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I.  Introduction  

Figure 1: An overview of the fundamental structure of 
(a) Factorization Machine and (b) Neural Reasoning 
Machine. As we can see, FM has three components: 

feature interactions, and it adds up the scores from 
the three components to calculate the final ranking 
score, while NRM considers first-order and second-
order logical interactions between features, which 
enables the model to learn the compositional 
relationships between features for recommendation. 

Recommender Systems (RS) play an important 
role on the modern web as well as in many intelligent 
information systems. They connect users and 
information by predicting the potential interest of users 
and proactively provide relevant information to users [1– 
3]. Many of the existing recommendation methods 
are designed based on the fundamental idea of 
similarity matching [4–13]. For example, some early 
Collaborative Filtering (CF) models [4, 5, 7]— which 
predict a user’s future preferences based on their 
previous records—use manually designed similarity 
functions such as cosine similarity [4], Pearson 
correlation [5] or vector inner product [7] to calculate 
the user-item similarities. More recently, researchers 
have considered learning-based similarity functions 
such as neural networks to match users and items [6, 
8] based on the user and item embeddings that are 
learned from various types of information sources such 
as text [14, 15], image [16] and knowledge graphs [17–
19]. 

Factorization Machine (FM) [20–23]—as a type 
of matching- based model that integrates the power of 
feature-level and user- item-level similarity—unifies the 
advantages of different matching- based models and 
achieves better performance in many recommendation 
tasks. As illustrated in Figure 1(a), FM considers both 1-
order and 2-order feature interactions to predict the 
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Abstract- Most of the existing recommendation models are 
designed based on the principles of learning and matching: by 
learning the user and item embeddings and using learned or 
designed functions as matching models, they try to explore 
the similarity pattern between users and items for 
recommendation. However, recommendation is not only a 
perceptual matching task, but also a cognitive reasoning task 
because user behaviors are not merely based on item 
similarity but also based on users’ careful reasoning about 
what they need and what they want.

In this paper, we propose a Neural Reasoning 
Machine (NRM) for recommendation. NRM is a neural-
symbolic reasoning architecture that can construct different 
neural networks based on different input logical expressions. 
Distinct from the continuous prediction values in differentiable 
machine learning models, the output in symbolic logical 
reasoning space is binary (true or false). Therefore, an 
important challenge is to seamlessly integrate symbolic 
reasoning and continuous learning. To solve the problem, we 
offer a modularized reasoning architecture NRM. The 
architecture is designed to acquire symbolic operations like 
AND, OR, and NOT through neural modules. This allows 
logical reasoning expressions to be represented as neural 
networks. By using these neural-symbolic operations, we are 
able to model complex feature interactions in a latent 
reasoning space, which is beneficial for tasks such as 
prediction and recommendation. We test our approach by 
constructing the feature-based recommendation task as a 
logical reasoning problem. Experiments show that our neural 
reasoning machine is significantly better than state-of-the-art 
(neural or linear) factorization machines in terms of the Top-K 
recommendation task, and case studies also show the 
importance of reasoning beyond learning for intelligent 
decision making tasks such as recommendation.
Keywords: neural-symbolic learning and reasoning; neural 
logic reasoning; machine reasoning; factorization 
machines; recommendation.

bias term, first-order features and second-order 



 

user-item preference. Researchers further explored FM 
under the framework of neural similarity matching. One 
approach is to increase the neural network depth of the 
feature similarity matching model, such as Deep Factor- 
ization Machine (DeepFM) [21] and eXtremely Deep 
Factorization Machine (xDeepFM) [22], which provided 
better recommendation accuracy than the original 
shallow Factorization Machine (FM) model [20]. Other 
researchers tried to augment the second-order feature 
interaction from inner-product to neural networks, such 
as Neural Factorization Machines (NFM) [23], which 
overcomes the difficulty that FM model cannot learn 
feature interactions that did not appear in the training 
set. 

Due to the generally good performance and the 
  

matching-based Factorization Machine models have 
been widely used in real-world applications [22, 24, 25]. 
However, as a cognition rather than a perception intel- 
ligent task, recommendation not only requires the ability 
of pattern recognition and matching from data, but also 
the ability of concrete reasoning in data [26]. This is 
because users do not make decisions simply based on 
similar users or items, but they make concrete 
reasoning about the item features and their 
relationships to decide the next steps. For example, if a 
user has already purchased a USB hub, then he or she 
might purchase a USB drive or an external hard drive 
instead of purchasing another USB hub in the next step, 
even though the two USB hubs can be very similar. As 
a result, if we merely rely on similarity-based models 
for recommendation, the system might recommend 
similar products to what the user has already 
purchased even though the user may not need it any 
more. In this paper, we propose Neural Reasoning 
Machine (NRM), which is a neural logical reasoning 
model for recommendation. NRM is able to learn the 
conjunction and disjunction relationships between 
features and items so as to model the compositional 
nature of the recommendation problem. For example, if 
a user has already purchased a USB hub, then it’s 
unlikely for the user to purchase another one since 
the two items are substitutive, which can be 
represented as a low probability between the 
conjunction of the two items. Technically, we learn the 
basic logical operations such as AND ( ), OR ( ) and 
NOT ( ) as neural modules, which are regularized by 
logical rules to guarantee their logical behavior, and 
then we represent the feature set of each user-item 
pair as a logical expression to predict the preference 
score for the user-item pair, where the logical 
expression models the logical conjunction and 
disjunction relationship among the features. For 
example, if there are two relevant features 𝑣𝑣1 and 𝑣𝑣2 for 
a user-item pair, then the expression would be          

, which means that  the  possible 

   

 
 

 

  

The key contribution of this paper are as follow. 

• We highlight the importance of feature-level 
reasoning for recommender systems to model the 
compositional nature of the recommendation 
problem. 

• We propose Neural Reasoning Machine (NRM) to 
integrate symbolic logical reasoning and continuous 
embedding learn ing for recommendation. 

• We conduct both experiments and case studies 
on several real-world datasets to show the improved 
recommendation performance and the intuition for 
such improvements. 

The following part of the paper will be organized 
as follows. We review related work in Section 2, introduce 
details about the model in Section 3, and provide 
experimental results in Section 4. Finally, conclusions 
and future work are provided in Section 5. 

II. RELATED WORK 

Factorization Machine (FM) [20] is one of the 
most popular types of recommendation models in real-
world recommender systems due to their ability to 
model feature interactions. By embedding all of the 
features as latent vectors and learning the weight of 
each vector, FM can estimate the similarity between 
users and items, and use this as a score to predict the 
user’s preferences on items for recommendation. In 
addition, FM models the second-order pair-wise 
interaction between features to improve the prediction 
accuracy, which is particularly suitable for industry 
recommender systems which include many features 
from users and items. Due to the efficiency and flexibility 
of FM models, they have also been applied to various 
tasks beyond recommender systems such as stock 
market prediction [27] and online advertising [28]. 

Despite that traditional linear FM [20] has been 
applied to many applications and its effectiveness has 
been shown to be better than SVM and SVD++ [29] in 
practice, it still has some important limitations. As a linear 
model, FM cannot effectively learn and represent 
nonlinear patterns from data [30, 31]. However, lots of 
real-world data requires nonlinear pattern recognition 
and learning, and because traditional FM is limited to 
linear modeling, FM cannot make satisfactory predictions 
in such cases. Besides, FM cannot distinguish the 
importance of different feature interactions. To solve 
these problems, researchers have made a lot of efforts 
[22, 32, 33]. For example, Attentional Factorization 

∧ ∨
¬

v1 ∨ v2 ∨ (v1 ∧ v2)

reason for the user to like the item could be feature
𝑣𝑣1, or feature 𝑣𝑣2, or features 𝑣𝑣1 and 𝑣𝑣2 together. We 
evaluate the probability of truth for the expression to 
rank the candidate items for recommendation. 
Experiments on real-world datasets show that our NRM 
model significantly outperforms traditional matching-
based (both shallow and deep) factorization models.

© 2023   Global Journals
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flexibility to incorporate various features, similarity 



 

Machine (AFM) [34] use attention model to specify a 
proper weight for each feature interaction. Some other 
research take a different path, which try to integrate 
deep neural network (DNN) into factorization machine, 
such as Deep Factorization Machine (DeepFM) [21] and 
eXtremely Deep Factorization Machine (xDeepFM) [22]. 
The DeepFM model contains two parts, FM and DNN. 
The FM part can extract low-order feature information 
while the DNN part can extract high-order interactive 
feature information. DeepFM model can learn both low- 
order and high-order feature information at the same 
time, without biasing the model to any one side [6, 20]. 
Compared with DeepFM, xDeepFM model exchanges 
the FM part in DeepFM with a simple linear network and 
add a compressed conjunction network (CIN), which 

solution is Neural Factorization Machines (NFM). Instead 
of directly inputting the embedding vector into the neural 
network, NFM builds the Bi-Conjunction operation after the 
embedding layer. This makes the model be able to learn 
feature interactions that did not appear in the dataset. 

Nonlinear networks can bring models with 
better ability to learn over data and get better prediction 
accuracy [35]. However, complex real-world scenarios 
such as online purchase and personalized 
recommendation not only require the ability of similarity 
matching from data, but also requires the ability of 
concrete reasoning over the compositional relationships 
between features and items [26, 36]. This is because 
users’ behaviors are not only driven by the similarity of 
items, but also driven by users’ careful reasoning about 
what they already have and what they need. Take e-
commerce as an example, if a user has already 
purchased a USB hub, then the user would unlikely 
purchase another one, but would more likely purchase 
other products that are compatible with the USB hub, 
such as a USB drive or an external hard drive. As a 
result, if we want to recommend products for users in e-
commerce websites, we should not simply make 
recommendations based on the perceptual similarity 
between items or features, since the probability for user 
to buy a substitute in a short time could be low. Instead, 
we should carefully reason over the compositional 
(substitutive or complimentary) relationships between 
item features and recommend new items that are 
compatible with users’ previous records. Under this 

integrate logical reasoning and neural network. For 
example, traditional approaches such as Markov Logic 
Networks (MLN) [37–39] integrate probabilistic graphical 
models with logical reasoning, while more recent Neural 
Logic Reasoning (NLR) [26, 36] approaches try to 
integrate logical reasoning and neural networks for 
intelligent tasks. For example, Neural Logic Reasoning 
(NLR) [36] builds a logic-integrated neural network (LINN) 
for solving logical equations and non-personalized 
recommendation, while Neural Collaborative Reasoning 

(NCR) [26] models neural Horn clauses for implication 
reasoning in a latent reasoning space to predict the 
future preferences of users. 

Although NLR and NCR have shown better 
recommendation performance based on neural logical 
reasoning, they are designed to conduct reasoning on 
user-item interactions rather than reasoning on user or 
item features. However, many real-world recommender 
systems need to handle various types of features for 
recommendation, especially in factorization machine 
type of models. As a result, we generalize the idea of 
neural logic reasoning to feature-level reasoning, and 
propose Neural Reasoning Machine (NRM) to model the 
compositional relationship between (first-order and 
higher-order) features for recommendation. 

III. Neural Reasoning Machine 

We will introduce the details of our Neural 
Reasoning Machine (NRM) architecture in this section. 
First, we provide a brief introduction to Factorization 
Machines (FM) for better comparison between 
reasoning machine and factorization machine. We then 
introduce how to construct the reasoning machine 
based on logical expressions as well as logical 
regularizers. Finally, we introduce how to learn and 
optimize the model. 

a) Preliminaries 
To provide a better comparison between 

reasoning machine and factorization machine, we first 
briefly review factorization machine. FM mainly solves 
the feature interaction problem under sparse data. FM is 
a linear model, but it still has good generality for both 
continuous and discrete features. In traditional linear 
models such as linear regression, we consider each 
feature individually and do not construct interacted 
features. However, in many cases, some features 
combined contain richer and more accurate information 
than considering each feature individually. For example, 
a product may be best suitable for male teenagers, as a 
result, individually considering the gender and age 
features would not find the best user group for the 
product, and it is necessary to consider the gender- age 
interactive feature to solve the problem. For simplicity 
and efficiency, FM only considers the second-order 
feature interactions. 
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further improve the performance of the model. Another 

background, researchers have made efforts to integrate 



 

 
Figure 2: An overview of the connection between the 
modules in the NRM architecture. The inputs are 
feature representation vectors. Each pair of feature is 
conjuncted through the AND module, and then all 
individual features, conjuncted features as well as the 
global bias feature are disjuncted through the OR 
module to build the vector representation for the 
whole expression, which is compared with the anchor 
True vector to decide the recommendation score. 

The model can be represented as. 
 
 
 
where  is example     value on the i-the feature, 
which is usually a binary value (1 for triggering the 
feature and 0 otherwise). The multiplication 
represents the interactive feature constructed by
and  and this feature is triggered (i.e., value 
equals 1) if and only if both   and    are triggered.  
Most of the real-world recommendation datasets are 
very sparse due to the very large amount of users, 
items and features. As a result, usually only a few of 
the feature values    or interactive feature values
are non-zero. Because of the sparse training data 
and the huge number of interactive feature weight 
parameters wij to be learned, it is usually impractical 
to directly train the interactive feature weight matrix 

To solve the problem, we usually use 
matrix factorization for dimension reduction to 
parameterize the weight matrix, which gives the 
following FM formula: 
 
 

where each feature   is learned as a -dimension 
vector representation and the inner product 
between two feature vectors

 
denote the importance 

of this feature combination:
 

 
 

  
 

Eventually, the parameters to be learned in 
FM include the global bias term w0, the weights of 
first - order features  and the  vector 
representation for each feature

 

b) The NRM Framework 
Different from FM which adopts linear 

addition to combine the influence of (individual and 
interactive) features, NRM models the compositional 
logical relationship between features for recommend-
dation. As shown in Figure 2, NRM has three logical 
modules: AND (∧), OR (∨) and NOT (¬). NRM 
employs these three logical modules over the feature 
vectors and represent each data sample as a logical 
expression. Mathematically, this can be formulated 
as: 
 

 
 

 
 

 
 

  
 

 
  

 The intuition behind the NRM modeling is 
that: the reason for a

 
user to like or dislike a particular 

item could be the global feature,
 

OR each of the 
individual feature, OR each combination (AND)

 
of two 

features. Comparing Eq.
 

(2) and Eq.
 

(4), the 
advantage of

 
NRM is its ability to model the 

compositional relationship between
 

features or 
feature combinations. More specifically, traditional FM

 is additive, while NRM is disjunctive, which makes the 
model more

 
sensitive to good features (or feature 

combinations) even if such
 

good features (or 
combinations) are few. Due to the nature of the

 mathematical OR operation, even one strong signal 
from a very

 
positive feature can lead to strong 

predictions.
 One thing to note is that different from FM 

whose direct output
 

is a scalar value (Eq.(2)), the 
direct output of NRM is a vector 

 
(Eq.(4)), which 

is the vector representation of the data sample 
corresponding to a user-item pair. To get the final 
recommendation score,

 
we need to evaluate to what 

extent      is close to the constant
 
true vector T in 

the logical reasoning space. Besides, to guarantee
 that the AND, OR and NOT modules are really 

conducting the expected logical operations in the 
reasoning space, we need to apply

 
logical 

regularization over the modules. We will introduce 
these

 
techniques in the following subsection.

 

  

  

𝑦 (𝑥) = 𝑤0 +
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 +
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗

𝑦 (𝑥) = 𝑤0 +
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 +
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

⟨v𝑖 , v𝑗 ⟩𝑥𝑖𝑥 𝑗

⟨v𝑖 , v𝑗 ⟩ =
𝑘∑︁

𝑛=1
𝑣𝑖,𝑛𝑣 𝑗,𝑛

(1)

(2)

(3)

w ∈ R𝑛
v𝑖 ∈ R𝑘 (𝑖 = 1, 2, · · · , 𝑛).

ŷ(𝑥) = v0 ∨
( 𝑛∨
𝑖=1

𝑥𝑖v𝑖
)
∨
( 𝑛∨
𝑖=1

𝑛∨
𝑗=𝑖+1

𝑥𝑖𝑥 𝑗 (v𝑖 ∧ v𝑗 )
)

(4)

𝑥𝑖 𝑥 ’s

𝑥𝑖

𝑥𝑖𝑥 𝑗

𝑥 𝑗

𝑥𝑖 𝑥 𝑗

𝑥𝑖𝑥 𝑗𝑥𝑖

𝑊 = [𝑤𝑖 𝑗 ]𝑛×𝑛

𝑖 𝑘

v𝑖 ∈ R𝑘

where v0 is a global bias vector, vi and vj are the 
embedding vectors of the i-th and j-th feature, while xi 

and xj represent the binary values of the two features, 
e.g., xi = 1 means this data sample triggers feature i, 
and 0 otherwise. As a result, only those triggered
individual features (i.e., xi = 1) or interactive features 
(i.e., xixj = 1) will be considered in the equation. The 
parameters to be learned in the NRM model include 
the global vector v0, each feature’s representation 
vector vi (i = 1, 2, · · ·, n), as well as the parameters in 
the logical modules.

ŷ(x)

ŷ(x)
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(NCR) [26], we use three independent

 

Multi-Layer 
Perception (MLP) neural networks to represent the

 

logical operators AND(·, ·), OR(·, ·) and NOT(·). Both 
AND and OR

 

operators are binary operators, which 
take two vectors as input

 

and output another vector. 
The NOT operator is a unitary operator

 

which takes 
one vector as input and outputs another vector.

 

 
 

 
 

 
 

 

 
 

 
  

ii.

 

Calculate Logical Expression

 
 

 

 
 

  

  
 

 

 
 

  
  

(5)

 

 
 

 
 

 
  

  
 

 
  

(6)
 

 

To ensure that the logical modules such as 
AND and OR perform

 
the corresponding logical  

 

For example, the following logical regularizer 
is added to the OR

 

module to make sure the operator 
satisfies the Annihilator law, e.g.,

 
 

 

 
  

 
 

 
 

 
 

 
   

 
 

 

d)
 

Final Loss and Learning Method
 

The final prediction of NRM is the output of 
the similarity function

 
(Eq.

 
(6)). The range of the 

label of our dataset set is 0 and 1. To make the 
output of

 
NRM compatible with the label, we amplify 

the cosine similarity
 
output in Eq.(6) by ζ

 
and pass 

the value through a sigmoid function:
 

  

where (·) is the sigmoid function, 
 
is the coefficient 

to amplify
 
the output of similarity function. Then we 

calculate the square error
 
to estimate the difference 

between the prediction and the label:
 

 
 

(9) 
where   is the prediction of NRM and y is  the 
ground-truth label. 

At the same time, we calculate the logical regularizer. 
 

 
 

(10)

 where each   represents a logical regularizer as in 
[26, 36], and 

 

is

 

the coefficient of the logical 
regularizer. Logical constraints help the

 

NRM model 
to achieve better performance, but we need to 
balance

 

the weight between the logical constraint and 

 

𝑆𝑖𝑚(ŷ, 𝑻 ) = ŷ · 𝑻
∥ŷ∥∥𝑻 ∥

ŷ = v0 ∨
(
𝑥1v1 ∨ 𝑥2v2) ∨

(
𝑥1𝑥2v1 ∧ v2

)

𝑣 ∨𝑇 = 𝑇 :

𝑟 =
1
𝜒

∑︁
𝑣∈𝜒

1 − 𝑆𝑖𝑚(OR(v,T),T) (7) 

𝑦 = 𝜎 (Z · 𝑆𝑖𝑚(ŷ,T))

𝐿𝑜𝑠𝑠 = (𝑦 − 𝑦)2

(8)

𝐿𝑟 = 𝛾
∑︁
𝑖

𝑟𝑖

operations as expected, we add logical regularizers 
to the neural modules to regularize their behavior.

c) NRM Expression Calculation

i. Logical Operators and Anchor Vectors
Inspired by Neural Collaborative Reasoning 

the prediction loss by . In the experiment section, we 
will study how the coefficient influences the 

The answer of a logical expression should be 
true or false. As a result, we need two anchor vectors 
which correspond to the constant True and False
vector in the reasoning space. The true vector (T) is a 
randomly initialized vector and once it is initialized, it
keeps as a constant vector and never gets updated 
during the entire training and evaluation process. The 
false vector (F) is calculated based on the true vector 
(i.e., F =NOT(T)). For example, if the label of an 
example is positive, we expect that the vector 
representation of the corresponding logical 
expression should be close to the true vector (T), 
otherwise, if the label is negative, we expect the 
vector representation would be far away from the true 
vector and close to the false vector (F).

With these logical modules and anchor 
vectors, we can calculate the vector representation of
the logical expression in NRM. The initial input to 
NRM are the user or item features of an example. 
Suppose an example includes two features v1 and v2

(i.e., x1 = x2 = 1). The output vector of OR (v1, v2) 
represents that the user may like the item because of 
feature v1 or feature v2, while AND (v1, v2) can 
represent the possible reason of feature v1 and v2

bias vector (v0), we can get the final expression of this 
example:

When we get the
    , the next step is to decide whether the logical 
expression is true or false. To achieve this goal, we 
need to compare the vector   and the anchored 
vector T. As we mentioned before, if the example is
positive, then the representation vector should be 
close to the T vector. Otherwise, it should be away 
from the T vector. In this work, we use the cosine
similarity function to compare the vector 
representation    of an expression with the T vector.

output vector representation             
ŷ

ŷ

ŷ

ŷ

where v is the corresponding vector of a variable, χ
represents the variable space, Sim (·,·) represents the
similarity function, which is cosine similarity in this 
work. Intuitively, by minimizing this regularizer, the 
model make sure that        is close to T. Details of the 
many other logical regularizers are similar as [26, 36].
We not only apply regularizers to the input 
embedding vectors but also to the intermediate latent 
vectors to ensure that all vectors are in the same 
representation space and follow the same con 
straints. Take the logical expression in Eq. (5) as an 
example, we will add regularizers to v0, v1, v2, as well 
as the output vectors of (v1 ∨ v2) and (v1 ∧ v2). The 
logic constraint loss is represented as Lr, which 
represents the sum of all of the logical regularizers. It
will be added to the training loss in the learning 
process.

𝑣 ∨𝑇

Z𝜎

𝑦

𝑟𝑖

𝛾

𝛾
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together. Combined with the feature values (xi) and 

cosine similarity function is - 1 to 1, however, the 



 

 

 
 

 
 

 
 

 
 iv.

 
Experiment

 In this section, we conduct experiments in 
three real-world datasets

 

and compare the results of 
NRM and baselines to verify the effectiveness of our 
model. We aim to answer the following research

 questions:

 •

 
RQ1:

 

What is the performance of NRM in terms of 
hit ratio

 

and NDCG? Does it achieve better result 
than state-of-the-art

 

factorization machine 
models?

 •

 
RQ2:

 

How does the logical regularizer help to 
improve the

 

performance?

 •

 
RQ3:

 

What is the impact of the conjunction part of 
the

 

model?

 a)

 
Dataset

 We use three real-world datasets in the 
experiments. We introduce

 

the details about the 
datasets in the following.

 •

 
MovieLens100K [40]:

 

This is

 

a frequently used 
dataset maintained by Grouplens. The

 

MovieLens

 dataset was first released in 1998 and has 
become popular since the publication.

 

Many 
research have adopted

 

this database. This 
dataset describes users’ expressed preferences 
for movies. The dataset

 

keeps updating, and we 
use the latest version released by Grouplens. It 
contains 100,000 movie ratings ranging from 1

 

to 
5 from 610 users to 9724 movies.

 •

 
Amazon [41]:

 

This is the Amazon e-commerce 
dataset, which

 

includes user, item and rating 
information spanning from

 

May 1996 to Oct 2018. 
This dataset is an updated version of

 

the Amazon 
review dataset released in 2014. This is also a  
frequently used dataset adopted by many 
research. It contains 24 different categories as 
sub-datasets. We use two very

 

different 
categories Grocery and Electronics to explore the

 performance of our model under different product 
recommendation scenarios.

 
 
 
 

Table 1: Basic Statistics of the Datasets 

   
      

     
     

Some basic statistics of the datasets are 
shown in Table 1. Because some of the baselines 
need explicit feedback, for fair comparison, for all of 
the models in this paper, we all use explicit feedback 
datasets. The original dataset contains rating 
information. We use this information as explicit 
feedback. Following common practice, we consider 
1-3 ratings as negative feedback and 4-5 ratings as 
positive feedback. 

According to the suggestions of [42], we use 
leave-one-out setting to split the training set, 
validation set and testing set. To avoid data leakage, 
for each user, we put the user’s most recent two 
positive interactions into the validation set and testing 
set, respectively, and put the rest interactions into the 
training set. All of the baselines and NRM use the 
same data to make sure the experiment is fair and 
models are comparable. 

b) Baselines 
In this section, we make a brief introduction to 

the baselines used in the experiments. We compare 
with five baseline models. Three of the five baselines 
do not have open-source implementation, so we 
implemented them by PyTorch, an open-source deep 
learning library. The baselines have open-source 

 
 

For anonymity, we will publicize our code later. 

• FM: Factorization Machines (FM) mainly solves 
the problem of feature interaction under sparse 
data. Its prediction complexity is linear, and it has 
good generality for continuous and discrete 
features. We consider FM as a baseline of our 
model because FM is a fundamental and widely 
used factorization model. 

• NFM: Neural Factorization Machine (NFM) 
introduces Bi-linear Interaction (Bi-Interaction) 
pooling operation in neural networks. Based on 
this, the model can learn combined features that 
do not appear in the dataset, which helps to 
better learn and predict in real-world data. 

• DeepFM: Deep Factorization Machine (DeepFM) 
combines deep neural networks and FM. It 
constructs a Multi-Layer Perception (MLP) to 
learn the embedding features. 

• xDeepFM: eXtremely Deep Factorization Machine 
(xDeepFM) purposes a Compressed Conjunction 

 
 

experimental result. We sum up the logical regularizer
and the prediction loss as the final loss function. Then 
the model minimizes the loss to optimize the model 
parameters.

(11)

where   is the set of training samples. We will 
introduce the experimental settings and explore the 
recommendation performance of NRM in the 
following section.

𝐿𝑜𝑠𝑠 =
∑︁
𝑥 ∈D

(𝑦 − 𝑦)2 + 𝐿𝑟

Dataset #users #items #features #instance

MovieLens 100K 610 9724 10334 100000
Grocery 854 14700 15554 45575
Electronics 16530 65848 82376 446367

D
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implementations1, and thus we directly use the open-
source implementation for experiments.

                                                            
1 https://github.com/rixwew/pytorch-fm



 

Different from DeepFM, xDeepFM learns specific

 

weights for the linear layer, deep learning layer 
and CIN

 

during the training process.

 

•

 

NCR:

 

Neural Collaborative Reasoning (NCR) is the 
state-of-the-art neural reasoning model for 

items as a logical expression. By learning these logical 
expressions, NCR can predict users’ future behaviors. 
The difference between NCR and our model is that 
NCR conducts reasoning on item-level while our model 
conducts reasoning on feature-level.

 
 

Table 2:
 
Experimental results on Hit Ratio (HR) and Normalize Discounted cumulative gain (NDCG). Bold 

numbers represent
 
better performance. We use star (*) to indicate that the performance is significantly better 

than all baselines. The significance is
 
at 0.05 level based on paired t-test.

 

 
 

 
    

 
  

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
             

 
             

 

c)

 

Parameter Settings

 

The learning rate was searched in [0.001; 0.01; 
0.02; 0.05] for all

 

methods. We apply ReLU

 

non-linear as 
activation function between

 

logical operations. For all 
models, we make the feature embedding

 

size as 128, the 
batch size is 4096. We run 20 epocs and record the

 

best 
result. For fair comparison, for all models, including our 
model

 

and baselines, we tune each model’s parameter to 
its own best

 

performance on the validation set. All 
experiments were conducted

 

on a single NVIDIA Geforce 
2080Ti GPU. The operating system is

 

Ubuntu 16.04 LTS.

 

d)

 

Evaluation Metric

 

For each user-item pair in the testing

 

and 
validation set, we randomly sample 99 irrelevant features to 
exchange the first item

 

feature of the user-item pair. And we 
use these 100 user-item pairs

 

for evaluation. The model 
that has a better performance should get

 

a higher score for 
the true user-item pair than others.

 

We use Hit Ratio (H R) and Normalize Discounted 

 

used to measure

 

whether the correct item appears in the 
top-K list. DCG is accumulated from the top of the result list 
to the bottom, with the

 

gain of each result discounted at 
lower ranks [43]. NDCG is the

 

ratio between DCG and the 
Idealized Discounted Cumulative Gain

 

(IDCG). These two 
metrics are widely used in recommendation

 

system 
evaluation [44, 45]. For HR and NDCG, larger value means

 

better performance.

 

e)

 

Performance Comparison

 

The experimental results on Hit

 

Ratio (HR),

 

and 
Normalize Discounted Cumulative Gain (NDCG)

 

are shown 

 
 

 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

    
Dataset ML100K Grocery Electronics

Metric NDCG@10 NDCG@5 Hit@10 Hit@5 NDCG@10 NDCG@5 Hit@10 Hit@5 NDCG@10 NDCG@5 Hit@10 Hit@5

FM 0.169 0.128 0.328 0.202 0.057 0.045 0.109 0.072 0.056 0.038 0.117 0.062
NFM 0.212 0.182 0.361 0.271 0.085 0.061 0.183 0.108 0.057 0.045 0.109 0.072

DeepFM 0.197 0.160 0.351 0.236 0.068 0.052 0.133 0.081 0.061 0.043 0.127 0.070
xDeepFM 0.159 0.131 0.283 0.198 0.072 0.058 0.202 0.126 0.177 0.146 0.311 0.213

NCR 0.184 0.146 0.329 0.218 0.182 0.161 0.334 0.248 0.142 0.126 0.273 0.192

NRM 0.226∗ 0.186 0.419∗ 0.296∗ 0.203∗ 0.162 0.381∗ 0.255 0.189∗ 0.159∗ 0.320∗ 0.231∗

on Table 2. Based on the experiment results, we have 
following observations.

First and most importantly, compared with the five 
baselines in most cases, our NRM model achieves 

significantly better performance than the baselines on all of 
the three datasets. Although NRM is only slightly better 
than the best baseline in a few cases, e.g., on ML100K the 
NDCG@5 of NRM is slightly better than NFM (0.186 vs 
0.182), however, in 9 out of 12 cases, our NRM model has 
a significant improvement against the best performance in 
baselines. For example, on ML100K the Hit@10 result of 
NRM is 0.419 while the best result of the baselines is 0.361, 
and the improvement from the best baseline result is 
16.06%.

The reason why NRM can get better result is that 
linear models such as FM suffers from learning nonlinear 
real-world data. When faces with complex scenarios, these 
models will encounter some problems. For example, these 
models will recommend the user a substitute of the item 
that the user purchased recently. Previous neural logical 
models, like NCR, lacks of the information of second-order 
feature interactions. NRM draws on the advantages of 
these models and improves on their shortcomings. Neural 
logical modules in NRM bring the model ability to find the 
relationship between features in the user-item pair. Thus 
NRM can predict the user’s future behaviors more 
accurately. Compared to NCR, our model has second-
order feature interactions, which can help the model find 
latent information in these feature interactions.

Compared to the Amazon dataset, most models 
have a better results on MovieLens 100K. This is because 
MovieLens 100K is more dense than Amazon dataset. For 
MovieLens 100K, it has less users, more items and more 
instances, which means for each user, MovieLens 100K 
has more items and history information. And this will make 
the models much easier to analyse the user’s behavior
pattern and predict the user’s future behaviors. We also 
conduct some qualitative analysis of the product ranking
results, as shown in Table 3. First, for the same product 
recommendation, we see that the correct prediction gains a 
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recommendation. It represents users’ behavior over Network (CIN), which compresses the pairwise 
feature interaction matrix into one dimension. 

Cumulative Gain (NDCG) to evaluate the models. HR is 



 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 
 

Table 3:

 

Qualitative Results on Ranking. Bold Items are the Ground Truth or Substitutes of the Ground Truth. We Use Star

 

(*)

 

to Indicate the Ground Truth. Items Have the Same Genres with Latest Purchased Items are in Strike through to 
Highlight the

 

Difference Items

 

 

 

 

 

  

  

 

 
 

 

 
  

  
 

  
 
 

 
 

 
 

 
  

 
  

  

 
 

 
 

 
 

 

 
 

 
 

 
 

  
 
 
 
 
 
 
 

 
 
 

higher rank in our NRM model. Second, compared to the 
baseline models, the top-10 ranked products 
recommended by our NRM model tend to be more relevant 
to the given purchase history and more similar to the 
correct prediction. As shown on Table 3, the user bought 
three products recently: a USB high speed hub, audio 
cable and speaker.

Based on these three products our NRM model 
recommends more related products instead of similar 
products, such as external hard drive and memory card 
reader. While the other three models recommend some 
products that the user has bought recently, such as USB 

hub and speakers. There is only a little possibility for the 
user to buy the same kind of products in such a short 
period of time.

This is because these models only consider the 
similarity between the prediction products and recently 
purchased products. While for our NRM model, the logical 
modules and logical regularizers make the model will 
consider not only the similarity but also the relationship 
between these products. Therefore, our model has natural 
advantages in those complex real-world scenarios where 
only similarity matching cannot satisfy.

Dataset Amazon Electronics

Ground Truth USB flash drive

Latest three items USB High Speed Hub/Audio Cable/Speakers

Model FM NFM DeepFM NRM

Predicted
Top-10
Products

TV Headset Tripod External Hard drive
SD Card Media Player computer case USB flash drive*
USB Hub USB Hub Hard Drive Case Tripod
Speakers External Battery Network Router External Battery
Desktop Memory Flash Memory Card Solid State Drive Headset
USB Mouse Microfiber Cleaning Cloths Phone Camera Lens computer case
Media Player USB flash drive* Bag for Headset Memory Card Reader
Ethernet Adapter Memory Card Reader USB flash drive* Media Player
External Hard Drive Speakers Speakers USB flash drive
Antenna Mount MacBook Pro Audio Cable External Battery

Figure 3: Performance on Hit Ratio on Different Regularizer Coefficient with Different Datasets

f) Impact of Logical Constraint
In this section, we answer the question about how 

the logical regularizer help the learning process. In the 
experiments, we set regularizer coefficient in [0, 0.0001, 
0.001, 0.01, 0.1, 1.0] for ML100K, Grocery and Gourmet 
Food and Electronic. And we show the experiment results 
HR@10 and HR@5 in Figure 3.

The results show that the logical regularizers do 
help to improve the performance of NRM. When we 
compare the results of the non-logical regularizer model (
= 0) with the logical regularizer model ( ≠ 0), we can find 
the results with the logical regularizer are better. However, 
the logical regularizers coefficient should be adjusted very 
carefully. Otherwise, the model might have even worse 
performance than the non-logical regularizer model.

Overall, for all of these three datasets, the best 
logical regularizer coefficient is around 0.01 and 0.1. If the 
coefficient is bigger than this, the performance will become 
worse. This is because there is a trade off between 
prediction loss and logical constraint loss. If the coefficient 
is too big, logical constraint loss will dominate the loss, and 
the model will only learn limited information from the data.

Therefore we need to balance the weight between 
prediction loss and logical constraint loss to make sure the 
model can learn useful information from both of them.

g) Impact of Conjunction Part
In this section, we answer how the conjunction 

part in the NRM model helps the learning process. In the 

0 0.0001 0.001 0.01 0.1 1.0
0

0.1

0.2

0.3

0.4

𝐻𝑅 on𝑀𝐿100

𝐻
𝑅

HR@10
HR@5

0 0.0001 0.001 0.01 0.1 1.0
0

0.1

0.2

0.3

0.4

𝐻𝑅 on 𝐵𝑎𝑏𝑦

𝐻
𝑅

0 0.0001 0.001 0.01 0.1 1.0
0

0.1

0.2

0.3

𝐻𝑅 on 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠

𝐻
𝑅

experiments, we omit the conjunction part in the NRM 

𝛾

𝛾
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Figure 4: Performance on NRM and NRM without Conjunction Part. The Blue Bar is the Results for NRM and the Red Bar is 
the Results for NRM without Conjunction (NRM-WC) Part

V. Conclusion and Future Work

CCS Concepts
Information systems → Recommender systems; • 
Computing methodologies → Machine learning.
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accurate prediction.

In this paper, we propose a Neural Reasoning 
Machine (NRM), which integrates neural logical modules 
and recommendation task. What’s more, our NRM model 
have a better performance than the state-of-the-art 
baseline. Experiments on three real world datasets have 
shown the potential of NRM in practice.

This is just the beginning of our work. There are 
some other methods, such as [26, 46], that have been 
proved to be effective on the recommendation. However, 
their limited expressive ability may limit the model’s learning 
of latent information behind real-world data. By introducing 
neural logic modules, the learning ability of these models 
can be further improved. With the recent development of 
technology, it is not very hard to construct an extreme deep
neural network [47, 48]. However, a deeper neural network 
means more running time of generating and optimizing the 
model, and this does not always come with good results 
[49]. Therefore, for future works, we would like to focus 
more on how to design better neural components or 
architectures for specific tasks.

Other than the recommendation systems, we 
expect the idea of neural reasoning can be used in more 
fields such as Computer Vision, Natural Language 
Processing, Graph Neural Network and Social Network. In 
these fields, logical reasoning is also a very important part, 
which will make the result more reliable and explainable.

If we do not consider the conjunction part, the 
performance will have a significant decrease. This is 
because only first-order feature interactions are not 
sufficient for NRM to learn the relationship between 
different features. As a result, the performance will become
much worse than the normal NRM model that has a 
conjunction part.
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