
© 2023. Jianchao Ji, Zelong Li & Yongfeng Zhang. This research/review article is distributed under the terms of the Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and reference
this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creative commons. org/
licenses/by-nc-nd/4.0/.

Global Journal of Computer Science and Technology: D
Neural & Artificial Intelligence
Volume 23 Issue 3 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Neural Reasoning Machine for Recommendation

By Jianchao Ji, Zelong Li & Yongfeng Zhang
 University of New Jersey New Brunswick

Abstract- Most of the existing recommendation models are designed based on the principles of
learning and matching: by learning the user and item embeddings and using learned or
designed functions as matching models, they try to explore the similarity pattern between users
and items for recommendation. However, recommendation is not only a perceptual matching
task, but also a cognitive reasoning task because user behaviors are not merely based on item
similarity but also based on users’ careful reasoning about what they need and what they want.

Keywords: neural-symbolic learning and reasoning; neural logic reasoning; machine reasoning;
factorization machines; recommendation.

GJCST-D Classification: ACM: H.3.3

NeuralReasoningMachinesforRecommendation

Strictly as per the compliance and regulations of:

Neural Reasoning Machine for Recommendation
Jianchao Ji α, Zelong Li σ & Yongfeng Zhang ρ

Author α σ ρ: Rutgers, the State University of New Jersey New
Brunswick, The United States. e-mails: jianchao.ji@rutgers.edu,
zelong.li@rutgers.edu, yongfeng.zhang@rutgers.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

I. Introduction

Figure 1: An overview of the fundamental structure of
(a) Factorization Machine and (b) Neural Reasoning
Machine. As we can see, FM has three components:

feature interactions, and it adds up the scores from
the three components to calculate the final ranking
score, while NRM considers first-order and second-
order logical interactions between features, which
enables the model to learn the compositional
relationships between features for recommendation.

Recommender Systems (RS) play an important
role on the modern web as well as in many intelligent
information systems. They connect users and
information by predicting the potential interest of users
and proactively provide relevant information to users [1–
3]. Many of the existing recommendation methods
are designed based on the fundamental idea of
similarity matching [4–13]. For example, some early
Collaborative Filtering (CF) models [4, 5, 7]— which
predict a user’s future preferences based on their
previous records—use manually designed similarity
functions such as cosine similarity [4], Pearson
correlation [5] or vector inner product [7] to calculate
the user-item similarities. More recently, researchers
have considered learning-based similarity functions
such as neural networks to match users and items [6,
8] based on the user and item embeddings that are
learned from various types of information sources such
as text [14, 15], image [16] and knowledge graphs [17–
19].

Factorization Machine (FM) [20–23]—as a type
of matching- based model that integrates the power of
feature-level and user- item-level similarity—unifies the
advantages of different matching- based models and
achieves better performance in many recommendation
tasks. As illustrated in Figure 1(a), FM considers both 1-
order and 2-order feature interactions to predict the

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

1

 (

)
D

Y
e
a
r

20
23

© 2023 Global Journals

Abstract- Most of the existing recommendation models are
designed based on the principles of learning and matching: by
learning the user and item embeddings and using learned or
designed functions as matching models, they try to explore
the similarity pattern between users and items for
recommendation. However, recommendation is not only a
perceptual matching task, but also a cognitive reasoning task
because user behaviors are not merely based on item
similarity but also based on users’ careful reasoning about
what they need and what they want.

In this paper, we propose a Neural Reasoning
Machine (NRM) for recommendation. NRM is a neural-
symbolic reasoning architecture that can construct different
neural networks based on different input logical expressions.
Distinct from the continuous prediction values in differentiable
machine learning models, the output in symbolic logical
reasoning space is binary (true or false). Therefore, an
important challenge is to seamlessly integrate symbolic
reasoning and continuous learning. To solve the problem, we
offer a modularized reasoning architecture NRM. The
architecture is designed to acquire symbolic operations like
AND, OR, and NOT through neural modules. This allows
logical reasoning expressions to be represented as neural
networks. By using these neural-symbolic operations, we are
able to model complex feature interactions in a latent
reasoning space, which is beneficial for tasks such as
prediction and recommendation. We test our approach by
constructing the feature-based recommendation task as a
logical reasoning problem. Experiments show that our neural
reasoning machine is significantly better than state-of-the-art
(neural or linear) factorization machines in terms of the Top-K
recommendation task, and case studies also show the
importance of reasoning beyond learning for intelligent
decision making tasks such as recommendation.
Keywords: neural-symbolic learning and reasoning; neural
logic reasoning; machine reasoning; factorization
machines; recommendation.

bias term, first-order features and second-order

user-item preference. Researchers further explored FM
under the framework of neural similarity matching. One
approach is to increase the neural network depth of the
feature similarity matching model, such as Deep Factor-
ization Machine (DeepFM) [21] and eXtremely Deep
Factorization Machine (xDeepFM) [22], which provided
better recommendation accuracy than the original
shallow Factorization Machine (FM) model [20]. Other
researchers tried to augment the second-order feature
interaction from inner-product to neural networks, such
as Neural Factorization Machines (NFM) [23], which
overcomes the difficulty that FM model cannot learn
feature interactions that did not appear in the training
set.

Due to the generally good performance and the

matching-based Factorization Machine models have
been widely used in real-world applications [22, 24, 25].
However, as a cognition rather than a perception intel-
ligent task, recommendation not only requires the ability
of pattern recognition and matching from data, but also
the ability of concrete reasoning in data [26]. This is
because users do not make decisions simply based on
similar users or items, but they make concrete
reasoning about the item features and their
relationships to decide the next steps. For example, if a
user has already purchased a USB hub, then he or she
might purchase a USB drive or an external hard drive
instead of purchasing another USB hub in the next step,
even though the two USB hubs can be very similar. As
a result, if we merely rely on similarity-based models
for recommendation, the system might recommend
similar products to what the user has already
purchased even though the user may not need it any
more. In this paper, we propose Neural Reasoning
Machine (NRM), which is a neural logical reasoning
model for recommendation. NRM is able to learn the
conjunction and disjunction relationships between
features and items so as to model the compositional
nature of the recommendation problem. For example, if
a user has already purchased a USB hub, then it’s
unlikely for the user to purchase another one since
the two items are substitutive, which can be
represented as a low probability between the
conjunction of the two items. Technically, we learn the
basic logical operations such as AND (), OR () and
NOT () as neural modules, which are regularized by
logical rules to guarantee their logical behavior, and
then we represent the feature set of each user-item
pair as a logical expression to predict the preference
score for the user-item pair, where the logical
expression models the logical conjunction and
disjunction relationship among the features. For
example, if there are two relevant features 𝑣𝑣1 and 𝑣𝑣2 for
a user-item pair, then the expression would be

, which means that the possible

The key contribution of this paper are as follow.

• We highlight the importance of feature-level
reasoning for recommender systems to model the
compositional nature of the recommendation
problem.

• We propose Neural Reasoning Machine (NRM) to
integrate symbolic logical reasoning and continuous
embedding learn ing for recommendation.

• We conduct both experiments and case studies
on several real-world datasets to show the improved
recommendation performance and the intuition for
such improvements.

The following part of the paper will be organized
as follows. We review related work in Section 2, introduce
details about the model in Section 3, and provide
experimental results in Section 4. Finally, conclusions
and future work are provided in Section 5.

II. RELATED WORK

Factorization Machine (FM) [20] is one of the
most popular types of recommendation models in real-
world recommender systems due to their ability to
model feature interactions. By embedding all of the
features as latent vectors and learning the weight of
each vector, FM can estimate the similarity between
users and items, and use this as a score to predict the
user’s preferences on items for recommendation. In
addition, FM models the second-order pair-wise
interaction between features to improve the prediction
accuracy, which is particularly suitable for industry
recommender systems which include many features
from users and items. Due to the efficiency and flexibility
of FM models, they have also been applied to various
tasks beyond recommender systems such as stock
market prediction [27] and online advertising [28].

Despite that traditional linear FM [20] has been
applied to many applications and its effectiveness has
been shown to be better than SVM and SVD++ [29] in
practice, it still has some important limitations. As a linear
model, FM cannot effectively learn and represent
nonlinear patterns from data [30, 31]. However, lots of
real-world data requires nonlinear pattern recognition
and learning, and because traditional FM is limited to
linear modeling, FM cannot make satisfactory predictions
in such cases. Besides, FM cannot distinguish the
importance of different feature interactions. To solve
these problems, researchers have made a lot of efforts
[22, 32, 33]. For example, Attentional Factorization

∧ ∨
¬

v1 ∨ v2 ∨ (v1 ∧ v2)

reason for the user to like the item could be feature
𝑣𝑣1, or feature 𝑣𝑣2, or features 𝑣𝑣1 and 𝑣𝑣2 together. We
evaluate the probability of truth for the expression to
rank the candidate items for recommendation.
Experiments on real-world datasets show that our NRM
model significantly outperforms traditional matching-
based (both shallow and deep) factorization models.

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

 2

 (

)
Y
e
a
r

20
23

D
Neural Reasoning Machine for Recommendation

flexibility to incorporate various features, similarity

Machine (AFM) [34] use attention model to specify a
proper weight for each feature interaction. Some other
research take a different path, which try to integrate
deep neural network (DNN) into factorization machine,
such as Deep Factorization Machine (DeepFM) [21] and
eXtremely Deep Factorization Machine (xDeepFM) [22].
The DeepFM model contains two parts, FM and DNN.
The FM part can extract low-order feature information
while the DNN part can extract high-order interactive
feature information. DeepFM model can learn both low-
order and high-order feature information at the same
time, without biasing the model to any one side [6, 20].
Compared with DeepFM, xDeepFM model exchanges
the FM part in DeepFM with a simple linear network and
add a compressed conjunction network (CIN), which

solution is Neural Factorization Machines (NFM). Instead
of directly inputting the embedding vector into the neural
network, NFM builds the Bi-Conjunction operation after the
embedding layer. This makes the model be able to learn
feature interactions that did not appear in the dataset.

Nonlinear networks can bring models with
better ability to learn over data and get better prediction
accuracy [35]. However, complex real-world scenarios
such as online purchase and personalized
recommendation not only require the ability of similarity
matching from data, but also requires the ability of
concrete reasoning over the compositional relationships
between features and items [26, 36]. This is because
users’ behaviors are not only driven by the similarity of
items, but also driven by users’ careful reasoning about
what they already have and what they need. Take e-
commerce as an example, if a user has already
purchased a USB hub, then the user would unlikely
purchase another one, but would more likely purchase
other products that are compatible with the USB hub,
such as a USB drive or an external hard drive. As a
result, if we want to recommend products for users in e-
commerce websites, we should not simply make
recommendations based on the perceptual similarity
between items or features, since the probability for user
to buy a substitute in a short time could be low. Instead,
we should carefully reason over the compositional
(substitutive or complimentary) relationships between
item features and recommend new items that are
compatible with users’ previous records. Under this

integrate logical reasoning and neural network. For
example, traditional approaches such as Markov Logic
Networks (MLN) [37–39] integrate probabilistic graphical
models with logical reasoning, while more recent Neural
Logic Reasoning (NLR) [26, 36] approaches try to
integrate logical reasoning and neural networks for
intelligent tasks. For example, Neural Logic Reasoning
(NLR) [36] builds a logic-integrated neural network (LINN)
for solving logical equations and non-personalized
recommendation, while Neural Collaborative Reasoning

(NCR) [26] models neural Horn clauses for implication
reasoning in a latent reasoning space to predict the
future preferences of users.

Although NLR and NCR have shown better
recommendation performance based on neural logical
reasoning, they are designed to conduct reasoning on
user-item interactions rather than reasoning on user or
item features. However, many real-world recommender
systems need to handle various types of features for
recommendation, especially in factorization machine
type of models. As a result, we generalize the idea of
neural logic reasoning to feature-level reasoning, and
propose Neural Reasoning Machine (NRM) to model the
compositional relationship between (first-order and
higher-order) features for recommendation.

III. Neural Reasoning Machine

We will introduce the details of our Neural
Reasoning Machine (NRM) architecture in this section.
First, we provide a brief introduction to Factorization
Machines (FM) for better comparison between
reasoning machine and factorization machine. We then
introduce how to construct the reasoning machine
based on logical expressions as well as logical
regularizers. Finally, we introduce how to learn and
optimize the model.

a) Preliminaries
To provide a better comparison between

reasoning machine and factorization machine, we first
briefly review factorization machine. FM mainly solves
the feature interaction problem under sparse data. FM is
a linear model, but it still has good generality for both
continuous and discrete features. In traditional linear
models such as linear regression, we consider each
feature individually and do not construct interacted
features. However, in many cases, some features
combined contain richer and more accurate information
than considering each feature individually. For example,
a product may be best suitable for male teenagers, as a
result, individually considering the gender and age
features would not find the best user group for the
product, and it is necessary to consider the gender- age
interactive feature to solve the problem. For simplicity
and efficiency, FM only considers the second-order
feature interactions.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

3

 (

)
D

Y
e
a
r

20
23

© 2023 Global Journals

Neural Reasoning Machine for Recommendation

further improve the performance of the model. Another

background, researchers have made efforts to integrate

Figure 2: An overview of the connection between the
modules in the NRM architecture. The inputs are
feature representation vectors. Each pair of feature is
conjuncted through the AND module, and then all
individual features, conjuncted features as well as the
global bias feature are disjuncted through the OR
module to build the vector representation for the
whole expression, which is compared with the anchor
True vector to decide the recommendation score.

The model can be represented as.

where is example value on the i-the feature,
which is usually a binary value (1 for triggering the
feature and 0 otherwise). The multiplication
represents the interactive feature constructed by
and and this feature is triggered (i.e., value
equals 1) if and only if both and are triggered.
Most of the real-world recommendation datasets are
very sparse due to the very large amount of users,
items and features. As a result, usually only a few of
the feature values or interactive feature values
are non-zero. Because of the sparse training data
and the huge number of interactive feature weight
parameters wij to be learned, it is usually impractical
to directly train the interactive feature weight matrix

To solve the problem, we usually use
matrix factorization for dimension reduction to
parameterize the weight matrix, which gives the
following FM formula:

where each feature is learned as a -dimension
vector representation and the inner product
between two feature vectors

denote the importance

of this feature combination:

Eventually, the parameters to be learned in
FM include the global bias term w0, the weights of
first - order features and the vector
representation for each feature

b) The NRM Framework
Different from FM which adopts linear

addition to combine the influence of (individual and
interactive) features, NRM models the compositional
logical relationship between features for recommend-
dation. As shown in Figure 2, NRM has three logical
modules: AND (∧), OR (∨) and NOT (¬). NRM
employs these three logical modules over the feature
vectors and represent each data sample as a logical
expression. Mathematically, this can be formulated
as:

 The intuition behind the NRM modeling is
that: the reason for a

user to like or dislike a particular

item could be the global feature,

OR each of the
individual feature, OR each combination (AND)

of two

features. Comparing Eq.

(2) and Eq.

(4), the
advantage of

NRM is its ability to model the

compositional relationship between

features or
feature combinations. More specifically, traditional FM

 is additive, while NRM is disjunctive, which makes the
model more

sensitive to good features (or feature

combinations) even if such

good features (or
combinations) are few. Due to the nature of the

 mathematical OR operation, even one strong signal
from a very

positive feature can lead to strong

predictions.
 One thing to note is that different from FM

whose direct output

is a scalar value (Eq.(2)), the
direct output of NRM is a vector

(Eq.(4)), which

is the vector representation of the data sample
corresponding to a user-item pair. To get the final
recommendation score,

we need to evaluate to what

extent is close to the constant

true vector T in

the logical reasoning space. Besides, to guarantee
 that the AND, OR and NOT modules are really

conducting the expected logical operations in the
reasoning space, we need to apply

logical

regularization over the modules. We will introduce
these

techniques in the following subsection.

𝑦 (𝑥) = 𝑤0 +
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 +
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗

𝑦 (𝑥) = 𝑤0 +
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 +
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

⟨v𝑖 , v𝑗 ⟩𝑥𝑖𝑥 𝑗

⟨v𝑖 , v𝑗 ⟩ =
𝑘∑︁

𝑛=1
𝑣𝑖,𝑛𝑣 𝑗,𝑛

(1)

(2)

(3)

w ∈ R𝑛
v𝑖 ∈ R𝑘 (𝑖 = 1, 2, · · · , 𝑛).

ŷ(𝑥) = v0 ∨
(𝑛∨
𝑖=1

𝑥𝑖v𝑖
)
∨
(𝑛∨
𝑖=1

𝑛∨
𝑗=𝑖+1

𝑥𝑖𝑥 𝑗 (v𝑖 ∧ v𝑗)
)

(4)

𝑥𝑖 𝑥 ’s

𝑥𝑖

𝑥𝑖𝑥 𝑗

𝑥 𝑗

𝑥𝑖 𝑥 𝑗

𝑥𝑖𝑥 𝑗𝑥𝑖

𝑊 = [𝑤𝑖 𝑗]𝑛×𝑛

𝑖 𝑘

v𝑖 ∈ R𝑘

where v0 is a global bias vector, vi and vj are the
embedding vectors of the i-th and j-th feature, while xi

and xj represent the binary values of the two features,
e.g., xi = 1 means this data sample triggers feature i,
and 0 otherwise. As a result, only those triggered
individual features (i.e., xi = 1) or interactive features
(i.e., xixj = 1) will be considered in the equation. The
parameters to be learned in the NRM model include
the global vector v0, each feature’s representation
vector vi (i = 1, 2, · · ·, n), as well as the parameters in
the logical modules.

ŷ(x)

ŷ(x)

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

 4

 (

)
Y
e
a
r

20
23

D
Neural Reasoning Machine for Recommendation

(NCR) [26], we use three independent

Multi-Layer
Perception (MLP) neural networks to represent the

logical operators AND(·, ·), OR(·, ·) and NOT(·). Both
AND and OR

operators are binary operators, which
take two vectors as input

and output another vector.
The NOT operator is a unitary operator

which takes
one vector as input and outputs another vector.

ii.

Calculate Logical Expression

(5)

(6)

To ensure that the logical modules such as
AND and OR perform

the corresponding logical

For example, the following logical regularizer
is added to the OR

module to make sure the operator
satisfies the Annihilator law, e.g.,

d)

Final Loss and Learning Method

The final prediction of NRM is the output of
the similarity function

(Eq.

(6)). The range of the

label of our dataset set is 0 and 1. To make the
output of

NRM compatible with the label, we amplify

the cosine similarity

output in Eq.(6) by ζ

and pass

the value through a sigmoid function:

where (·) is the sigmoid function,

is the coefficient

to amplify

the output of similarity function. Then we

calculate the square error

to estimate the difference

between the prediction and the label:

(9)
where is the prediction of NRM and y is the
ground-truth label.

At the same time, we calculate the logical regularizer.

(10)

 where each represents a logical regularizer as in
[26, 36], and

is

the coefficient of the logical
regularizer. Logical constraints help the

NRM model
to achieve better performance, but we need to
balance

the weight between the logical constraint and

𝑆𝑖𝑚(ŷ, 𝑻) = ŷ · 𝑻
∥ŷ∥∥𝑻 ∥

ŷ = v0 ∨
(
𝑥1v1 ∨ 𝑥2v2) ∨

(
𝑥1𝑥2v1 ∧ v2

)

𝑣 ∨𝑇 = 𝑇 :

𝑟 =
1
𝜒

∑︁
𝑣∈𝜒

1 − 𝑆𝑖𝑚(OR(v,T),T) (7)

𝑦 = 𝜎 (Z · 𝑆𝑖𝑚(ŷ,T))

𝐿𝑜𝑠𝑠 = (𝑦 − 𝑦)2

(8)

𝐿𝑟 = 𝛾
∑︁
𝑖

𝑟𝑖

operations as expected, we add logical regularizers
to the neural modules to regularize their behavior.

c) NRM Expression Calculation

i. Logical Operators and Anchor Vectors
Inspired by Neural Collaborative Reasoning

the prediction loss by . In the experiment section, we
will study how the coefficient influences the

The answer of a logical expression should be
true or false. As a result, we need two anchor vectors
which correspond to the constant True and False
vector in the reasoning space. The true vector (T) is a
randomly initialized vector and once it is initialized, it
keeps as a constant vector and never gets updated
during the entire training and evaluation process. The
false vector (F) is calculated based on the true vector
(i.e., F =NOT(T)). For example, if the label of an
example is positive, we expect that the vector
representation of the corresponding logical
expression should be close to the true vector (T),
otherwise, if the label is negative, we expect the
vector representation would be far away from the true
vector and close to the false vector (F).

With these logical modules and anchor
vectors, we can calculate the vector representation of
the logical expression in NRM. The initial input to
NRM are the user or item features of an example.
Suppose an example includes two features v1 and v2

(i.e., x1 = x2 = 1). The output vector of OR (v1, v2)
represents that the user may like the item because of
feature v1 or feature v2, while AND (v1, v2) can
represent the possible reason of feature v1 and v2

bias vector (v0), we can get the final expression of this
example:

When we get the
 , the next step is to decide whether the logical
expression is true or false. To achieve this goal, we
need to compare the vector and the anchored
vector T. As we mentioned before, if the example is
positive, then the representation vector should be
close to the T vector. Otherwise, it should be away
from the T vector. In this work, we use the cosine
similarity function to compare the vector
representation of an expression with the T vector.

output vector representation
ŷ

ŷ

ŷ

ŷ

where v is the corresponding vector of a variable, χ
represents the variable space, Sim (·,·) represents the
similarity function, which is cosine similarity in this
work. Intuitively, by minimizing this regularizer, the
model make sure that is close to T. Details of the
many other logical regularizers are similar as [26, 36].
We not only apply regularizers to the input
embedding vectors but also to the intermediate latent
vectors to ensure that all vectors are in the same
representation space and follow the same con
straints. Take the logical expression in Eq. (5) as an
example, we will add regularizers to v0, v1, v2, as well
as the output vectors of (v1 ∨ v2) and (v1 ∧ v2). The
logic constraint loss is represented as Lr, which
represents the sum of all of the logical regularizers. It
will be added to the training loss in the learning
process.

𝑣 ∨𝑇

Z𝜎

𝑦

𝑟𝑖

𝛾

𝛾

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

5

 (

)
D

Y
e
a
r

20
23

© 2023 Global Journals

Neural Reasoning Machine for Recommendation

together. Combined with the feature values (xi) and

cosine similarity function is - 1 to 1, however, the

 iv.

Experiment

 In this section, we conduct experiments in
three real-world datasets

and compare the results of
NRM and baselines to verify the effectiveness of our
model. We aim to answer the following research

 questions:

 •

RQ1:

What is the performance of NRM in terms of
hit ratio

and NDCG? Does it achieve better result
than state-of-the-art

factorization machine
models?

 •

RQ2:

How does the logical regularizer help to
improve the

performance?

 •

RQ3:

What is the impact of the conjunction part of
the

model?

 a)

Dataset

 We use three real-world datasets in the
experiments. We introduce

the details about the
datasets in the following.

 •

MovieLens100K [40]:

This is

a frequently used
dataset maintained by Grouplens. The

MovieLens

 dataset was first released in 1998 and has
become popular since the publication.

Many
research have adopted

this database. This
dataset describes users’ expressed preferences
for movies. The dataset

keeps updating, and we
use the latest version released by Grouplens. It
contains 100,000 movie ratings ranging from 1

to
5 from 610 users to 9724 movies.

 •

Amazon [41]:

This is the Amazon e-commerce
dataset, which

includes user, item and rating
information spanning from

May 1996 to Oct 2018.
This dataset is an updated version of

the Amazon
review dataset released in 2014. This is also a
frequently used dataset adopted by many
research. It contains 24 different categories as
sub-datasets. We use two very

different
categories Grocery and Electronics to explore the

 performance of our model under different product
recommendation scenarios.

Table 1: Basic Statistics of the Datasets

Some basic statistics of the datasets are
shown in Table 1. Because some of the baselines
need explicit feedback, for fair comparison, for all of
the models in this paper, we all use explicit feedback
datasets. The original dataset contains rating
information. We use this information as explicit
feedback. Following common practice, we consider
1-3 ratings as negative feedback and 4-5 ratings as
positive feedback.

According to the suggestions of [42], we use
leave-one-out setting to split the training set,
validation set and testing set. To avoid data leakage,
for each user, we put the user’s most recent two
positive interactions into the validation set and testing
set, respectively, and put the rest interactions into the
training set. All of the baselines and NRM use the
same data to make sure the experiment is fair and
models are comparable.

b) Baselines
In this section, we make a brief introduction to

the baselines used in the experiments. We compare
with five baseline models. Three of the five baselines
do not have open-source implementation, so we
implemented them by PyTorch, an open-source deep
learning library. The baselines have open-source

For anonymity, we will publicize our code later.

• FM: Factorization Machines (FM) mainly solves
the problem of feature interaction under sparse
data. Its prediction complexity is linear, and it has
good generality for continuous and discrete
features. We consider FM as a baseline of our
model because FM is a fundamental and widely
used factorization model.

• NFM: Neural Factorization Machine (NFM)
introduces Bi-linear Interaction (Bi-Interaction)
pooling operation in neural networks. Based on
this, the model can learn combined features that
do not appear in the dataset, which helps to
better learn and predict in real-world data.

• DeepFM: Deep Factorization Machine (DeepFM)
combines deep neural networks and FM. It
constructs a Multi-Layer Perception (MLP) to
learn the embedding features.

• xDeepFM: eXtremely Deep Factorization Machine
(xDeepFM) purposes a Compressed Conjunction

experimental result. We sum up the logical regularizer
and the prediction loss as the final loss function. Then
the model minimizes the loss to optimize the model
parameters.

(11)

where is the set of training samples. We will
introduce the experimental settings and explore the
recommendation performance of NRM in the
following section.

𝐿𝑜𝑠𝑠 =
∑︁
𝑥 ∈D

(𝑦 − 𝑦)2 + 𝐿𝑟

Dataset #users #items #features #instance

MovieLens 100K 610 9724 10334 100000
Grocery 854 14700 15554 45575
Electronics 16530 65848 82376 446367

D

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

 6

 (

)
Y
e
a
r

20
23

D
Neural Reasoning Machine for Recommendation

implementations1, and thus we directly use the open-
source implementation for experiments.

1 https://github.com/rixwew/pytorch-fm

Different from DeepFM, xDeepFM learns specific

weights for the linear layer, deep learning layer
and CIN

during the training process.

•

NCR:

Neural Collaborative Reasoning (NCR) is the
state-of-the-art neural reasoning model for

items as a logical expression. By learning these logical
expressions, NCR can predict users’ future behaviors.
The difference between NCR and our model is that
NCR conducts reasoning on item-level while our model
conducts reasoning on feature-level.

Table 2:

Experimental results on Hit Ratio (HR) and Normalize Discounted cumulative gain (NDCG). Bold

numbers represent

better performance. We use star (*) to indicate that the performance is significantly better

than all baselines. The significance is

at 0.05 level based on paired t-test.

c)

Parameter Settings

The learning rate was searched in [0.001; 0.01;
0.02; 0.05] for all

methods. We apply ReLU

non-linear as
activation function between

logical operations. For all
models, we make the feature embedding

size as 128, the
batch size is 4096. We run 20 epocs and record the

best
result. For fair comparison, for all models, including our
model

and baselines, we tune each model’s parameter to
its own best

performance on the validation set. All
experiments were conducted

on a single NVIDIA Geforce
2080Ti GPU. The operating system is

Ubuntu 16.04 LTS.

d)

Evaluation Metric

For each user-item pair in the testing

and
validation set, we randomly sample 99 irrelevant features to
exchange the first item

feature of the user-item pair. And we
use these 100 user-item pairs

for evaluation. The model
that has a better performance should get

a higher score for
the true user-item pair than others.

We use Hit Ratio (H R) and Normalize Discounted

used to measure

whether the correct item appears in the
top-K list. DCG is accumulated from the top of the result list
to the bottom, with the

gain of each result discounted at
lower ranks [43]. NDCG is the

ratio between DCG and the
Idealized Discounted Cumulative Gain

(IDCG). These two
metrics are widely used in recommendation

system
evaluation [44, 45]. For HR and NDCG, larger value means

better performance.

e)

Performance Comparison

The experimental results on Hit

Ratio (HR),

and
Normalize Discounted Cumulative Gain (NDCG)

are shown

Dataset ML100K Grocery Electronics

Metric NDCG@10 NDCG@5 Hit@10 Hit@5 NDCG@10 NDCG@5 Hit@10 Hit@5 NDCG@10 NDCG@5 Hit@10 Hit@5

FM 0.169 0.128 0.328 0.202 0.057 0.045 0.109 0.072 0.056 0.038 0.117 0.062
NFM 0.212 0.182 0.361 0.271 0.085 0.061 0.183 0.108 0.057 0.045 0.109 0.072

DeepFM 0.197 0.160 0.351 0.236 0.068 0.052 0.133 0.081 0.061 0.043 0.127 0.070
xDeepFM 0.159 0.131 0.283 0.198 0.072 0.058 0.202 0.126 0.177 0.146 0.311 0.213

NCR 0.184 0.146 0.329 0.218 0.182 0.161 0.334 0.248 0.142 0.126 0.273 0.192

NRM 0.226∗ 0.186 0.419∗ 0.296∗ 0.203∗ 0.162 0.381∗ 0.255 0.189∗ 0.159∗ 0.320∗ 0.231∗

on Table 2. Based on the experiment results, we have
following observations.

First and most importantly, compared with the five
baselines in most cases, our NRM model achieves

significantly better performance than the baselines on all of
the three datasets. Although NRM is only slightly better
than the best baseline in a few cases, e.g., on ML100K the
NDCG@5 of NRM is slightly better than NFM (0.186 vs
0.182), however, in 9 out of 12 cases, our NRM model has
a significant improvement against the best performance in
baselines. For example, on ML100K the Hit@10 result of
NRM is 0.419 while the best result of the baselines is 0.361,
and the improvement from the best baseline result is
16.06%.

The reason why NRM can get better result is that
linear models such as FM suffers from learning nonlinear
real-world data. When faces with complex scenarios, these
models will encounter some problems. For example, these
models will recommend the user a substitute of the item
that the user purchased recently. Previous neural logical
models, like NCR, lacks of the information of second-order
feature interactions. NRM draws on the advantages of
these models and improves on their shortcomings. Neural
logical modules in NRM bring the model ability to find the
relationship between features in the user-item pair. Thus
NRM can predict the user’s future behaviors more
accurately. Compared to NCR, our model has second-
order feature interactions, which can help the model find
latent information in these feature interactions.

Compared to the Amazon dataset, most models
have a better results on MovieLens 100K. This is because
MovieLens 100K is more dense than Amazon dataset. For
MovieLens 100K, it has less users, more items and more
instances, which means for each user, MovieLens 100K
has more items and history information. And this will make
the models much easier to analyse the user’s behavior
pattern and predict the user’s future behaviors. We also
conduct some qualitative analysis of the product ranking
results, as shown in Table 3. First, for the same product
recommendation, we see that the correct prediction gains a

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

7

 (

)
D

Y
e
a
r

20
23

© 2023 Global Journals

Neural Reasoning Machine for Recommendation

recommendation. It represents users’ behavior over Network (CIN), which compresses the pairwise
feature interaction matrix into one dimension.

Cumulative Gain (NDCG) to evaluate the models. HR is

Table 3:

Qualitative Results on Ranking. Bold Items are the Ground Truth or Substitutes of the Ground Truth. We Use Star

(*)

to Indicate the Ground Truth. Items Have the Same Genres with Latest Purchased Items are in Strike through to
Highlight the

Difference Items

higher rank in our NRM model. Second, compared to the
baseline models, the top-10 ranked products
recommended by our NRM model tend to be more relevant
to the given purchase history and more similar to the
correct prediction. As shown on Table 3, the user bought
three products recently: a USB high speed hub, audio
cable and speaker.

Based on these three products our NRM model
recommends more related products instead of similar
products, such as external hard drive and memory card
reader. While the other three models recommend some
products that the user has bought recently, such as USB

hub and speakers. There is only a little possibility for the
user to buy the same kind of products in such a short
period of time.

This is because these models only consider the
similarity between the prediction products and recently
purchased products. While for our NRM model, the logical
modules and logical regularizers make the model will
consider not only the similarity but also the relationship
between these products. Therefore, our model has natural
advantages in those complex real-world scenarios where
only similarity matching cannot satisfy.

Dataset Amazon Electronics

Ground Truth USB flash drive

Latest three items USB High Speed Hub/Audio Cable/Speakers

Model FM NFM DeepFM NRM

Predicted
Top-10
Products

TV Headset Tripod External Hard drive
SD Card Media Player computer case USB flash drive*
USB Hub USB Hub Hard Drive Case Tripod
Speakers External Battery Network Router External Battery
Desktop Memory Flash Memory Card Solid State Drive Headset
USB Mouse Microfiber Cleaning Cloths Phone Camera Lens computer case
Media Player USB flash drive* Bag for Headset Memory Card Reader
Ethernet Adapter Memory Card Reader USB flash drive* Media Player
External Hard Drive Speakers Speakers USB flash drive
Antenna Mount MacBook Pro Audio Cable External Battery

Figure 3: Performance on Hit Ratio on Different Regularizer Coefficient with Different Datasets

f) Impact of Logical Constraint
In this section, we answer the question about how

the logical regularizer help the learning process. In the
experiments, we set regularizer coefficient in [0, 0.0001,
0.001, 0.01, 0.1, 1.0] for ML100K, Grocery and Gourmet
Food and Electronic. And we show the experiment results
HR@10 and HR@5 in Figure 3.

The results show that the logical regularizers do
help to improve the performance of NRM. When we
compare the results of the non-logical regularizer model (
= 0) with the logical regularizer model (≠ 0), we can find
the results with the logical regularizer are better. However,
the logical regularizers coefficient should be adjusted very
carefully. Otherwise, the model might have even worse
performance than the non-logical regularizer model.

Overall, for all of these three datasets, the best
logical regularizer coefficient is around 0.01 and 0.1. If the
coefficient is bigger than this, the performance will become
worse. This is because there is a trade off between
prediction loss and logical constraint loss. If the coefficient
is too big, logical constraint loss will dominate the loss, and
the model will only learn limited information from the data.

Therefore we need to balance the weight between
prediction loss and logical constraint loss to make sure the
model can learn useful information from both of them.

g) Impact of Conjunction Part
In this section, we answer how the conjunction

part in the NRM model helps the learning process. In the

0 0.0001 0.001 0.01 0.1 1.0
0

0.1

0.2

0.3

0.4

𝐻𝑅 on𝑀𝐿100

𝐻
𝑅

HR@10
HR@5

0 0.0001 0.001 0.01 0.1 1.0
0

0.1

0.2

0.3

0.4

𝐻𝑅 on 𝐵𝑎𝑏𝑦

𝐻
𝑅

0 0.0001 0.001 0.01 0.1 1.0
0

0.1

0.2

0.3

𝐻𝑅 on 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠

𝐻
𝑅

experiments, we omit the conjunction part in the NRM

𝛾

𝛾

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

 8

 (

)
Y
e
a
r

20
23

D
Neural Reasoning Machine for Recommendation

Figure 4: Performance on NRM and NRM without Conjunction Part. The Blue Bar is the Results for NRM and the Red Bar is
the Results for NRM without Conjunction (NRM-WC) Part

V. Conclusion and Future Work

CCS Concepts
Information systems → Recommender systems; •
Computing methodologies → Machine learning.

References Références Referencias

1. Badrul Sarwar, George Karypis, Joseph Konstan,
and John Riedl. Analysis of recommendation

model and make comparison with the normal NRM model
with conjunction part. We show the NDCG@10, NDCG@5,
Hit@10 and Hit@5 results in Figure 4. Compared to the
NRM without conjunction part, the normal NRM model has
better performance on all of the datasets. In the
conjunction part, NRM learn information from second-order
feature interactions and help the model make more

NDCG@10 NDCG@5 Hit@10 Hit@5

0.1

0.2

0.3

0.4

ML100K result

NRM
NRM-WC

NDCG@10 NDCG@5 Hit@10 Hit@5

0.1

0.2

0.3

0.4

Grocery and Gourmet Food result

NRM
NRM-WC

FM NFM NCR NRM

0.1

0.2

0.3

Electronics result

𝐻
𝑖𝑡
@
10

NRM
NRM-WC

algorithms for e-commerce. In Proceedings of the

2nd ACM Conference on Electronic Commerce,
pages 158–167, 2000.

2. J Ben Schafer, Joseph A Konstan, and John Riedl.
E-commerce recommendation applications. Data
mining and knowledge discovery, 5(1):115–153,
2001.

3. Francesco Ricci, Lior Rokach, and Bracha Shapira.
Introduction to recommender systems handbook. In
Recommender systems handbook, pages 1–35.
Springer, 2011.

4. Paul Resnick, Neophytos Iacovou, Mitesh Suchak,
Peter Bergstrom, and John Riedl. Grouplens: An
open architecture for collaborative filtering of
netnews. In Proceedings of the 1994 ACM
conference on Computer supported cooperative
work, pages 175–186, 1994.

5. Badrul Sarwar, George Karypis, Joseph Konstan,
and John Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the
10th international conference on World Wide Web,
pages 285–295, 2001.

6. Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen,
Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen
Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et
al. Wide & deep learning for recommender
systems. In Proceedings of the 1st workshop on
deep learning for recommender systems, pages 7–
10, 2016.

7. Yehuda Koren, Robert Bell, and Chris Volinsky.
Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

8. Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang
Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th
international conference on world wide web,
pages 173–182, 2017.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

9

 (

)
D

Y
e
a
r

20
23

© 2023 Global Journals

Neural Reasoning Machine for Recommendation

accurate prediction.

In this paper, we propose a Neural Reasoning
Machine (NRM), which integrates neural logical modules
and recommendation task. What’s more, our NRM model
have a better performance than the state-of-the-art
baseline. Experiments on three real world datasets have
shown the potential of NRM in practice.

This is just the beginning of our work. There are
some other methods, such as [26, 46], that have been
proved to be effective on the recommendation. However,
their limited expressive ability may limit the model’s learning
of latent information behind real-world data. By introducing
neural logic modules, the learning ability of these models
can be further improved. With the recent development of
technology, it is not very hard to construct an extreme deep
neural network [47, 48]. However, a deeper neural network
means more running time of generating and optimizing the
model, and this does not always come with good results
[49]. Therefore, for future works, we would like to focus
more on how to design better neural components or
architectures for specific tasks.

Other than the recommendation systems, we
expect the idea of neural reasoning can be used in more
fields such as Computer Vision, Natural Language
Processing, Graph Neural Network and Social Network. In
these fields, logical reasoning is also a very important part,
which will make the result more reliable and explainable.

If we do not consider the conjunction part, the
performance will have a significant decrease. This is
because only first-order feature interactions are not
sufficient for NRM to learn the relationship between
different features. As a result, the performance will become
much worse than the normal NRM model that has a
conjunction part.

 pages 995–1000. IEEE, 2010.

21. Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li,
and Xiuqiang He. Deepfm: a factorization-machine
based neural network for ctr prediction. arXiv
preprint arXiv:1703.04247, 2017.

22. Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang,
Zhongxia Chen, Xing Xie, and Guangzhong Sun.
xdeepfm: Combining explicit and implicit feature
interac- tions for recommender systems. In
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data
Mining, pages 1754–1763, 2018.

23. Xiangnan He and Tat-Seng Chua. Neural factorization
machines for sparse predic- tive analytics. In
Proceedings of the 40th International ACM SIGIR
conference on Research and Development in
Information Retrieval, pages 355–364, 2017.

24. Steffen Rendle, Zeno Gantner, Christoph Freud-
enthaler, and Lars Schmidt- Thieme. Fast context-
aware recommendations with factorization
machines. In Proceedings of the 34th international
ACM SIGIR conference on Research and
development in Information Retrieval, pages 635–
644, 2011.

25. Jianpeng Xu, Kaixiang Lin, Pang-Ning Tan, and Jiayu
Zhou. Synergies that matter: Efficient interaction
selection via sparse factorization machine. In
Proceedings of the 2016 SIAM International
Conference on Data Mining, pages 108–116. SIAM,
2016.

26. Hanxiong Chen, Shaoyun Shi, Yunqi Li, and
Yongfeng Zhang. Neural collaborative reasoning. In
Proceedings of the Web Conference 2021, pages
1516–1527, 2021.

27. Chen Chen, Wu Dongxing, Hou Chunyan, and Yuan
Xiaojie. Exploiting social media for stock market
prediction with factorization machine. In 2014 IEEE/
WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies
(IAT), volume 2, pages 142–149. IEEE, 2014.

28. Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and
Chih-Jen Lin. Field-aware factorization machines for
ctr prediction. In Proceedings of the 10th ACM
conference on recommender systems, pages 43–
50, 2016.

29. Yehuda Koren. Factorization meets the
neighborhood: a multifaceted collaborative filtering
model. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery
and data mining, pages 426–434, 2008.

30. Xin Xin, Bo Chen, Xiangnan He, Dong Wang, Yue
Ding, and Joemon Jose. Cfm: Convolutional
factorization machines for context-aware
recommendation. In IJCAI, volume 19, pages 3926–
3932, 2019.

31. Liang Lan and Yu Geng. Accurate and interpretable
factorization machines. In of the AAAI Conference on

9. Michael D Ekstrand, John T Riedl, and Joseph A
Konstan. Collaborative filtering recommender
systems. Now Publishers Inc, 2011.

10. Chung-Yi Li and Shou-De Lin. Matching users and
items across domains to improve the recommend-
dation quality. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 801– 810, 2014.

11. Wen Zhou and Wenbo Han. Personalized
recommendation via user preference matching.
Information Processing & Management, 56(3):955–
968, 2019.

12. Umardand Shripad Manikrao and TV Prabhakar.
Dynamic selection of web services with
recommendation system. In International
conference on next generation web services
practices (NWESP’05), pages 5–pp. IEEE, 2005.

13. Rajiv Pasricha and Julian McAuley. Translation-
based factorization machines for sequential
recommendation. In Proceedings of the 12th ACM
Conference on Recommender Systems, pages 63–
71, 2018.

14. Lei Zheng, Vahid Noroozi, and Philip S Yu. Joint
deep modeling of users and items using reviews
for recommendation. In Proceedings of the tenth
ACM international conference on web search and
data mining, pages 425–434, 2017.

15. Yongfeng Zhang, Qingyao Ai, Xu Chen, and W Bruce
Croft. Joint representation learning for top-n
recommendation with heterogeneous information
sources. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge
Management, pages 1449–1458, 2017.

16. Ruining he and Julian McAuley. Vbpr: visual
bayesian personalized ranking from implicit
feedback. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 30, 2016.

17. Yikun Xian, Zuohui Fu, Shan Muthukrishnan, Gerard
De Melo, and Yongfeng Zhang. Reinforcement
knowledge graph reasoning for explainable
recommendation. In Proceedings of the 42nd
international ACM SIGIR conference on research
and development in information retrieval, pages
285–294, 2019.

18. Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu,
and Tat-Seng Chua. Kgat: Knowledge graph
attention network for recommendation. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 950–958, 2019.

19. Qingyao Ai, Vahid Azizi, Xu Chen, and Yongfeng
Zhang. Learning heteroge- neous knowledge base
embeddings for explainable recommendation.
Algorithms,11(9):137, 2018.

20. Steffen Rendle. Factorization machines. In 2010
IEEE International conference on data mining,

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

 10

 (

)
Y
e
a
r

20
23

D
Neural Reasoning Machine for Recommendation

Powered by TCPDF (www.tcpdf.org)

Artificial Intelligence, volume 33, pages 4139–4146,
2019.

32. Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang.
Deep & cross network for ad click predictions. In
Proceedings of the ADKDD’17, pages 1–7. 2017.

33. Feng Yu, Zhaocheng Liu, Qiang Liu, Haoli Zhang, Shu
Wu, and Liang Wang. Deep interaction machine: A
simple but effective model for high-order feature
interactions. In Proceedings of the 29th ACM
International Conference on Information &
Knowledge Management, pages 2285–2288, 2020.

34. Jingyuan Chen, Hanwang Zhang, Xiangnan He,
Liqiang Nie, Wei Liu, and Tat- Seng Chua. Attentive
collaborative filtering: Multimedia recommendation
with item-and component-level attention. In
Proceedings of the 40th International ACM SIGIR
conference on Research and Development in
Information Retrieval,pages 335–344, 2017.

35. Shuai Zhang, Lina Yao, Aixin Sun, Sen Wang,
Guodong Long, and Manqing Dong. Neurec: On
nonlinear transformation for personalized ranking.
arXiv preprint arXiv:1805.03002, 2018.

36. Shaoyun Shi, Hanxiong Chen, Weizhi Ma, Jiaxin Mao,
Min Zhang, and Yongfeng Zhang. Neural logic
reasoning. In Proceedings of the 29th ACM
International Conference on Information &
Knowledge Management, pages 1365–1374, 2020.

37. Meng Qu and Jian Tang. Probabilistic logic neural
networks for reasoning. arXiv preprint arXiv:
1906.08495, 2019.

38. Matthew Richardson and Pedro Domingos. Markov
logic networks. Machine learning, 62(1-2):107–136,
2006.

39. Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun
Ramamurthy, Bo Li, Yuan Qi, and Le Song. Efficient
probabilistic logic reasoning with graph neural
networks. arXiv preprint arXiv:2001.11850, 2020.

40. F Maxwell Harper and Joseph A Konstan. The
movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis),
5(4):1–19,2015.

41. Julian McAuley, Christopher Targett, Qinfeng Shi,
and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In
Proceedings of the 38th international ACM SIGIR
conference on research and development in
information retrieval, pages 43–52, 2015.

42. Wayne Xin Zhao, Junhua Chen, Pengfei Wang, Qi
Gu, and Ji-Rong Wen. Revisiting alternative
experimental settings for evaluating top-n item
recommendation algorithms. In Proceedings of the
29th ACM International Conference on Information &
Knowledge Management, pages 2329–2332, 2020.

43. Kalervo Järvelin and Jaana Kekäläinen. Cumulated
gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20
(4):422–446,2002.

44. Xiwang Yang, Harald Steck, Yang Guo, and Yong
Liu. On top-k recommen- dation using social
networks. In Proceedings of the sixth ACM
conference on Recommender systems, pages 67–
74, 2012.

45. Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei
Chen, and Tie-Yan Liu. A theoretical analysis of
ndcg ranking measures. In Proceedings of the 26th
annual conference on learning theory (COLT 2013),
volume 8, page 6. Citeseer, 2013.

46. Steffen Rendle. Factorization machines with libfm.
ACM Transactions on Intelligent Systems and
Technology (TIST), 3 (3):1–22, 2012.

47. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778,
2016.

48. Zhengxue Cheng, Heming Sun, Masaru Takeuchi,
and Jiro Katto. Deep residual learning for image
compression. In CVPR Workshops, page 0, 2019.

49. Kuangqi Zhou, Yanfei Dong, Wee Sun Lee, Bryan
Hooi, Huan Xu, and Jiashi Feng. Effective training
strategies for deep graph neural networks. arXiv e-
prints,pages arXiv–2006, 2020.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

11

 (

)
D

Y
e
a
r

20
23

© 2023 Global Journals

Neural Reasoning Machine for Recommendation

http://www.tcpdf.org

	Neural Reasoning Machine for Recommendation
	Author
	Keywords
	I. Introduction
	II. Related Work
	III. Neural Reasoning Machine
	a) Preliminaries
	b) The NRM Framework
	c) NRM Expression Calculation
	i. Logical Operators and Anchor Vectors
	ii. Calculate Logical Expression

	d) Final Loss and Learning Method

	IV. Experiment
	a) Dataset
	b) Baselines
	c) Parameter Settings
	d) Evaluation Metric
	e) Performance Comparison
	f) Impact of Logical Constraint
	g) Impact of Conjunction Part

	V. Conclusion and Future Work
	References Références Referencias

