 
set is 32, including the empty subset, and the number of 
proper subsets is 32-1=31.

Remark 2.0. Keep in mind that we not only do 
not return to the matrix loop, where we already have 
received the result, we find the value of (a)=LE only for 
one complete matrix of each matrix loop since all 
complete matrices of each matrix loop are the same 
(they are copies).

Remark 3.0. Compare these steps with the following:

S={1, 2, 3, 4, 5}.
Subsets of a given above set:

{ }, {1}, {2}, {3}, {4}, {5}, {12}, {13}, {14}, {15}, {23}, {24}, {25}, {34}, {35}, {45}, {123}, {124}, {125},

{134}, {135}, {145}, {234}, {235}, {245}, {345}, {1234}, {1235}, {1245}, {1345}, {2345}, {{12345}.

Imagine how many returns (repeating moves) you will need to make to find all subsets of a set when the 
number of elements in a set is 20, 30, 80, etc.

Let’s go further.

Proof. Suppose we need to find all subsets of a set with eight elements that is S={1, 2, 3, 4, 5, 6, 7, 8}, where are 2⁸
subsets. The number of elements in this set is even, therefore, all matrices of the matrix Loop1,2.3.4 are complete. 
Further we have:

then

and finally,

That is, there are 256 subsets in a given set.

Remark 1.1. Let us take a look at a visual model of this task that gives the scheme below. We have the following:

The number of all subsets of a set that is 2⁸ is equal to 256.

𝐿𝑜𝑜𝑝1,2,3,4 = (
2 2
8 8

) , (
2 2
8 8

) , (
2 2
8 8

) , (
2 2
8 8

),

𝐿𝑜𝑜𝑝3,4 = (
4 4
6 6

) , (
4 4
6 6

), 

𝐿𝑜𝑜𝑝4,0 = (
16 16
84 84

).

(2∙2) (2∙2) (2∙2) (2∙2) ─ Loop1,2,3,4, where L=E=2, I=8=sbasis-2, a₁=2∙2=4

(4 ∙ 4)   (4  ∙   4)    ─ Loop3,4, where L=E=4, I=6=sbasis-4, a₂=𝑎1
2=4∙4=16

   (16      ∙    16)     ─ Loop4,0, where L=E=16, I=84=sbasis-16, a₃=𝑎2
2=16∙16=256

               256
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P vs NP: P is Equal to NP: Desired Proof

Lemma 2.0. The partitioning of the NP task 2𝑛𝑛 into 22 particles remains a key for this NP task solution when the 
exponent of 2𝑛𝑛 grows.

sbasis=10, LE=16=a₂, in the third loop, L=16=a₂, 
E=2, I=sbasis-L=84, T=sbasis-E=92, sbasis=100, 
LE=32=a₃. We are interested only in the (a) options 
values, as all these elements of a given set are inserted 
on a position of (a)=LE options in this array after 
partitioning them into 2² equal particles, therefore, it is 
not necessary to determine the values of T elements, 
they can be dropped since these values will not be used 
in the main algorithm below. We use this algorithm for 
these 2² particle’s logarithmic looping:



  
  
 

 
 
 
 

 
  

  

 
 
 

  
  

  

 
 
 
 
 

 

  
 

 
 
 

 

  
   

   
 
 

 

   
 

  
  

 
 

 

 
 

 

  

 

 
   

   
  
 

Theorem 1.0.
Regardless of how large the exponent of 2ⁿ is, a 

sequence of matrix loops runs in polynomial time 
solving this exponential-time task, that means that an 
upper bound on the worst-case running time of this 2ⁿ
task is O(log n).

Corollary 1.0. We get a sequence of matrix 
loops that runs in polynomial time when we define the 
value of 2ⁿ.

Proof
Let’s go further and take a set with 30 elements, 

where we need to find all possible subsets of this set. 
The number of all subsets of this set is 2  , and we 
have the following:

then

and then

further,

and,

and, finally,

  

    𝐿𝑜𝑜𝑝1, … ,15 = (
2 2
8 8

)
15 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

,

𝐿𝑜𝑜𝑝7,5, … ,15 = (
4 4
6 6

)
7 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
4
6

),  

𝐿𝑜𝑜𝑝3,75, … ,15 = (
16 16
84 84

)
3 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
16
84

) , (
4
6

),

𝐿𝑜𝑜𝑝1,875, … ,15 = (256 256
744 744

)
1 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (256
744

) , (
16
84

), (4
6

),

𝐿𝑜𝑜𝑝1,875, … ,15 = (
65536 256
34464 𝑑𝑟𝑜𝑝𝑝𝑒𝑑

) , (
16 4
84 96

),

𝐿𝑜𝑜𝑝15, 0 = (
16777216 64
83222784 𝑑𝑟𝑜𝑝𝑝𝑒𝑑

).

that takes O(log n) complexity.

Corollary 2.0. A sequence of matrix loops runs in polynomial running time when the exponent of 2ⁿ increases and 
becomes larger.

Proof
As we need to estimate the asymptotic complexity of this 2 task, let us consider, for instance, a set with 89 

elements, where the number of all possible subsets is 2⁸⁹. We need to partition the 2⁸⁹ into 2² particles, where are 44 
complete and 1 incomplete matrices in the initial matrix loop (note that all incomplete matrices are carried to the 
following matrix loops until there are no complete matrices, then they are sequentially enclosed in additional matrix 
loops on the position of the (a) options in matrices), and we have the following:

then

𝐿𝑜𝑜𝑝1, … , 44,5 = (
2 2
8 8

)
44 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
2
8

),

𝐿𝑜𝑜𝑝22,25, … ,44,5 = (
4 4
6 6

)
22 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
2
8

), 

             a=LE=(E:2-(E:2:(sbasis:(I-L))))∙sbasis
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P vs NP: P is Equal to NP: Desired Proof

30

𝑛𝑛

That is, there are 1 073 741 824 subsets in this set with 30 elements. We use this algorithm below for matrices of 
each matrix loop:



 
  
 
 
 

 
 
 
 

 
  
 
 
 
 

 
 
 
 
 

 
  

  
 
  

 
  

  

  
 

 

  

 

  

 

 

  

  

 

  

  

  

  

 

 

  
 

 

 
 

 
  

 
 

 
 
 

and

we have

and then,

and finally,

This matrix looping gives a sequence that runs in polynomial time.

The number of all subsets of this set with 89 elements is 618970019642690137449562112.

Corollary 3.0. The sequence of matrix loops runs in polynomial time when the exponent of 2ⁿ becomes extremely 
large.

𝐿𝑜𝑜𝑝11,125, … ,44,5 = (
16 16
84 84

)
11 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
2
8

),

𝐿𝑜𝑜𝑝5,5625, … ,44,5 = (
256 256
744 744

)
5 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
256
744

) , (
2
8

), 

𝐿𝑜𝑜𝑝2,78125, … ,44,5 = (
65536 65536
34464 34464

)
2 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
65536
34464

) , (
256
744

) , (
2
8

),

              𝐿𝑜𝑜𝑝1,390625, … ,44,5 = (
4294967296 4294967296
5705032704 5705032704

)
1 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
16777216 2
83222784 8

), 

              𝐿𝑜𝑜𝑝44,5, 0 = (
18446744073709551616 33554432
81553255926290448384 𝑑𝑟𝑜𝑝𝑝𝑒𝑑

).

further,

© 2021 Global Journals
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Loop1, …,44,5 gives the value of the (𝑎𝑎1) option for all complete matrices of this matrix loop, that is (2 ∙ 2), and goes 
to the following matrix loop as the value of (L ∙ E)=(4 ∙ 4), and defines the number of all complete and incomplete 
matrices for the following matrix loop that is the Loop22,25, …,44,5 this number is (44,5:2)=22,25.

• 𝑎𝑎1=(2:2-(2:2:(10:(8-2))))∙10=4

• 𝑎𝑎2=(4:2-(4:2:(10:(6-4))))∙10=16

Loop11,125, …,44,5 gives the value of the (𝑎𝑎3) option for all complete matrices of this matrix loop, that is (16 ∙ 16), 
and goes to the following matrix loop as the value of (L ∙ E)=(256 ∙ 256), and defines the number of all complete and 
incomplete matrices of the Loop5,5625, …, 44,5, i.e., (11,125:2)=5,5625, etc.

• 𝑎𝑎3=(16:2-(16:2:(100:(84-16))))∙100=256

• 𝑎𝑎4=(256:2-(256:2:(1000:(744-256))))∙1000=65536

• 𝑎𝑎5=(65536:2-(65536:2:(100000:(34464-65536))))∙100000=4294967296

• 𝑎𝑎6=(4294967296:2-(4294967296:2:(10000000000:(5705032704-4294967296))))∙sbasis=2147483648-(21474836
48:(10000000000:1410065408)))∙10000000000=18446744073709551616

Loop22,25, …,44,5 gives the value of the (𝑎𝑎2) option for all complete matrices of this matrix loop, that is (4 ∙ 4), and 
goes to the following matrix loop as the value of (L ∙ E)=(16 ∙ 16), and defines the number of all complete and 
incomplete matrices for the following matrix loop that is the Loop11,125, …,44,5, i.e., (22,25:2)=11,125.

• 𝑎𝑎7=(33554432:2-(33554432:2:(100000000000000000000:(81553255926290448384-18446744073709551616))))∙ 
sbasis=(16777216-(16777216:(100000000000000000000:63106511852580896768)))∙100000000000000000000
=618970019642690137449562112=2⁸⁹



  
 

 
  
 

  
 
  

  
  

  
 
 
 

 
  
 
  

  
 
 

 
 

  
  

  
 

 
  

  
  
 
 

 
  

 
  

 
  

  
  

  
 

  
  
 
  

  
 
  

 
 

 
 

   

Proof
Let us consider a set where the number of elements of this set is much larger than in previous sets. We take 

the set with 4117 elements, the number of all subsets of this set is  2     , and we have the following sequence of 
matrix loops:

where we get the value of a₁=(L ∙ E)= 2 ∙ 2=4, (see the reference map of these matrices above), then,

where we get the value of a₂=a₁ ∙ a₁=16, further,

and this matrix loop gives the value of a₃=a₂ ∙ a₂=256, and then,

then we get the value of a₄=a₃ ∙ a₃=65536, further,

and we have the value of                            a₅=a₄ ∙ a₄=4294967296, and further,

and we get the value of a₆=a₅ ∙a₅=18446744073709551616, then,

and we have the value of a₇=a₆ ∙a₆=340282366920938463463374607431768211456, further,

𝐿𝑜𝑜𝑝1, … , 2058,5 = (
2 2
8 8

)
2058 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
2
8

),

𝐿𝑜𝑜𝑝1029,25, … ,2058,5 = (
4 4
6 6

)
1029 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
2
8

),

𝐿𝑜𝑜𝑝514,625, … ,2058,5 = (
16 16
84 84

)
514 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
16
84

) , (
2
8

),

𝐿𝑜𝑝𝑝257,3125, … ,2058,5 = (256 256
744 744

)
257 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
16
84

) , (
2
8

),

𝐿𝑜𝑜𝑝128,65625, … ,2058,5 = (65536 65536
34464 34464

)
128 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (65536
34464

) , (
16
84

) , (
2
8

),

𝐿𝑜𝑜𝑝64,328125, … ,2058,5 = (
4294967296 4294967296
5705032704 5705032704

)
64 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (65536
34464

) , (
16
84

) , (
2
8

),

𝐿𝑜𝑜𝑝32,1640625, … ,2058,5 =

= (18446744073709551616 18446744073709551616
81553255926290448384 81553255926290448384

)
32 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (65536
34464

) , (
16
84

) , (
2
8

),

𝐿𝑜𝑜𝑝16,08203125, … ,2058,5 =

= (340282366920938463463374607431768211456 340282366920938463463374607431768211456
659717633079061536536625392568231788544 659717633079061536536625392568231788544

)
16 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

,

(65536
34464

) , (
16
84

) , (
2
8

),

𝐿𝑜𝑜𝑝8,041015625, … ,2058,5 =

= (
115792089237316195423570985008687907853269984665640564039457584007913129639936 1 …
884207910762683804576429014991312092146730015334359435960542415992086870360064 8 …

)
8 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
65536
34464

) , (
16
84

) , (
2
8

),

© 2021 Global Journals
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4117

then we get a₈=a₇ ∙ a₇=115792089237316195423570985008687907853269984665640564039457584007913129639936, and,



 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
   

 

 

 

 
  

 
 
 

 

  
  

 

 

 
 
 

  
  
  
  
  
  
  
 

 
 
 

  
 

 
 
 
 

 
 

  
  

 
 
 

 
  

 

where we have a₉=a₈ ∙ a₈=134078079299425970995740249…006084096, note that the value of L element is 
always equal to E element and the value of I element is always equal to T element if these elements are the elements 
of one of the complete matrices of each matrix loop, further,

and then we have a₁₁=a₁₀ ∙ a₁₀, and,

and finally, we get the value of a₁₂=a₁₁ ∙ a₁₁, where L=a₁₁, E=L=a₁₁, I=sbasis-L=sbasis-a₁₁, T=I=sbasis-a₁₁, then,

Asymptotic analysis of the runtime of an 
algorithm that we use to find the value of (a) option for 
each complete matrix of these matrix loops is presented 
below.

Run-time analysis: Prove that (E:2-(E:2:(sbasis:                        
(I-L))))∙sbasis= O(log n). Let T(n) be the execution time 
for the input of size n, where  , there exist positive 
constants and lower order terms that are not considered 
and can be omitted, then:

• T(n)=T₁(n)+T₂(n)+T₃(n)+T₄(n)+T₅(n)+T₆(n)=f(n)
• T₁(n)=sbasis-L=I⇒O(n)

• T₂(n)=I-L⇒O(n)

• T₃(n)=sbasis:(I-L)⇒O(n)

• T₄(n)=E:2:(sbasis:(I-L))⇒O(n)
• T₅(n)=E:2-(E:2:(sbasis:(I-L)))⇒O(n)

• T₆(n)=(E:2-(E:2:(sbasis:(I-L))))∙sbasis⇒can 
omitted (dropped)

𝐿𝑜𝑜𝑝4,0205078125, … ,2058,5 =

(
13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096 1 …
86592192070057402900425975001794153872520634179407606622276438556278235969926453023198125701833096572309968141813513949146246117188053430053566350993915904 8 …

)
4 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

,

(
65536
34464

) , (
16
84

) , (
2
8

),

and further, we get a₁₀=a₉ ∙ a₉=179769313486231590772930…224137216, the value of a₁₀ is long enough to write it in full like the following values of a, then,

𝐿𝑜𝑜𝑝2,01025390625 … ,2058 ,5 = (
1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084773224075360211201138798713933576587897688144166224928474306394741243777678934248654852763022196012460941194530829520850057688381506823424628814739131105408272371 63350510684586298239947245938479716304835356329624224137216 1 …
820230686513768409227069480921097526638202302105769342726569918842267324194499036867291522677592463978879886120128606642341210231185583377507152569360525875622232106575134514723697780398753905880546917 047914994231161849317657537118526086889459172762836649489315413701760052754061520283695164643670375775862784 8 …

)
2 𝑐𝑜𝑚𝑝 𝑙𝑒𝑡𝑒

, (
65536
34464

) , (
16
84

) , (
2
8

),

  𝐿𝑜𝑜𝑝1,005126953125 = (
𝑎11 𝑎11

𝑠𝑏𝑎𝑠𝑖𝑠 − 𝑎11 𝑠𝑏𝑎𝑠𝑖𝑠 − 𝑎11
)

1 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

, (
65536
34464

) , (
16
84

) , (
2
8

),

𝐿𝑜𝑜𝑝2058,5, 0 = (
𝑎12 = 𝑎₁₁  ∙   𝑎₁₁ = (𝑎₁₁)2 (65536 ∙ 16 ∙ 2)

𝑠𝑏𝑎𝑠𝑖𝑠 − 𝑎12 𝑑𝑟𝑜𝑝𝑝𝑒𝑑
).

Let f and g be functions from positive numbers 
to positive numbers, where f(n)=(E:2-(E:2:(sbasis:(I-
L))))∙sbasis=O(n) and g(n)=O(log n). Prove the claim 
that f(n) is O(g(n)) if there exist positive constants c>0 
and n₀>0 such that:

To prove big-O, we choose values for c and n₀
and prove n>1 implies f(n)≤c*g(n):

1. Choose n₀=1,
2. Assuming n>1, find/derive a c such that:

  f(n)≤c*g(n) for all n≥n₀.

that proves that n>1 implies (n)≤c*gn. This means that 
function (n) does not grow faster than (n), or that 
function (n) is an upper bound for (n) for all sufficiently 
large 𝑛𝑛→ ∞. 

An algorithm asymptotic running time is O(log n).

Notice. The value of sbasis is always equal to 
10 , therefore, we consider this value as an easy 
constant factor, and the I element is the 10’s 
complement of the L element, therefore, it runs very 
quickly when we define the value of (sbasis-L).

Comparing the asymptotic running time:

An algorithm that runs in O(n) time is better than 
one that runs in O(2 ), and O(log n) is better than O(n).

Theorem 2.0.
It is enough to decompose nⁿ into the set of n² 

particles (fractions) to find the value of any nⁿ since 
there is an easy algorithm that solves the exponential-
time task as the task that runs in polynomial time, i.e., 
we will turn (transform) NP to P using O{log n) 
complexity that will provide an easy solution for every n² 
particle of this set.

Proof

    𝑓(𝑛)

𝑔(𝑛)
≤𝑐𝑔(𝑛)

𝑔(𝑛)
=c 

𝑙𝑖𝑚
𝑛→∞

, 

f
f g
g f
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be 

𝑛𝑛

𝑛𝑛

We have the value of 𝑎𝑎𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 that is equal to the value of (a₁₂ ∙ 65536 ∙ 16 ∙ 2) = 2⁴¹¹⁷, where 65536, 16 and 2 
are the values from those incomplete matrices that were carried over all loops and the value of T element is 
dropped, we use this algorithm a=(E:2- (E:2:(sbasis:(I-L)))) to find these long values of all (a) options, and thus, 
regardless of how large the exponent of 2ⁿ is, a sequence of such matrix loops runs in polynomial time.

• T(n)=(E:2-(E:2:(sbasis:(I-L))))sbasis

As any nⁿ can be easily decomposed 
(partitioned) into n². n²∙… ∙ n²∙ n¹ if the exponent of nⁿ is 
an odd number, and into n²∙ n²∙ … n²∙ n² if the exponent 
of nⁿ is an even number, that we can find in logarithmic 
time using O(log n) complexity, hence we can find nⁿ in 
polynomial time, that means that P=NP. For example, it 



 

 
 

 

 
 

 

 

 

 
 

 

 

 

 
 

 
 
 
 
 

  
 

 
 
 

 
 
 
 
 

 
 
 
 
 

 

 
 
 
 

 

 

  
 
 
 
 

  
 
 
 
 
 

 
 

  

  

 

and let, for instance, n₁=3 and n₂=2, then n₃=sbasis-
n₁=7 and n₄=sbasis-n₂=8, the values of the n₃ and n₄
elements of an array are the complements of the n₁ and 
n₂ elements, the sbasis=10, suppose we need to find 
the exponential values of these elements, when n₁ⁿ= 3⁵
and n₂ⁿ= 7⁵, the bases and the exponents of the nⁿ
elements are taken arbitrarily, and the current sbasis is 
successive, then:

and further, we decompose this array into this matrix of 
n² particles:

To solve these matrix loops, we will also use this 
algorithm:

a=n₁ⁿ∙n₂ⁿ=(n₂ⁿ:2-(n₂ⁿ:2:(sbasis:(n₃ⁿ-n₁ⁿ))))∙sbasis,

The reference matrix for nⁿ looks like this:

for nⁿ, where the exponent of this nⁿ is an odd, and

for nⁿ, where the exponent of this nⁿ is an even. These all 
are easy to check using any random instance of nⁿ.

IV. Results and Discussion

The major result of this paper is that 
O(2ⁿ)=O(log n), that means that P=NP. Easy to solve 
(to find), easy to check (to verify), don’t you think? This 
is a study that changes our understanding of a topic. 
We had to go beyond the rules for this. And it is easier 
than you think. There is no decision problem (a yes-no 
question) for the NP problem anymore, and we do not 
need the certificate for this, since we have simplified and 

Given a set (an array) of positive integers in matrix form:

(
𝑛1

𝑛 𝑛2
𝑛

𝑛3
𝑛 𝑛4

𝑛),

(3⁵ 2⁵
7⁵ 8⁵

),

  (3² ∙ 3² ∙ 3¹ 2² ∙ 2² ∙ 2¹
7² ∙ 7² ∙ 7¹ 8² ∙ 8² ∙ 8¹

).

  (3 3
7 7

) ∙ (
3 3
7 7

) ∙ (
3
7

) and (2 2
8 8

) ∙  (2 2
8 8

) ∙ (
2
8

).

(
𝑛₁² ∙ 𝑛₁² ∙ … ∙  𝑛₁² ∙ 𝑛₁ 𝑛₂2 ∙ 𝑛₂2 ∙ … ∙  𝑛₂² ∙ 𝑛₂

𝑛₃² ∙ 𝑛₃² ∙ … ∙  𝑛₃² ∙ 𝑛₃ 𝑛₄² ∙ 𝑛₄² ∙ … ∙  𝑛₄² ∙ 𝑛₄
)

(
𝑛₁2 ∙ 𝑛₁2 ∙ … ∙ 𝑛₁² ∙ 𝑛₁² 𝑛₂2 ∙ 𝑛₂2 ∙ … ∙ 𝑛₂² ∙ 𝑛₂²

𝑛₃2 ∙ 𝑛₃2 ∙ … ∙ 𝑛₃² ∙ 𝑛₃² 𝑛₄2 ∙ 𝑛₄2 ∙ … ∙ 𝑛₄² ∙ 𝑛₄²
)

eliminated all that was complicated multiple times over 
by various wrong theories and their numerous 
modifications, we no longer even need the SAT. The NP 
tasks do not require making two recursive calls when 
growth doubles with each addition to the input data set, 
we have a new path to solve this problem in polynomial 
running time using a sequence of matrix loops that uses 
a sorted array and takes O(log n) complexity. We get the 
desired reduction of the exponential problem to the 
polynomial problem. There are some known definitions 
of the P vs. NP problem that will be read in a new way in 
the future: ‘The P versus NP problem is to determine 
whether every language accepted by some 
nondeterministic algorithm in polynomial time is also 
accepted by some (deterministic) algorithm in 
polynomial time (Cook, 2000).” ‘P versus NP – a gift to 
mathematics from computer science (Smale, 2000).” “It 
is interesting to recall that the motivation for the 
development of the theory of computation, on which 
theoretical computer science is based, came from 
purely mathematical considerations. The paradox is 
emerging from Cantor’s set theory emphasized the need 
to clarify the foundations of mathematics and, under 
Hilbert’s leadership, concentrated attention on axiomatic 
proof systems. The quest to understand the power and 
limitations of axiomatizable systems led directly to the 
questions about all possible formal mechanical ways of 
deriving proofs (sequences with desired properties). In 
modern terms, it led to the search for what is and is not 
effectively computable (Hartmanis, 1989).” “The hope 
that mathematical methods employed in the 
investigation of formal logic would lead to purely 
computational methods for obtaining mathematical 
theorems goes back to Leibniz… (Davis & 
Putnam,1959).” “Your definition of experiments by using 
point-sets is perfectly satisfactory to me, I thought, 
however, that it might be good to say explicitly that a 
computation may be part of an “observation” 
(Neumann, 2005).” “The most comprehensive formal 
systems yet set up are, on the one hand, … and, on the 
other, the axiom system for set theory…These two 
systems are so extensive that all methods of proof used 
in mathematics today have been formalized in them 
(Gȍdel, 1931).” “Occasionally it happens that we seek 
the solution under insufficient hypotheses or in an 
incorrectly sense (Hilbert, 2000).” “The principal 
technique used for demonstrating that two problems are 

© 2021 Global Journals
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We got the decomposition of this nⁿ task into n² particles 
that transforms the exponential time to a polynomial that 
uses the new O(log n) complexity for O(n²), i.e., for 
these n² particles solving. Further, we make matrix loops 
for each of these 𝑛𝑛2 particles that look like this:

is obvious, as we are aware, that 3⁵=3²∙3²∙3¹, or 
5⁶=5²∙5²∙5², etc. The constant factors of this new 
algorithm will remain sustainable (steady) and scalable 
when nⁿ grows and goes to infinity. Let us consider the 
following:



 

 

 

 

 

  

 

 

related is that of “reducing” one to the other, by giving a 
constructive transformation that maps any instance of 
the first problem into an equivalent instance of the 
second (Garey, 1979).” “…any recognition problem 
solved by a polynomial time-bounded nondeterministic 
Turing machine can be reduced to the problem of 
determining whether a given proposition formula is a 
tautology (Cook, 1971).” “The class of languages 
recognizable by string recognition algorithms which 
operate in polynomial time is also invariant under a wide 
range of changes in the class of algorithms (Karp, 
1972).” ‘Due to the fact that no NP-complete problem 
can be solved in polynomial time… (Crescenzi & Kann, 
1994).” “I offer a personal perspective on what it’s 
about, why it’s reasonable to conjecture that P≠NP is 
both true and provable… (Aaronson, 2011).” “…we can 
avoid brute - force search in many problems and obtain
polynomial-time solutions. However, attempts to avoid 
brute force in certain other problems, including many 
interesting and useful ones, haven't been successful, 
and polynomial-time algorithms that solve them aren't 
known to exist (Sipser, 2012)." "As we solve larger and 
more complex problems with greater computational 
power and cleverer algorithms, the problem we cannot 
tackle begin to stand out (Fortnow, 2009).” “In recent 
years, the reducibility of computation in real 
environments to the standard Turing model has been 
brought increasingly into question (Cooper, 2004).” “The 
subject my talk is perhaps most directly indicated by 
simply asking two questions: first, is it harder to multiply 
than to add? and second, why? I grant I have put first of 
these questions rather loosely; nevertheless, I think the 
answer ought to be: yes. It is the second, which asks for 
a justification of this answer which provides the 
challenge (Cobham, 1965).” “Most of the computational 
problems that arise in practice turn out to be complete 
for one of a handful of complexity classes, even under 
very restrictive notions of reducibility (Agrawal, Allender, 
Impagliazzo, Pitassi, & Rudich, 2001).” “At present, 
when faced with a seemingly hard problem in NP, we 
can only hope to prove that it is not in P assuming that 
NP is different from P. (Goldreich, 2008).” “…an 
algorithm is any well-designed computational procedure 
that takes some value, or set of values, as input and 
procedures some value, or set of values, as output. An 
algorithm is thus a sequence of computational steps 
that transform the input into the output (Cormen, 
Lieserson, & Rivast, 2009).” “It is well known that every 
set in P has small circuits. Adelman was recently proved 
the stronger result that every set accepted in polynomial 
time by a randomized Turing machine has small circuits 
(Lipton & Karp, 1980).” ‘I see complexity as the intricate 
and exquisite interplay between computation 
(complexity classes) and applications (that is, problem) 
(Papadimitriou, 1994).” “We do not know of polynomial-
time algorithms for these problems, and we cannot 
prove that polynomial-time algorithms exist…These are 

the NP-complete problems… (Kleinberg & Tardos, 
2006).” “…there is a strictly ascending sequence with a 
minimal pair of upper bounds to the sequence…if 
P≠NP then there are members of NP-P that are not 
polynomial complete (Ladner, 1975).” “…minimal 
propositional logic corresponds to dependent simply 
typed-calculus… (Sorensen & Urzyczyn, 1998).” 
‘Practical problems requiring polynomial time are almost 
solvable in an amount of time that we can tolerate, while 
those that require exponential time generally cannot be 
solved except for small instances (Hopcroft, Motwani, & 
Ullman, 2001).” “Some success was had by causing the 
machine to systematically eliminate the redundancy; but 
the problem of total length increasing rapidly still 
remained when more complicated problems were 
attempted (Davis, Logemann, & Loveland, 1961).” 
“Gȍdel and others went on to show that various other 
mathematically interesting statements, besides the 
consistency statement, are undecidable by P, assuming 
it to be consistent… (Boolos, Burgess, & Jeffrey, 2007).” 
“There has been much work in getting the number of 
variables needed for an undecidability result to be small 
(Gasarch, 2021).”

V. Conclusion

It is possible to solve the exponential-time task 
in polynomial time if we forget recursion that takes O(2ⁿ) 
complexity and goes to regress only. As you see, it is 
clear that the new notion of the decision procedure for 
the NP problem exists. We have a completely new 
definition of the certificate for this NP problem that can 
not only be checked in polynomial time but also solved 
in polynomial time. And there is no case when this new 
uniform procedure is not valid, the algorithm terminates 
with a correct answer on any input instance of 2ⁿ and 
does not involve seeking forever (without Halting 
problem, without approximation), i.e., this new certificate 
is consistent, therefore, we solve this NP task rapidly, 
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accurately, and easily using this unthinkably easy 
computational tactic above.
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