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Multi -Target Detection Capability of
Linear Fusion Approach under Different
Swerling Models of Target Fluctuation

Mohamed Bakry EI Mashade

Absiract-1n evolving radar systems, detection is regarded as a
fundamental stage in their receiving end. Consequently,
detection performance enhancement of a CFAR variant
represents the basic requirement of these systems, since the
CFAR strategy plays a key role in automatic detection process.
Most existing CFAR variants need to estimate the background
level before constructing the detection threshold. In a multi-
target state, the existence of spurious targets could cause
inaccurate estimation of background level. The occurrence of
this effect will result in severely degrading the performance of
the CFAR algorithm. Lots of research in the CFAR design have
been achieved. However, the gap in the previous works is that
there is no CFAR technique that can operate in all or most
environmental varieties. To overcome this challenge, the linear
fusion (LF) architecture, which can operate with the most
environmental and target situations, has been presented. This
processor is a combination of the properties of three different
CFAR algorithms (CA, OS, and TM), and forms two different
processes: statistical ordering and averaging. This paper is
devoted to analyze LF structure when the primary and the
secondary targets are considered to be fluctuating in terms of
four Swerling models. Closed-form expression is derived for
the processor performance. Superiority of the LF algorithm
over the conventional ones in multi-target scenarios is verified
by numerical simulation. Additionally, the LF ideal performance
outperforms that of Neyman-Pearson (N-P) detector, which is
the basic reference in the CFAR world. Moreover, the LF
detector mitigates the impact of outlying targets and has the
capability of holding the rate of false alarm stationary en face
of outliers.

Keywords: adaptive detection, non-coherent integration,
fluctuating targets, swerling models, target multiplicity
environments.

[. INTRODUCTION

adar systems are widely used for safety
qpurposes. For case in point, they are utilized at
airports to safely regulate the air traffic and in a
military context, they are employed to defend against
hostile missiles. The mission of the radar is to detect
targets of interest and to discard those that don't
concern a particular application.
Depending on the type of radar application, the
system might be concerned with estimating the target
radar cross section (RCS), measuring and tracking its
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position or velocity, imaging it, or providing fire control
data to direct weapons to the target. In all of these
practical applications, one of the most fundamental
tasks of a radar is the detection; the process of
examining the radar data and determining if it
represents interference only, or interference plus echoes
from a target of interest (Tol) [1-5].

The detection capability is one of the most
significant factors in the behavior of such type of vital
systems. Normally, the purpose of detection is to
distinguish genuine target reflections from noise and
clutter. More specifically, target detection can be
regarded as a style of classification, which distinguishes
whether the tested signal contains an echo from a target
or just corresponds to the noise. This process relies on
the thresholding criteria. This criteria has two
philosophies: fixed and adaptive. Although the fixed
threshold is simple in design, it has a misdetection and
this procedure deprives the system from its ability to
control the false alarm rate. This strategy of detection is
useful for non-fluctuating targets of identical reflection
models but fails when a mixture of different targets
exists in radar's field of view (FoV). Therefore, variable
threshold will be needed to cover such scenarios. For
this reason, adaptive detection thresholds have been
the subject of research for a long time. In other words,
there is a demand for a detection process that is based
on dynamic, instead of static, threshold to cope with
those situations of inhomogeneous or changing clutter
environment all over the search space. This is the
objective of the second philosophy. Constant false
alarm rate (CFAR) technology is the most popular target
detection framework to address the issues associated
with fixed threshold. This technology is crucial as a
desired property for automatic target detection in an
unknown and non-stationary background. In other
words, CFAR is a property that is assigned to the
processor in which the threshold, or gain control
devices, guarantees an approximately constant rate of
false target detection when the noise/clutter level
temporally varies. The feature of CFAR activates the
threshold in such a way that it becomes adaptive to the
local clutter environment. Thus, the CFAR mechanism
maintains the amount of false alarm under supervision in
a diverse background of interference. It should be taken
into account that this approach doesn't come at no cost.
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In radar applications which necessitate precision strikes
for reduced risk and cost efficient operation with
minimum possible guarantee damage, besides radar
size, computation cost is major issue. The increased
performance of the detection algorithm demands an
increase in computation speed and device memory for
every scan. Therefore, a trade-off between performance
and cost has to be made [6-10].

A robust detector should not only find targets
but also eliminate false alarms. Therefore, the general
objective of all radar detection schemes is to ensure that
false alarms don't fluctuate randomly. During the
detection process, each cell is evaluated for the
presence/absence of a target using a threshold. It is
beneficial to be able to detect both high- and low-fidelity
targets while maintaining constant false alarm rate. This
is actually the function of the adaptive thresholding
algorithm which most modern radar systems apply it in
their detection process. Although there exists a large
number of versions of CFAR circuits, cell-averaging
(CA), order-statistics (0OS), and trimmed-mean (TM)
scenarios remain the most popular and well-understood
techniques. In many cases, a single CFAR processor
can hardly meet the complex radar operation
environment. Thus, the concept of composite CFAR
designing was introduced, to account for both
homogeneous and heterogeneous situations. Based on
this concept, fusion of particular decisions of the single
CFAR detectors by appropriate fusion rules provides a
better final detection. In this regard, the linear fusion (LF)
approach is based on the parallel operation of the CA,
0S, and TM types of CFAR techniques. However, the
computational complexity may prevent the use of these
more robust algorithms in favor of simple thresholding
techniques, especially in automotive applications.
Nevertheless, with the increasing prospect of reduction
in  hardware cost and availability of high-speed
processors, the drift to high-performance algorithms is
inevitable [11-15].

The behavior of the target detection processor
can be significantly enhanced with the availability of the
statistical characteristics of a target's radar cross-
section (RCS). To achieve such interesting objective,
Swerling proposed five models (SWI-SWV), to describe
the RCS statistical properties, for practical objects,
based on y*-distribution with varying degrees of
freedom. In SWI model, the target reflections in a single
scan have a constant RCS magnitude (perfectly
correlated), but it varies from scan-to-scan obeying y*
probability density function (PDF) with two-degrees of
freedom. For SWII model, the PDF of RCS is the same
as in SWI with the exception that it is independent from
pulse-to-pulse instead of scan-to-scan. Because some
objects have a dominant scatterer, SWIIl mod uses a
fourth-degree y?-statistics to model the returned pulses.
This model has the same characteristics as SWI style
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which has constant magnitude from pulse-to-pulse, but
different from scan-to-scan. The RCS, in SWIIl template,
has the same description as SWI form with the
difference that its PDF follows y*-statistics with four-
degrees of freedom. The RCS, in SWIV pattern, varies
from pulse-to-pulse, instead of scan-to-scan, with the
same PDF of SWIII model. Finally, SWV mode is
characterized by constant and perfectly correlated, from
pulse-to-pulse and from scan-to-scan, echo pulses
which corresponds to infinite degrees of freedom [10,
13].

Our goal in this paper is to analyze LF-CFAR
structure when this strategy uses non-coherent
integration of M pulses to carry out its decision. The
primary and the secondary outlying targets are assumed
to be fluctuating in terms of four Swerling models s
(SWI-SWIV). Closed-form expression is derived for its
performance in the absence as well as in the presence
of interferers. A comparison of the tested scheme with
its basic variants along with Neyman-Pearson (N-P)
detector is also portrayed. The paper proceeds as
follows. Section Il formulates the problem of interest.
The detection performance of the tested methodology
along with its fundamental variants is analyzed in section
lll. Section IV portrays our numerical results to evaluate
the accuracy of the theoretical derivation and
substantiate the effectiveness of the proposed
schemes. Finally, our useful conclusions are drawn in
section V.

II. STATISTICAL BACKGROUND AND MODEL
DESCRIPTION

The basic demands of the limited warfare of the
present era necessitate precision strikes of reduced risk
and cost efficient operation with minimum possible
guarantee damage. In order to reply such exact
challenges, the capability of automatic detection is
increasingly becoming more important to the defense
community. Automatic detection can be achieved by
setting a fixed threshold based on the interference
power level. This construction operates with predictable
performance if the interference belongs only to thermal
noise. However, the ideality of operating environment of
radar systems is scarcely verified. Therefore, technology
of adaptation is of primary concern in the design of their
future scenarios [15-16].

The ability of a weak echo detection by the
radar receiver is limited by the noise energy that
occupies the same spectrum as the signal. From this
point of view, the process of detection is based on
establishing a threshold level at the output of the
receiver. This threshold must be adjusted in such a way
that weak signals are detected, but not so low that
allows noise peaks to cross it and give a false target.
Thus, the proper threshold selection is dependent upon
how important it is if a mistake is occurred because of



failing to recognize a signal (miss probability) or falsely
indicating the presence of a signal (false alarm
probability). On the other hand, to cope with a changing
clutter environment, there is a persistent need of
dynamic and adaptive threshold. This threshold must be
varied, up and down, in accordance with the
background level for the false alarm rate to be
maintained at its pre-set value. A detector with this
characteristic is designated as constant CFAR. Thus,
the CFAR strategy is the main goal of the radar system
designer.

For the CFAR circuit to be efficient, it must
realize some characteristics. The more motivating
features include rigorous fitting of the detection
threshold to the clutter background, masking avoidance
of closely spaced targets, low CFAR loss, and
constructing a threshold that gives point as well as
extended targets the chance to pass. Whatever the
structure of the CFAR model is, the framework of sliding
window is regarded as its basic arrangement. As Fig.(1)
depicts, this window moves throughout the coverage
area, and contains a set of reference cells (RC’s) around
the central cell, which is termed as cell under test (CUT).
To alleviate self-interference in a real target echo, some
guard cells (GCs) embrace CUT. These cells are used
as buffer between CUT and the training cells. They are
excluded from the background computation to insure
that the CUT doesn't affect the threshold calculation.
The declaration of the presence of a target is carried out
if the power of CUT is greater than the power of both
GCs and the estimated level. Each resolution cell has
the chance to occupy the position of CUT. In this regard,
the RC’s that have been already processed constitute
the leading subset, whilst those that have not yet
occupied the center organize the lagging subset. The
size selection of the sliding window is dependent upon
rugged knowledge of the typical clutter background.
Generally, the window length N should be as large as
possible for the estimation process to be of good
modality. Meanwhile, N is preferred to be compatible
with the typical range extension of homogeneous clutter
zones for the demand of identically distributed random
variables to be statistically satisfied. Normally, the
typical value of N lies in the 16-32 range.

The detection threshold is established as the
product of the estimated noise power Z by a scaling
factor T, which is imposed to verify the desired rate of
false alarm, as Fig.(1) portrays. By comparing the
content of CUT with the resulting threshold, the
procedure will recommend that the signal is belonging
to a target, if the magnitude of the CUT surpasses the
calculated threshold. Otherwise, the signal is coming
from interference and no target is present.

Most modern radar systems are of coherent
type. This means that they receive the returned signal in
a polar (amplitude and phase) form. In the radar

receiver, the synchronous detector generates an in-
phase (I) and a quadrature (Q) components from the
received signal. Whilst the in-phase component denotes
the real part, the quadrature component represents the
imaginary part of the received signal. Under the null
hypothesis (H,), the received noise for both I and Q
channels is modeled as an independent and identically
distributed (IID) Gaussian random process with zero
mean and of variance /2. In addition, I and Q channels
are statistically independent. Thus, the received noise is
a complex Gaussian signal (N=[+iQ) with u=0 and
o2=1.

After pulse compression, the signal passes
through a rectifier, which converts the complex signal
into an amplitude and phase. In this vein, there are two
familiar types of rectifiers: linear and square-law
detectors. The linear detector measures only the
magnitude (P+Q%" of the complex received signal,
which follows the Rayleigh distribution. The square-law
detector, on the other hand, measures only the power
(P+Q@?) of the linear detector, the distribution of which is
exponential. For both types, the phase is uniformly
distributed in the interval [ —m, ] [17].

a) Neymann - Pearson Detector

The Neyman-Pearson (N-P) processor operates
with a detection threshold which is imposed in such a
way that for a desired rate of false alarm, the level of
detection will be maximized. This threshold is fixed and
is derived from a known interference PDF. Practically,
the using of N-P detector necessitates: 1) the
background interference is IID over all resolution cells, to
which the fixed threshold is to be applied, 2) the
interference is of statistical distribution the parameters of
which are known, 3) the interference environment is
homogenous.

Generally, the detection process is achieved at
the output of the rectifier and yields one of three
possible outcomes: correct decision, missed detection,
or false alarm. A correct decision is one in which the
detector correctly declares the presence/absence of a
target. A missed detection is one in which the detector
declares the absence of a target when in truth the
measurement contains a target return. A false alarm
occurs when the detector declares the presence of a
target and in reality a target’s return is not present in the
measured data. Whilst the first outcome is specified by
P4, the second one represents its complement (1 - Py).
Therefore, P4 plays an important role in determining the
first two outcomes. The last outcome is characterized by
P... Thus, once P4 and Py, are calculated, the processor
performance is completely evaluated.
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Here, we are concerned with square-law type of signal rectifiers. Thus, as we have noted above, the square-
law detected output for any range cell (v,) has an exponential distribution, the general formulation of which is:

p ) =

)

(1)

In the above expression, U(.) stands for the unit-step function. The value of n depends on the situation of

operation and can take one of the following values:

W for Clear Background
n A w(l+7) for Object Under Test @
p(l+9) for Spurious Background

In the preceding formula, "y" denotes the signal-
to-noise ratio (SNR) of the Tol return, whereas "6"
symbolizes the interference-to-noise ratio (INR) of the
interfering target return, and "¢" represents the
background noise power.

T 1 v
P. = _[ — exp(——j dv =1
Tr 77 77
It may be rarely that a decision is made on the
basis of a single transmitted pulse. More often, a lot of
pulses are transmitted, and the resulting received signal

is integrated or processed in some way to enhance,
relative to the mono-pulse case, the SNR. In this regard,

M-1

P - [ o

~1)!

Since the target returns and interference are of
the stochastic nature, the performance of a signal's
detector is characterized in terms of probabilities. For N-
P procedure, these probabilities take the form [9]:

)

P T =y
F. ) = {Pd it n=yl+y)

to detect the target signal with some reasonable
probability and to reject noise, the signal must be more
strengthened than the noise. For M-pulses, the range
cell (vo) has a PDF given by [.]:

exp(— %) u(v)

The cumulative distribution function (CDF) corresponding to the PDF of Eq.(4) has a form given by:

M-1

F.0) - 1- ¥

In radar systems, detection performance is
always related to target models and background
environments. Thus, the availability of the statistical
characteristics of a target's radar cross-section (RCS)
can significantly ameliorate the performance of the
detection algorithm. For this purpose, Swerling

K

p, /7)) - (;4_K]K 1F1[

M= v] (V

4
v/n) exp(—KJ u(v) (5)
/! n
introduced five models (SWI-SWV), to describsse the
RCS statistical properties of the objects based on y?-
distributionss of varying degrees of freedom. For k"
degree of freedom ¥ fluctuating target, the PDF of the
target return is given by [9]:

M-1

-V

e’ u()

6)

y+ K M —1)!

1F4(.) stands for the confluent hyper-geometric function and ;denotes the average M-pulse SNR. The calculation of

the CDF associated with this PDF yields:

v) = ¢ YL (1-¢) 1- — & A = (7)
F.0) = ¢ 2o 4-¢) 2 e (o o
with

1 for SW

M for SWII 8)
K = 2 for SWI I
2M for SWV
for SYW
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and
F(K + j)
F(K)

(x)

>

1
B {K(K+1)(K+1) .......... (k+j-1) if

if j=0
: ©)
j>0

The substitution of Eq.(7) into Eqg.(3) and using the values indicated in Eq.(8), the N-P performance can be
easily obtained for fluctuating targets of different Swerling's models.

b) Constant False Alarm Rate (CFAR) Detector

CFAR detectors are designed to track changes
in the interference and to adjust the detection threshold
to maintain a constant probability of false alarm. Since
the performance of a detection scheme is measured by

P, A Pr(Z(‘_/IP/HJ j p,(x

vO/T

Ip()dydx=

evaluating the probability of detection and the
probability of false alarm, our strategy in analyzing a
CFAR variant is to calculate its detection probability
which is given by:

,(v) dv (10)

T TpVO(Tv) F

F,(.) denotes the CDF of the noise power Ievel estlmate and T is a thresholding constant required to guarantee the
designed rate of false alarm. In terms of the Laplace transformation, Eq.(10) takes the form:

with

P, =T (DQ(Q)Q:

®,@) A

) dv (1)

Vo

[ p.v) E,0) exp-av

With the aid of convolution theorem, Eq.(11) can be put in another form as:

D,0Q) - =

T M.

©T) * ©,©)

(12)

In the above formula, M,(.) represents the moment generating function (MGF) of the random variable (RV) x,
0,(.) denotes the Laplace transformation of the CDF of the RV Z, and the symbol "*" stands for the convolution

process. By using Eq.(12), Eq.(10) can be written as:

P, = 27” fl\/l (@/T) ®,Q-0) do

The contour of integration C consists of a
vertical path in the complex w-plane crossing the
negative real axis at the rightmost negative real axis
singularity of M,(.) and closed in an infinite semicircle in
the left half plane.

Eq.(13) demonstrates that the MGF of v,, the
content of the CUT, plays an important role in

p.0) = % -

v

8 denotes the signal power,  is the noise power, 6/
represents the SNR at the square-law detector input and
Io() stands for the modified Bessel function of type 1
and of order 0.

Pt = b ()

v+5j lo(z\/a_v] o0)

13
00 (19

determining the processor detection performance. Let's
go to calculate this interesting parameter for the
Swerling's models of fluctuating targets.

For mono-pulse application and when a non-
fluctuating target return-plus-noise represents the
content of the CUT, the output of this cell has a PDF
given by [11]:

(14)

4 4

Since the single pulse case is infrequently used, the
M-pulses form of Eq.(14) is preferable. After integrating
M pulses, the new form of Eqg.(14) becomes [9]:

exp(— Y ; 5] | M1£2 \/:7] u(v)

The MGF associated with the PDF of Eq.(15) can be easily evaluated and the result yields:
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1 )" 5O
MVO(Q/5) = (mj eXp(—mJ (16)

The unconditional MGF can be obtained by averaging the above formula over the target fluctuation
distribution of &. For x? family of target fluctuation models, the RV & is characterized by a PDF given by [18]

p5(5/5) = ﬁ (gjk 5 exp(—K%j u(s) (17)

o

The unconditional MGF is then extracted by calculating the average value of Eq.(16) given the PDF of
Eqg.(17). Thus, we have

M) = [M, 00 p,a) - .2 ][ ey W(lﬁ/_q -

vQ+1 aQ+1 K

Eq.(18) is the fundamental formula from the Swerling's models can be derived as special cases.

Swerling I Model (SWI)
As Eq.(8) indicates, this model is characterized by k=1. Replacing k by 1 in Eqg.(18) yields:
M-1
Yy Va >
Q) = & a Awy\ll+o =wl+ 19
M, (@) [Q+l/l// o+ la Ayl+sly)=y+y) (19)

In the above expression, y denotes the average per pulse SNR. The substitution of this MGF into Eq.(13) results:

T W YT (T . Y Ta d"? 1 .
P, _a(l/l//—]/a) ®Z(aj (l//j F(M—l)dQM‘ZHQ+T/a]®Z( Q)}Q—i @0)

Swerling Il Model (SWII)

This model of target fluctuation has an M™ degree of freedom. Setting k=M in Eq.(18) leads to:

M., @) = [ Ya JM & aéw(1+5,\//|—wj=w(1+7) (21)

Q+Va

y denotes the average, over M pulses, SNR. In this case, the processor detection performance is given by:

(e
Pd_ F(M) dQM—1®Z(_Q)Q_ T (22)

a

Swerling Ill Model (SWilI)
This model of target fluctuation is characterized by k=2 in the MGF of the CUT. In this situation, the MGF of
the concerned cell becomes:

M0 - (225) (@) &« ) -veen o
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The probability of detection of SWIII target fluctuation model will be:

P, =

HIENEE S

Q=-T/a ’
- (24)

1 d"
r(M-2)do" (

Swerling IV Model (SWIV)

1 2
Q+ T/a] ®Z(_Q)_

Q=-Tly

This case of target fluctuation has (2M)" degrees of freedom. Thus, the substitution of k=2M in Eq.(18)

yields:

Yy Yo

M. (@) = [QH/JM [Q+1/aj2M

Eq.(25), as a MGF, in the definition of Py gives the processor detection performance which has a

mathematical form given by:

& «a wil+7) (25)

2M

o)

P = @ Gj o) 3o

In all cases, the false alarm probability takes a unified form; the mathematical version of which is:

g2M-1 1 -M
(Q+T/VJ ®Z(_Q)‘Q=—T/a (26)
™ 1 gv?
P. = [;j M) W{ z(—Q)){Q:_T/W 27)

Since enhancing detection performance of a
CFAR variant is a basic requirement in evolving radar
systems, we choose the recent version of CFAR
detectors to fulfill this objective. It is intuitive that as Py
increases, the missed detection decreases and
consequently, the processor performance will be
enhanced. The upcoming section is devoted to evaluate
the performance of the linear fusion (LF) strategy to
have a knowledge about its reaction against fluctuating
targets of Swerling models.

By careful examining the previous derived
formulas, it is evident that they rely on the Laplace
transformation of the CDF of the noise power level
estimate Z and its mathematical differentiation.
Therefore, we are focused on formulating this
transformation when the detection scheme operates in
an environment that has several outlying targets along
with the main one (Tol).

Yoo € Yy & (=120 N-1

[11. PROCESSOR PERFORMANCE ANALYSIS

Specifically, the efficiency of a CFAR scheme is
measured in the perfect case of operating conditions or
in the presence of some of fallacious targets beside the
Tol. Since the ideal situation is a special case of non-
ideal operation, it is preferable to analyze the processor
performance in heterogeneous background. This is
actually the case that we are going to follow in the
upcoming subsections.

a) Single Adaptive Processors

i. Ordered-Statistics (OS)

This procedure of CFAR technology performs
robustly in both inhomogeneous clutter and target
multiplicity situations. It extracts the K" largest sample
from the candidates of the reference window to
represent the estimate of the unknown noise power. To
carry out such extraction, it ranks the reference cells in
an ascending order, in such a way that:

(28)

In this ranked samples, y;) denotes the lowest noise level whilsst y, represents the highest one. After the
rank order, we plan to pick the sample of K" level to constitute the unknown noise level in the reference window.

Thus, the OS test-statistic takes the form:

Los A

Y &

1<K <N (29)
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Aiming at evaluating the performance of the OS  remaining, "N — R" ones having thermal noise only with
algorithm, this necessitates the PDF calculation of the  power level (. In both cases, the observations are
K™ ordered sample in the case where the samples are  governed by the exponential PDF and are statistically
independent, but not identically distributed. To independent quantities. Taking these assumptions into
accomplish such obijective, let us consider that the account, the cumulative distribution function (CDF) of
reference window has "R" cells that contain outlying the K™ ordered cell is given by [19]:
target returns each with power level $(1+9) and the

prenn-£ 787 (') 5

i=K j=Max(0,-R) J i-j) =

j
n

Jeor 3. e o= rtorea- mpe

m=0

In the above expression, F.(.) represents the CDF of the cell that contains clutter background whilst F,(.)
denotes the same thing for the cell that has interfering target return. The random variable (RV's) representing the
returns from clutter background has MGF of the same form as that given in Eq.(18) after nullifying a. By using the
resulting form of that equation, the Laplace transformation of F,(.) becomes:

Y@ = (Q+1)_M/Q (31)

The Laplace inverse of the above formula yields:

M-1 4
Fol) =1 - X hge v @)

For the interference case, there are two situations:

a. ¥ fluctuation with 4-degrees of freedom: if the interfering target fluctuates following this statistical type, F,
(.) has a form given by [12]:

FO = LTI ~2 ol o1 -3 +te)e™ v L g b —— @
Q i3 @2'+'5i i =1+ 94,2
Where
M M 1 M 2
A sfi-g ) e S 3
4/1 = gJ( g’) H(si—gj] 1-g ¢ [Z_l“g[—gj 34
i#] l#]
and
M l1-¢
S A g L-e) I & '_ (35)
]

The substitution of Egs.(32 & 33) into Eq.(30) leads to:

NH L ~ N mini,N-R) (N — R R ioi-j J i_j ik M-1 t™ -t NoRK
Frenm -5 I SR e S s )

{Z%Hébﬂ

By using binomial theorem, we can expand the bracketed quantities as a binomial of t. This expansion
results in reformatting Eq. (36) as:
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In the previous formulas, the term ¥(J; jy, jo, ..., ju) IS defined as [20]:s
ra+1)  u
™ if i, = J
W(I;Jy dpreeen Ju) A [1rGi+2) Pt -

i=1

M
0 if Zjii J
i1

b. 2 fluctuation with 2-degrees of freedom: Let us now return to the fluctuating target obeying ¥*_distribution
with 2-degrees of freedom in its fluctuation. In this case, F(.) is given by [19]:

I ) 1 4
FO =L {Q HQ+@} & & 1+ 94, o

>

/=1

y evaluating the Laplace inverse processing of the above formula, one obtains:

F.6 =1 - iqoj exp(-0t)UE) & ¢ A

>
IS
&

The substitution of Egs.(32 & 41) into EQ.(30) yields:

N min@.N-R) "N — R R L Y- s M1 t™ -t NRA
FK (t N R) ;Fmax(o,iR)( J j(l - J); (=0 (ﬂ’]( ¢ J(_l) {m=0 F(m+1) © } (42)
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With the aid of binomial theorem, the bracketed quantities can be expanded as a binomial of t. Following

this procedure of expansion, EQ.(42) can be rewritten as:

NH N min(i,N-R) N=R R i J i—j i—j ) N-R-4 N-R-1 N-R-1
ST S 3 [ _ j[ ]z(]z[ ] VRS S S
i—K j=max(0,i-R) \_ J i-j) 2 \4A) = ! U=0 =0 Uy 1=0
Y(N-R-A;U,, U, Uy, .......... Uy, ) & R M
( Bt b M o, IR D > P(R-6V, Yy Nm)H(%)" (43)
H [F(O' -I-l)]u v=0 v,=0 Vi = n=l
o=0
Milruf M
t=° exp(—(N -R-4+XVv,6,) tj
n=1
The Laplace transformation of Eq.(43) results:
N min(i,N-R) _ j i\ - HE —R-1 N-R-1 N-R-1
O, (4NR =Y [N_Rj(_R_]i[’ji(' J](l)'“z ) Y
i=K j=max(0,i-R) \_ J -]) 243\ ! h=0 10 Uy 1=0
P(N=R=-A;Uy, U, Uy, ... U, ) & i LY
( i e M ) ) DI (SRR ,vM)H(gon)” m
H [F(O' _l_l)]ua v=0 V,=0 Vi = 0=
o=0
M-1
F(Zruf +1)
7=0

M
Q+N-R-4+3Vv,0,
n=1

[ Zru +lj
7=0

Once Egs. (38 & 44) are obtained, the false alarm and detection performances are completely evaluated, as
Egs.(20, 22, 24, 26, 27) demonstrate. The major drawback of this scheme is the high processing time that is taken in

performing the sorting mechanism.

ii. Trimmed-Mean (TM)

The trimmed-mean (TM) algorithm is the more
generalized version of the OS scheme. It may be
considered as an amended version of the OS scenario.
The motivation of using this algorithm is to combine the
benefits of averaging and ordering along with censoring.
In this scheme, the noise power is estimated by a linear
combination of some selected ordered range samples.

ZTM (L1’ LZ)

A

Clearly, the ordered samples y,'s are neither
independent nor identically distributed, so the
performance evaluation of TM scheme becomes
cumbersome. To handle this evaluation, a new linear

Yob Y

The linear combination may be anticipated to give better
results because averaging estimates the noise power
more efficiently as in the case of the CA processor and
thus loss of detection in uniform background is more
tolerable. In the TM-CFAR detector, the lowest L,
ordered range samples and the highest L, ordered ones
are excised before summing the remaining cells to
formulate the statistic Zy,. Thus,

N-L,

)

=L+

Y, (45)

transformation is needed. In other words, the following
transformation can be used to make the ordered
samples y's satisfy the IID property [18].
Mathematically, this transformation takes the form:

y(Llﬂ'—l) U(E—Z)

(46)

As a function of these new variables Y/'s, Eq.(45) can be rewritten as:
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j =1

(47)

In terms of the Q-domain representation of the CDF of the ordered samples y,,'s, the MGF of the random variables

Y;'s can be easily calculated as [12]:

NH .
Q O_,(@NR) for
NH .
@mﬁle
NH .
®L1+j—1(Q’ N’ R)

MY (Q) =

)

. (48)
for 1<j <L

After obtaining the formula (48), the computation of the MGF of the noise level estimate Z;, becomes an

easy task owing to the independency of its samples. Thus,

L,
M, @LL) = H MY,,(QQ:(LT—EH)Q

Though the TM-CFAR scheme offers good
performance, the large processing time, which is taken
in ordering the candidates of the reference window,
limits its practical applications. This problem can be
overcome by partitioning the reference window into Q,
symmetrical or nonsymmetrical, smaller sub-windows.
The samples in the each sub-window are processed
and its statistic Z may be estimated according to a
specified rule and the final statistic is chosen by further
processing the Q sub-window outputs. Here, we apply
this idea by symmetrically partitioned the reference
window into preceding and succeeding sub-windows
(Q=2). In this situation, suppose that the preceding
subset has R; cells from outlying target returns, N/2-R;
ones from thermal background, the lowest P, cells and
the highest P, ones are censored from its ordered-
statistic before adding the remaining cells to establish

Z, = Mean(Z,,Z,)

(49)

the background level of the preceding sub-window.
Similarly, assume that the succeeding sub-window has
R, cells of fallacious target returns, N/2-R, samples
containing clutter, its associated ordered-statistic is
trimmed from its ends, where the lowest S, ordered cells
are excised and S, highest ranked cells are nullified.
Under these circumstances, the MGF's of their noise
power level estimates, Z, and Z,, have the same form as
that given by EQ.(49) after replacing its common
parameters with their corresponding values for the
preceding and succeeding subsets. Since the mean-
level (ML) operation represents the simplest way that
uses arithmetic averaging to extract the unknown noise
power level, the two noise level estimates are combined
through the ML operation to formulate the final noise
power estimate. Mathematically, this can be expressed
as:

(50)

Since the two noise level estimates are statistically independent, the final noise level estimate has a MGF given by:

sz(Q) =

As Egs.(20, 22, 24, 26, 27) indicate that the
probabilities of detection and false alarm are functions
of the Laplace transformation of the CDF of the noise

0;

Once the Q-domain representation of the PDF
of the resultant noise level estimate is formulated, the
processor false alarm and detection performances can
be completely evaluated, as we have proved in the
previous section. It is of importance to note that the TM
scenario reduces to the conventional CA and OS

M, @QRRIM, (@:8.8)

I TRk

(51)

level estimate Z;, it is necessary to compute such
important parameter. As a function of the MGF of Z,, its
CDF has a Laplace transformation given by [21]:

(52)

algorithms for specific trimming values. In other words,
T™ (0, 0) and T™ (K-1, N-K) tend to the well-known CA
and OS (K) processors, respectively; each handles N
reference cells to estimate the unknown noise power
level. Thus, for the conventional CA and OS (K)
schemes, we have:
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Mh@):

and

M ZOS(Q) =

M, (@:0.0)M, (@:00)

In Eq.(53), the noise levels extracted from the preceding and succeeding sub-windows of the OS scheme are:

Z,

iii. Cell-Averaging (CA)

The CA is the king of the CFAR schemes that
has the highest homogeneous performance, given that
the clutter is exponentially distributed and the contents
of the reference window are IID. It uses the maximum
likelihood estimate of the noise power to set the
adaptive threshold. The CA performs the traditional
averaging technique by dividing the summing of the
contents of the reference cells by their number.
Commonly, it is regarded as the reference model
against which new implementations are compared.
Nevertheless, it exhibits a weak behavior against
heterogeneous background which are frequently
created by clutter edges and the appearance of multiple
target situations. If one or more spurious targets fall
within the reference window, the probability of losing the
targets will be increased owing to the severe
phenomenon of target masking.

Since CA is a special case of TM scheme, we
can exploit the analysis of the TM variant to evaluate the
performance of the CA detector, where all of its ordered
samples are activated. Thus, under the same conditions
of the double-window TM scenario, the MGF of the
double-window CA processor is given by Eq.(53).

b) Combined CFAR Schemes

i. Linear Fusion (LF) Emerged Strategy

A robust detector should not only pick out
targets but also diminish false alarms. For target
detection in complex background, it is difficult to realize
high level of detection simultaneously with holding low
rate of false alarm. Therefore, an effective detector
dictates an incorporation of different features in such a
way that each aspect resolves one of the challenges
that enface the detection characteristics. In other words,
an architecture involving decentralized processing at
multiple sensor locations provides the proper choice of
optimum results in heterogeneous situation. From this
point of view, the fusion strategy has rapidly become a
methodology of choice for detecting fluctuating targets.
Such establishment involves higher reliability and
survivability, along with improved system performance
at low latency. In this scenario of CFAR technology, a

(1>
>

Y) & Z
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QK -1,—K |M (Q;K-&,—K) (54)
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N

, KK, €l12,....,— 55
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Fig.(1) portrays the detailed architecture of such

developed model. In this layout, there are three

individual arms in accordance with the standard

detectors. Depending on the required rate of false
alarm, the detection threshold along with the signal
strength of the CUT of each local scheme is used to
reach the final decision about the presence/absence of
the target under research. According to the appropriate
fusion rule, the three local decisions are simultaneously
mixed in the fusion center to establish the final decision.
As the circuit of Fig.(1) depicts, the potential outputs of
fusion CA OS TM strategy are summarized in Table I.
Since the CA scheme provides a low false alarm rate
and a high level of detection, its output is taken as a
baseline for the fusion center. When the CA output is
positive (presence of target), there is a possibility of
occurrence of false alarm, caused by clutter transition or
target multiplicity. To eliminate this eventuality, the AND
fusion Rule(l), indicated in Eq.(56), can be applied. This
rule necessitates the application of an AND logic
between the CA output and that obtained by applying an
OR logic between the outputs of OS and TM schemes.
On the other hand, when the CA output is negative
(absence of target), there exists the possibility of a
target lost caused by clutter interference. To avoid such
occurrence, an AND fusion Rule(ll), exhibited in Eq.(56)
is utilized. This involves the application of an AND logic
between the outputs of OS and TM variants.



I
Rule = 1

In the previous expression, "v" stands for the algebraic Boolean of OR gate whilst "A" represents the same

thing of AND gate.

CA A (OSvTM)
OSATM

(56)

Table 1: Possible Outcomes of Linear Fusion Strategy

CA Scenario OS Procedure TM Strategy FUSION RULE
Absence Absence Absence Absence
Absence Absence Presence Absence
Absence Presence Absence Absence
Absence Presence Presence Presence
Presence Absence Absence Absence
Presence Absence Presence Presence
Presence Presence Absence Presence
Presence Presence Presence Presence

As Table | indicates, the appearance of Tol is
demonstrated by the outcomes of rows 4, 6, 7, and 8.
Since the occurrence of one of them excludes the
occurrence of the others, they are mutually exclusive.
Taking into account that the decisions of CA, OS, and

PLF = PmiSCA Fi'os PdTM u RjCA

CA

Here, P, denotes the probability of missed
detection. All the parameters of Eq.(57) are previously
calculated. So, the detection performance of the LF-
CFAR strategy is completely analyzed.

Our scope in the upcoming section is to
numerically simulate the derived formulas through a PC
device using C++ programming language to see the
new contribution of the LF style in the CFAR world.

[V. SIMULATION RESULTS AND DISCUSSION

It is of importance to numerically evaluate the
performance of the examined model. This section
introduces the simulation results in order to confirm the
performance superiority of the proposed algorithm. How
well the model reacts against the presence of
inhomogeneous background, can be assessed by
several parameters. The most dominant and common
ones include detection performance, CFAR loss, and
actual probability of false alarm which measures the
model's capability of holding the rate of false alarm
stationary en face of outliers. Thus, we go to compute
the detection performance, in the absence as well as in
the presence of fallacious targets, for two and four
(M=2 & 4) post-detection integrated pulses to see to
what extent the pulse integration can ameliorate the
reaction of the CFAR scheme against fluctuating targets.
In our simulated results, it is assumed that the reference
window has a size (N) of 24 cells, the designed Py, is
10, For OS scenario, the 10" ordered sample, OS(10),

MiSSpg
- Pd (Pdos -2 I:)dos PdTM + Pdm) t Pdos PdTM

TM approaches are independent events, the global
detection probability "P " of the new implementation can
be obtained by summing the outcomes of these rows.
Thus, P has a mathematical form given by:

PdTM t PdCA Pdos PMSFM t PdCA Pdos Oy

(57)

is chosen to represent its noise level estimate of each
reference sub-window, whilst for TM scheme, the two
smallest cells along with the two highest ones, TM(2, 2),
are excised from the ordered set of each sub-window
before adding the remaining ordered samples to extract
its background power. Since the double-windows and
mean-level operation are common for all the CFAR
processors under test, it is of preferable to omit these
features from nominating them. Instead, it is sufficient to
designate each one of them with the CFAR rule used in
estimating the unknown noise level of each sub-window
as CA, OS(10) and TM(2, 2).

Fig.(2) shows the level of detection as a
function of primary target signal strength (SNR) of the
new methodology in homogeneous environment for the
four Swerling models when the CFAR circuit based its
decision on integrating two (M=2) consecutive sweeps.
For the sake of comparison, the single sweep (M=1)
case is attached for ¥* fluctuating target with two (k=1)
and four (k=2) degrees of freedom. Additionally, the
same results of the optimum (N-P) detector are included
among the curves of Fig.(2). In the case of single pulse
operation, the displayed results illustrate that there is a
turnover point; below which the N-P scheme surpasses,
in detection performance, the LF strategy whilst upper
this point the reverse is occurred. In other words, when
the target signal is strengthened, the detection
performance of the new variant outweighs that of the N-
P detector and the gap between the two curves
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increases as the signal becomes more strengthened.
Moreover, the processor performance for fluctuating
targets with k=2 is higher than that obtained for k=1and
this behavior is noticed for LF and N-P processors given
that the turnover point is exceeded. Furthermore, the
performance of SWI model coincides with that of SWI
model and the performances of SWIIl and SWIV models
are the same.

For M=2, on the other hand, it is noted that the
turnover point is shifted towards lower signal strength. At
the preceding of this point, SWI has the top
performance whereas SWIV gives the worst detection
level. As this point is surpassed, the reverse is
observed; where SWIV model has the highest
performance whilst the SWI model exhibits the lowest
probability of detection. It is of importance to note that
the detector performance against SWII fluctuation model
coincides with that corresponds to SWIII model in the
case where the radar receiver has a non-coherent
integration of two successive pulses (M=2) as Eq.(8)
demonstrates. As we have noticed for M=1, the N-P
detector has a detection performance which is meagerly
superior, at lower SNR, than that of LF scheme, when
the turnover point is not reached. When the SNR is
greater than that corresponding to the turnover point,
the new methodology has the top performance whatever
the fluctuation model is. The gap between the two
curves (LF & N-P) corresponding to SWI model is the
widest whereas this gap is narrow for SWIV model,
taking into account that the LF strategy has always the
top performance against any fluctuation model.

Fig.(3) Iillustrates the same thing as that
presented in Fig.(2) on the exception that the operating
environment is contaminated with some interfering
targets instead of being free of them. The results of this
scene are obtained on the assumption that one of each
reference sub-window cells contains interfering target
return (R;=R,=1); the signal strength of which equals to
that of the primary target (INR=SNR) and follows the
same Swerling model, as the target of interest, in its
fluctuation. A big insight on the variation of the curves of
this plot indicates that the turnover points of LF and N-P
are different, instead of coincide as in homogeneous
case in Fig.(2), and this occurs either the pulse
integration is absent (M=1) or present (M=2). In
addition, the N-P detector has the top performance
especially when the signal strength is modest. As the
target echo becomes strengthened, the detection
performance of the new processor approaches that of
the N-P and may surpass it if the CFAR circuit is
provided by pulse integration, as Fig.(3) demonstrates.
Moreover, the point of exceeding for SWI fluctuation
model takes place at a SNR which is lower than that
occurs for SWII model which in turn precedes, in its
location, that associated with SWIV model. It is of
importance to note that this behavior doesn't appear if
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pulse integration doesn't achieve. The single sweep
performance confirms this knowledge.

Fig.(4) repeats the behavior of LF and N-P,
against fluctuating targets, when the operating
environment is ideal (homogeneous) as that displayed
in Fig.(2) with the exception that the radar receiver
builds its decision on integrating four (M=4), instead of
two (M=2), successive pulses. The portrayed results of
this figure prove that the candidates of this figure have
the same variation as those corresponding in Fig.(2)
within some gain. Additionally, the gap between the
performance of novel scheme and that of N-P becomes
evident; with LF detector always on the top given that
the signal strength exceeds the turnover point.

Similarly, Fig.(5) redraws the results of Fig.(3)
for M=4 under the same circumstances. In comparison
with the results of Fig.(3), the current results exhibit
some noticeable remarks as: the gap between the LF
performance and optimum (N-P) is narrower, the point
of exceeding is shifted towards lower SNR with the
same sequence of Swerling models as that outlined
during our comments on the curves of Fig.(3), and there
is an evident gain in the performance of the examined
and standard detectors.

Now, Let us go to evaluate another figure of
merit which is known as CFAR loss. Fig.(6) shows how
the signal strength must be to satisfy a detection level of
90% (P4=0.9) as a function of the correlation strength
among the primary target returns when this target obeys
x*>-statistics, with two (k=1) degrees of freedom, in its
fluctuation. As a reference of comparison, the traditional
CFAR and N-P schemes are incorporated among the
results of the LF style. The displayed results are
acquired on the assumption that the environment of
operation is ideal and two (M=2) consecutive sweeps
are non-coherently integrated. A big insight on the
behavior of the curves of this figure demonstrates that
as the correlation among the target returns increases,
the echo signal must be more strengthened to reply the
required level of detection. Additionally, the conventional
OS scenario needs the highest, relative to the other
ones stated here, signal power to attain 90% level of
detection, the standard TM mechanism comes next, the
traditional CA procedure reserves the third position, the
optimum (N-P) occupies the fourth location, whilst the
new methodology (LF) needs the minimum signal
strength in order to accomplish the requested
probability of detection. The results of this scene reveals
the superiority of the underlined detector over its original
ones as well as the N-P which is taken as a reference of
any new variant added to the CFAR world. Fig.(7)
depicts the same behavior for the concerned
processors when the primary target fluctuates in
accordance with y*-statistics, with four (k=2) degrees of
freedom. The tested variants follow the same sequence,
as indicated in Fig.(6), in demanding the signal strength
to reply a detection level of 90%. Moreover, for any one



of the examined schemes, the signal power required in
this situation is weaker than that needed in Fig.(6) to
satisfy the same probability of detection.

In multiple target situations, Figs.(8-11) illustrate
the needed signal strength to satisfy a given level of
detection when the primary and the secondary targets
follow SWI, SWII, SWIII, and SWIV models, respectively,
in their fluctuation for the underlined detectors given that
the decision is carried out based on integrating two
(M=2) successive pulses and the outlying target returns
have the same signal strength as those of primary target
O=v).

As a reference of comparison, the results of the
N-P scheme are included among the curves of these
figures under the same target fluctuation model. Fig.(8)
portrays the required signal power versus the pre-
assigned level of detection for the standard as well as
the derived versions when one cell among the contents
of each reference sub-window is contaminated with
extraneous target returns (R;=R,=1). The displayed
results illustrate that the CA technique can reply the
request probability of detection till a specified level
beyond which it hasn't the capability to satisfy the
needed level of detection whatever the signal strength
is. In this regard, we define the dynamic range as the
range belong to which, the CFAR processor can reply
any given level of detection. Based on this definition, the
CA scheme has a limited dynamic range which is very
narrow. All the other under-examination processors are
able to reply any level of detection with different signal
powers. For lower values of detection probability, there
is a gap between the signal strengths needed by LF
strategy and N-P detector with LF needs the highest.
However, as the pre-assigned detection level increases,
this gap becomes narrower till the two curves coincide
and may LF requests the lowest signal strength to verify
the high levels of detection. The OS(10), TM(2, 2), and
LF scenarios have full dynamic range, with OS(10)
demands the highest whilst LF needs the lowest signal
power to give the pre-assigned level of detection. In
addition, the length of the dynamic range of CA detector
varies as a function of the target fluctuation model in
such a way that SWI model gives smallest whilst SWIV
model results in relatively the largest extend of the
dynamic range. The remaining schemes have always
the full length for their dynamic range irrespective the
fluctuation model is. However, the required signal
strength varies depending on the model of fluctuation in
such a way that the SWI model requires the highest
whereas the SWIV model needs the lowest signal power
to reply the same level of detection.

Finally, we are going to test the capability of the
new methodology of holding the rate of false alarm
unchanged en face of fallacious target returns that may
exist among the contents of the reference sub-windows.
This category of plots includes Figs.(12 & 13). While
Fig.(12) is devoted to measure the actual false alarm

rate, as a function of the correlation strength among the
interferer's returns, in the case where the outliers
fluctuate following x*-distribution with two-degrees (k=1)
of freedom, Fig.(13) depicts the same thing for ¥*-
distribution with four-degrees (k=2) of freedom for the
fluctuation of the interferers. In these two figures, it is
assumed that each reference sub-window has only one
contaminated cell (R;=R,=1) and the interference
strength has a power of 10dB (9=10dB). In addition, the
data of these figures is established taking into account
that the CFAR circuit non-coherently integrates two
successive pulses (M=2). The displayed results of
Figs.(12 & 13) demonstrate that the LF derived version
has the ability of maintaining the false alarm rate, as the
standard OS(10) and TM(2, 2) procedures, whatever the
strength of correlation among interferer's returns is. As
predicted, the conventional CA detector is incapable of
fixing the rate of false alarm against the existence of
outlier's returns.

V. CONCLUSIONS

According to the analysis outlined above, the
current investigation is aimed at comparing the
performance of several CFAR alternatives regarding the
maintaining of the false alarm probability and the
reaching of the top of detection probability with the goal
of selecting the most promising CFARs. For the Swerling
target models, embedded in white Gaussian noise of
unknown level, we derive an analytical expression for the
overall probability of detection while the overall
probability of false alarm is retained at the desired level
for the given fusion rules. Through extensive simulations,
the superiority and robustness of the linear fusion
mechanism are clearly demonstrated by outperforming
the conventional processors of CA, OS, TM and N-P in
scenarios with different target fluctuation models,
different correlation strengths among the target's
returns, different numbers of integrated pulses, and
varied operating circumstances. This ability to obtain
improved performance compared to existing models is
the major contribution of this work. In other words,
performance analysis, conducted on both analytical and
simulated results, highlights that the new architecture
operating in multi-target background guarantees the
constant false alarm rate property with respect to the
correlation strength variations and a limited detection
loss with respect to the other detectors, whose detection
thresholds nevertheless are very sensitive to the
interference power. The cost is that LF-CFAR suffers
from more computational burden and elapsed time than
other processors. We conclude from our simulation
results that the fusion detector has higher quality
detection interactions in heterogeneous environments.
In other words, the linear fusion enjoy significant
advantages in both the false alarm regulation property
and detection performance, as the displayed results of
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this research demonstrated. Thus, the LF strategy has
the proficiency of choice en face of heterogeneous
situations.
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Fig. (1): Architecture of linear fusion (LF) adaptive detector with postdetection intregation
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MULTI -TARGET DETECTION CAPABILITY OF LINEAR FUSION APPROACH UNDER DIFFERENT SWERLING MODELS OF TARGET
FLUCTUATION

Frobability of detection "Pd"

-i 3 Z ir is ig z

Primary target signal-to-noiseratio (SNE) "dB""

Fig. (2): M-sweeps homogeneous detection performance of LF and N-P schemes for Swerling models of
x>-fluctuating targets when N=24, M=2, and P,=10°

Global Journal of Computer Science and Technology ( H) Volume XXI Issue III Version I E Year 2021
Probability of detection "Pd"'

- 3 T ii is ig 2z

Primary target signal-to-noiseratio (SVR) "dB"

Fig. (3): M-sweeps multi-target detection performance of LF and N-P schemes for Swerling models of
x’-fluctuating targets when N=24, M=2, R,=R,=1, 9=y, p,=p,, and P,=10°
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Fig. (4):

M-sweeps homogeneous detection performance of LF and N-P schemes for Swerling models of
x*-fluctuating targets when N=24, M=4, and P,,=10°
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Fig. (5):

M-sweeps multi-target detection performance of LF and N-P schemes for Swerling models of
x*-fluctuating targets when N=24, M=4, R,=R,=1, 9=y, p,=p,, and P,,=10°
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MULTI -TARGET DETECTION CAPABILITY OF LINEAR FUSION APPROACH UNDER DIFFERENT SWERLING MODELS OF TARGET
FLUCTUATION
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Fig. (6): M sweeps homogeneous signal strength requested to achieve a detection level of 90% of CFAR schemes
for second-degree of freedom y*-fluctuating targets when N=24, M=2, and P,,=10°
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Fig. (7): M-sweeps homogeneous signal strength requested to achieve a detection level of 90% of CFAR schemes
for fourth-degree of freedom x*-fluctuating targets when N=24, M=2, and P,,=10°
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FLUCTUATION
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Fig. (8): M-sweeps multi-target signal strength requested to achieve a given level of detection of CFAR schemes for
SWI target fluctuation model when N=24, M=2, R =R =1,9=y,ps=p, , and P =10°
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Fig. (9): M-sweeps multi-target signal strength requested to achieve a given level of detection of CFAR schemes for
SWII target fluctuation model when N=24, M=2, R,=R,=1, 8=y, Ps=pp, and P,,=10°
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Fig. (10): M-sweeps multi-target signal strength requested to achieve a given level of detection of CFAR schemes
for SWIIl target fluctuation model when N=24, M=2, R =R =1,9=y, p,=p,, and P,,=10°
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Fig. (11): M-sweeps multi-target signal strength requested to achieve a given level of detection of CFAR schemes
for SWIV target fluctuation model when N=24, M=2, R,=R,=1, 9=y, p,=p,, and P,=10°
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Fig. (12): M-sweeps multi-target actual false alarm performance of M-sweeps operation of CFAR detectors for two-
degrees of freedom y*-fluctuating targets when N=24, M=2, R,=R,=1, 8=10dB, and design P,=10*
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Fig. (13): M-sweeps multi-target actual false alarm performance of M-sweeps operation of CFAR detectors for four-
degrees of freedom x*-fluctuating targets when N=24, M=2, R,=R,=1, §=10dB, and design P,,=10°
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