
© 2023. Omar Kettani. This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 
4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are 
reproduced in any manner. Applicable licensing terms are at https://creative commons. org/ licenses/by-nc-nd/4.0/. 

Global Journal of Computer Science and Technology: A 
Hardware & computation 
Volume 23 Issue 1 Version 1.0 Year 2023 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals  
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 
 
Solving the Cubic Monotone 1-in-3 SAT Problem in Polynomial 
Time  

By Omar Kettani  
 Mohammed V University  

Abstract- The exact 3-satisfiability problem (X3SAT) is known to remain NP-complete when 
restricted to expressions where every variable has exactly three occurrences, even in the 
absence of negated variables (Cubic Monotone 1-in-3 SAT Problem).  

The present paper shows that the Cubic Monotone 1-in-3 SAT Problem can be solved in 
polynomial time and, therefore prove that the conjecture P=NP holds. 

Keywords: exact 3-satisfiability; cubic Monotone 1-in-3 SAT; K6  free graph; polynomial time; P vs. 
NP.  

GJCST-A Classification: ACM Code: F.1.3 

SolvingtheCubicMonotone1in3SATProbleminPolynomialTime                                             
                                                              
  
  
 
 
                                                                 
 

 

Strictly as per the compliance and regulations of:



 
 

Solving the Cubic Monotone 1-in-3 SAT Problem 
in Polynomial Time  

Omar Kettani  

Author:

 

Scientific Institute -

 

Mohammed V University in Rabat, Morocco.

 

e-mail: kettani.o@gmail.com

  
 

Abstract-

 

The exact 3-satisfiability problem (X3SAT) is known 
to remain NP-complete when restricted to expressions where 
every

 

variable has exactly three occurrences, even in the 
absence of negated variables (Cubic Monotone 1-in-3 SAT 
Problem).

  

The present paper shows that the Cubic Monotone 1-
in-3 SAT Problem can be solved in polynomial time and
therefore prove

 

that the conjecture P=NP holds.
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I.

 

Introduction

 
he

 

Boolean satisfiability problem [1], often 
abbreviated as SAT, stands as one of the most 
fundamental and

  

intriguing challenges in 
Computer Science and Mathematics. At its core, SAT

 

revolves around a deceptively

 

simple question: Can we 
find an assignment of truth values (true or false) to a set 
of Boolean variables that makes

 

a given logical 
expression or formula true? Despite its apparent 
simplicity, SAT is an NP-complete problem,

 

meaning 
that it belongs to a class of computational problems for 
which no known efficient algorithm exists to find

 

a 
solution in polynomial time. This complexity has 
profound implications, as SAT problem-solving 
techniques

 

have applications across various domains, 
from hardware and software verification

 

to artificial 
intelligence and

 

optimization.

   

The X3SAT problem is a variant of Boolean 
Satisfiability Problem (SAT). Unlike traditional SAT, which 
deals

 

with Boolean variables and formulas, X3SAT 
introduces a more intricate layer of complexity by 
incorporating

 

higher-order logical

 

expressions. In 
X3SAT, the objective is to determine whether there exists 
an assignment of

 

truth values setting exactly one literal 
to 1 in each clause of a given formula, which consists of 
conjunction of

 

clauses, each containing exactly three 
literals (positive or negated Boolean variables). This 
three-literal

 

requirement lends X3SAT its name and sets 
it apart from its predecessor, SAT.

  

The goal of the present paper is to solve 
efficiently the exact 3-satisfiability problem (X3SAT) 
which is known to

  

remain NP-complete for expressions 
where every variable has precisely three occurrences, 

even in the absence of negated variables (Cubic 
Monotone 1-in-3 SAT Problem ) [2] [3].  

XSAT and X3SAT have been recently 
investigated in [3, 4, 5, 6]. However the first 
breakthrough result [7] provides an algorithm deciding 
XSAT in O(20.2441n) time, for input formulas over n 
variables. This bound has been improved to O(20.2325n) 
[8]. In [9], Porschen presented an upper bound of 
O(20.1625n) for the minimum-weight exact 3-satisfiability 
problem (MINW-X3SAT) getting as input 3-CNF formulas 
over n real-valued weighted  propositional variables. 
The best known-result for unweighted X3SAT outputs a 
solution in O(20.1379n) time [9].  In [10], the author 
proposed a heuristic approach for solving the Cubic 
Monotone 1-in-3 SAT Problem.  

On the other hand, the P versus NP problem is 
a prominent unsolved question in Computer Science. It 
is well known that if there exists an efficient algorithm for 
any one of the NP-complete problem then, P = NP. In 
this work, we show that the Cubic Monotone 1-in-3 SAT 
Problem, which is an NP-complete problem is also in P 
and therefore, we prove that the conjecture P=NP 
holds. 

a) Some definitions 
A literal in Boolean logic is the basic building 

block of a logical expression. It can represent a Boolean 
variable or its negation (complement). In other words, a 
literal is either a positive occurrence of a variable (e.g., 
a) or its negation (e.g., ¬a), where "a" is a Boolean 
variable. Literals are the atomic elements that make up 
Boolean formulas and play a fundamental role in logical 
operations, such as conjunction (AND) and disjunction 
(OR).  

A clause is a disjunctive statement in Boolean 
logic, typically represented as a logical OR operation 
between literals. Clauses express a condition where at 
least one of the literals within the clause must be true for 
the entire clause to be considered true. Clauses are 
essential components of Boolean formulas and often 
used to represent specific conditions or constraints 
within logical expressions. In many applications, clauses 
are combined to form more complex Boolean formulas, 
with the satisfaction of all clauses collectively 
determining the overall truth  value of the formula.  

A conjunctive normal form (CNF) formula is a 
specific representation of a Boolean expression in 
propositional logic. It is characterized by being a 
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conjunction (logical AND) of clauses, where each clause 
is a disjunction (logical OR) of literals.  

A truth assignment is a function that assigns a 
truth value (true or false) to each variable within a logical 
expression or formula. It provides a specific 
interpretation or valuation of the variables, indicating 
whether each variable is considered true or false under 
that assignment. The primary purpose of a truth 
assignment is to determine the truth value of the entire 
logical expression based on the truth values assigned to 
its constituent variables.  

A logical expression or formula is said to be 
satisfiable if there exists at least one truth assignment of 
its variables that causes the entire expression to 
evaluate to true. In other words, the formula is satisfiable 
if it can be made true under some interpretation of its 
variables.  

 

The exact 3-satisfiability problem (X3SAT) asks 
in its decision version, whether there exists a truth 
assignment t:  {0, 1}→V (F ), setting exact one literal to 
1 in each clause of F . We call such an assignment t an 
x-model, and we denote with X3SAT the set of all exact 
satisfiable 3-CNF formulas. In the search version of 

X3SAT one has to  decide whether F ∈ X3SAT, and in 
the positive problem to find an x-model of F. X3SAT 
restricted to expressions where every variable has 
exactly three occurrences, without negated variables is 
called Cubic Monotone 1-in-3  SAT Problem [3].  

The rest of this paper is organized as follows. In 
the next section, proposition 1 establishes the 
equivalence between the Cubic Monotone 1-in-3 SAT 
problem, and a system of linear equations over binary 
variables. Some proprieties of the associated graph of a 
given formula are described in proposition 2. 
Proposition 3 proves that the Cubic Monotone 1-in-3 
SAT problem has a solution if and only if its related 
graph on n vertices has an independence number n/3. 
Proposition 4 proves that if the associated graph of a 
given F∈ Cubic Monotone 1-in-3 SAT problem has K6 

(the complete graph on 6 vertices) as an induced 
subgraph, then F is not satisfiable. Proposition 5 proves 
that minimum degree 3 and maximum degree 6, K6 free 
graph has an independence number of at least n/3. In 
proposition 6 it is proved that F is satisfiable if and only if 
G is a K6 -free graph. In proposition 7 and its corollary, 
the main result of this work is established. Finally, the 
conclusion of the paper is summarized in the last 
section.  

Proposition 1 [10]:  
Finding an x-model of F∈ Cubic Monotone 1-in-3 SAT problem (i.e. there exists a truth assignment x 

setting exactly one literal to 1 in each clause of F) is equivalent to solving the system of linear equations Ax=b, 
over  binary variables x ∈ {0, 1}n, where A is the mxn matrix defined by: 

Aij=1 if literal j appears in clause i 

Aij=0 otherwise  

and b is the m vector b=(1,....,1)t, m times.
  

Proof:  

 

   
   

  
 

    

  

   

   

   

  

   
Since ∀i,j∈JxJ Ai Aj =0 because ∑Aj =b and ⎟⎥Aj⎟⎥2=3, ∀j=1...n
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n 

Clearly, x is a model of F∈ Cubic Monotone 1-in-3 SAT problem is equivalent ∀i=1...m, ∑Aijxj=1,   
j=1  

Which is equivalent to Ax=b, over {0, 1}n  

Notice that F∈ Cubic Monotone 1-in-3 SAT problem implies that the number of clauses m=n=3p, where p 

is an integer. Indeed: Ax=b implies that ⎥⎟Ax⎥⎟2=⎥⎟b⎥⎟2,  

Let x= ∑cj where J={j∈{1,..,n} xj=1} and (cj)j∈{1,..,n} is the canonical basis of Rn.  

j∈J  

Then Ax=∑ Aj where Ajis the jth column of A matrix.  

 j∈J  

Then ⎟⎥Ax⎥⎟2=⎟⎥∑Aj⎟⎥2=m  

j∈J  

j∈J

Then necessarily 3⎟J⎟=m=3p where p=⎟J⎟ : m is necessarily a multiple of 3.
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2 Conversely, if there is no truth assignment 
makes the formula true, it is considered unsatisfiable or
contradictory.
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Since F∈ Cubic Monotone 1-in-3 SAT, if we 
count row by row, then we obtain N1 =3m, and if we 
count column by column, then we obtain N1 =3n.

Thus m=n=3p for any formula F∈ Cubic Monotone 1-in-
3 SAT.

Definition:

Let F∈ Cubic Monotone 1-in-3 SAT problem, 
and matrix A as defined in proposition 1. Define its 
associated graph G=(V, E) of F by:

V is the set of n column matrix Aj of A, for j=1...n .

E={(Ai,Aj) ∈VxV/ Ai . Aj≠0}

Proposition 2:
Let F∈ Cubic Monotone 1-in-3 SAT problem, A 

its associated matrix and G its associated graph on n 
vertices, then minimum degree of G is 3, maximum 
degree of G is 6.
Proof:

Since each line of matrix A contains three ones, 
and each column of matrix A contains three ones the 
maximum degree of each vertex of G is 6, since each 
Ajis such Aj. Ai ≠0 with at most 6 Ai. Note also that 
minimum degree of G is 3.

Because for all i=1...n, 3 ≤ ∣{Ai ∈V,∃ Aj ∈V/ Ai . 
Aj≠0}∣≤6: The minimum possible of adjacent columns 
to a given column Ajis 3 and the maximum possible of 
adjacent columns to a given column Aj is 6.

Proposition 3:
Let F∈ Cubic Monotone 1-in-3 SAT, A its 

associated matrix, G its associated graph on n vertices 

and α(G) denotes its independence number. 
Therefore:

1. α(G)≤n/3
2. F is satisfiable if and only if α(G)=n/3

Proof:

Indeed, let S be a set of mutually independent columns 
of A.

We will prove that ⎟ S⎟ ≤n/3.

Assume, for the sake of contradiction, that the 
cardinality of S is greater than n/3. That is, |S| > n/3.

Now, each column in A has three ones, and 
selecting a column in S corresponds to selecting three 
ones from the rows associated with that column. Since 
|S| > n/3, we are selecting more than n/3 columns from 
A.

Consider the rows in A. Each row has exactly 
three ones. If we select more than n/3 columns (which 
implies we are choosing more than n/3 sets of three 
ones), by the Pigeonhole Principle, at least one row 
must have more than one of the ones selected.

However, we are assuming that S consists of 
independent columns. This means that for any selected 
set of columns, no row should have more than one of its 
ones selected. Therefore, our assumption that |S| > 
n/3 leads to a contradiction because it would require 
selecting more than n/3 sets of three ones from the 
rows, violating the independence condition.

Hence, by contradiction, we conclude that the 
cardinality of S cannot be greater than n/3. In other 
words, |S| ≤ n/3, thus α(G)≤ n/3.

n

If F is satisfiable, then for all i=1...n, ∑Aijxj=1,

by proposition 1.                                j=1

Let x= ∑cj where J={j∈{1,..,n} xj=1} and (cj)j∈{1,..,n} is the canonical basis of Rn.

j∈J

Then Ax=Α∑cj =∑Aj where Aj is the jth column of A matrix.

j∈J    j∈J

∀(i,j)∈JxJ Ai . Aj=0 otherwise Ax≠ b

since ⎟⎥ Ax⎥⎟2=⎟⎥∑ Αj⎟⎥ 2=∑⎟⎥ Αj⎟⎥ 2 = n, then 3⎟J⎟ = n , because ⎟⎥ Αj⎟⎥ 2 =3 for j=1...n.

   j∈J            j∈J

On the other hand, let N1 be the number of ones in A 
matrix. 

since 3⎟ J⎟ = n, then ⎟ S⎟ =⎟ J⎟ = n /3.

Hence, by proposition 3) i), α(G)=n/3.



 
 

        

   

Therefore, if F is satisfiable, then its associated 
graph G on n vertices has an independence number 
α(G)=n/3.

  

The Converse is also True:

  

Suppose the associated graph of on n vertices 
of F∈

 

Cubic Monotone 1-in-3 SAT problem has an 
independence

 

number n/3.

  

Then, there exists S such: ∀(i,j)∈SxS, Ai . Aj=0 and ⎟

 

S⎟

 

=n/3.

  

Let's assume that Ax ≠ b. This means that there 
exists at least one element in the vectors Ax and b that 
is not equal.

  

In mathematical terms:

  

∃i: (Ax)i ≠ bi.

  

Now, let's analyze the elements of Ax and b:

  

Vector b is an nx1 vector of ones. This means that every 
element in b is equal to 1.

  

Vector Ax results from multiplying matrix A (with 
its specified properties) by vector x, where xj = 1 if and 
only if

 

column Aj

 

is in S.

 

Given that A has three ones in each column and 
three ones in each row, and S is a set of independent 
columns of

  

A with cardinality |S| = n/3, when you 
compute Ax, we effectively sum up the selected 
columns from A, each

  

selected column contributes 
exactly three 1s to Ax.

  

So, for each element (Ax)i, it represents the sum 
of three 1s (because there are three ones in each 
selected column). Now, let's consider bi, which equals to 
1 for every element.

  
Now, consider the contradiction..

 
1.

 

Let's assume there exists an index i

 

such that (Ax)i ≠ 
bi.

  
2.

 

We know that for each element in Ax, it is the sum of 
three 1s

 

from the selected columns. 

 
3.

 

We also know that bi equals to 1 for every element.

  So, if (Ax)i ≠ bi, it implies that the sum of three 1s (from 
the selected columns) is not equal to 1.

  However, this contradicts the properties of A 
and the selection of S. Since A has three ones in each 
column, and S

 

is chosen to be a set of independent 
columns, the sum of three 1s from the selected columns 
must always equal 1,

 

as every element in b is 1.

  Therefore, our assumption that (Ax)i ≠ bi leads 
to a contradiction. Thus, we can conclude that Ax must 
be equal to

 

b for all elements, and the assumption that 
Ax ≠ b is false. Therefore, Ax = b and by proposition 1, 
F is satisfiable.

  Another way to prove this implication consists to 
remark that vector Ax (which is the result of multiplying 
matrix

 

A by vector x, where xj = 1 if and only if column Aj 

is in S) is the sum of n/3 mutually independent columns 
of A.

  

Since each column of A contains three ones, this 

sum equals b. Therefore, Ax = b and, by proposition 1, 
F is

 

satisfiable.

  

Proposition 4:

  

Let F∈

 

Cubic Monotone 1-in-3 SAT problem, A 
its associated matrix and G its associated graph on n 
vertices (n≥

 

6). Therefore if K6 (the complete graph on 
six vertices) is an induced subgraph of G, then F is not 
satisfiable (i.e., there exists no truth assignment setting 
exactly one literal to 1 in each clause

 

of F).

  

Proof:

  

Let S be a maximum independent set of G. We 
will show that |S| < n/3 by contradiction. Suppose that 
|S| >= n/3.

 

Then, there are at least n/3 vertices in G 
that are not adjacent to any other vertex in S. Since G 
contains K6 as an

 

induced subgraph, there must be a 
triangle T in G where all three vertices are not in S.

 

But, 
this is a contradiction,

 

because the three vertices of T 
would be adjacent to at least n/3 other vertices in G. 
This would violate the

 

maximum degree condition of G, 
which states that all vertices must have a degree at 
most 6. Therefore, our

 

original assumption must have 
been wrong, and |S| must be less than n/3.

   

Conclusion:

  

Every graph with maximum degree 6 and 
minimum degree 3, such that G contains K6 as an 
induced

 

subgraph, has an independence number less 
than n/3. Therefore, F is not satisfiable by proposition 
3.

  

  

V=∪Ti where Ti is a triangle in V such ∀

 

i,j=1,…,n/3 

Ti ∩

 

Tj = Φ.

  

 

    i=1,…,n/3

  

Note that n/3-2 triangles contribute to at most 
one vertex in the maximum independent set. Therefore, 
if G contains

  

K6 as an induced subgraph, then after a 
possible permutation of columns of A, we have: ∃

 

i,

 

j=1,…,n/3, G[Ti, Tj]

  

is isomorphic to K6, then α(G[Ti, Tj] 
)=1 and α(G)≤n/3-2+1= n/3-1< n/3, hence F is not 
satisfiable, by proposition

  

3.

  

Proposition 5:

  

Let G be a K6 -free graph and a graph on n 
vertices (n≥ 6), with minimum degree 3 and maximum 
degree 6 then

 

the independence number of G is at least 
n/3.
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Another way to prove this proposition consists 
of partitioning V into n/3 disjoint triangles and 
considering:

Proof:
We will prove by induction on n that the independence 
number of G is at least n/3:
Base Case (n = 6):

In this case, the graph is K6-free graph and has 
an independence number of at least 2, which is greater 
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than n/3

 

(which is 6/3). Therefore, the base case 
holds.

  

Inductive Hypothesis:

  

Assume that for some integer k ≥ 6, the 
independence number of any K6-free graph with 
minimum degree 3,

 

maximum degree 6, and n vertices 
(where 6 ≤ n ≤ k) is at least n/3.

  

Induction Step:

 

Now, we will prove that the claim holds 
for a graph with k + 1 vertices.

  

Consider a K6-free graph G with minimum 
degree 3, maximum degree 6 on (k + 1) vertices. Let v 
be any vertex

 

in G. Let I denote the maximum 
independent set in the graph G (without vertex v). Let 
N(v) represents the set of neighbors of v), we have two 
cases to consider:

•

 

Case 1:

 

∣N(v)∩I∣>0. Let w denote any vertex in 
N(v)∩I.

 

 

  
  

•

 

Case 2:

 

∣N(v)∩I∣=0.

   

In this case, removing v from graph G will leave us 
with a K6-free graph on k vertices that satisfies the 
given

 

conditions. Since the graph on k vertices 
satisfies the induction hypothesis, its independence 
number is at least

 

k/3. Adding v back to this 
independent set, we have an independent set of 
size at least k/3+ 1, greater than or equal

 

to (k + 
1)/3.

 

By induction, we have proven that if G is a K6-
free graph on n vertices, with minimum degree 3 and 
maximum

 

degree 6, then its independence number is at 
least n/3.

  

  

Base Case (n = 6):

  

If G has six vertices and has less than 6/3 = two 
independent vertices, then G must contain K6 as an 
induced

 

subgraph because the only way to have fewer 
than two independent vertices = one independent 
vertex is that G

 

must contain K6.

 

  

Induction Hypothesis:

  

Assume that the statement is true for all n < k, 
where k ≥ 6. That is, for any graph G with a

 

maximum 
degree of 6, a minimum degree of 3, and n vertices, if G 

  
  

Inductive Step:

  

Now, consider a graph G with a maximum 
degree of 6, a minimum degree of 3, and n vertices, 
where n = k. If G

 

has n/3 independent vertices, we will 
show that this implies the existence of a K6 as an 
induced subgraph within

 

G.

  

Let I be a maximum independent set of G, and let v be 
an arbitrary vertex in I.

  

Define G' as the subgraph obtained by 
removing vertex v from G (G' = G -

 

{v}). G'

 

still has a 
maximum degree of

 

6 and a minimum degree of 3.

  

Now, we need to show that G' contains K6 as an induced 
subgraph.

  

Since G' has fewer than n/3-1<(n-1)/3 
independent vertices, (when we remove vertex v, we 
reduce the number of

  

independent vertices by one 
because vertex v is not part of the independent set I. ) 
then, by the induction hypothesis,

  

G' contains K6 as an 
induced subgraph.

  

Thus, by the induction hypothesis, G' contains K6 as an 
induced subgraph.

  

Since G' contains K6 as an induced subgraph, G 
also contains K6 as an induced subgraph because it 
contains G' as

 

a subgraph.

  

Therefore, by induction, we have demonstrated 
that if G is a graph with a maximum degree of 6, a 
minimum

 

degree of 3, and fewer than n/3 independent 
vertices, then G contains K6 as an induced subgraph.

  

Proposition 6:

  

Let F∈

 

Cubic Monotone 1-in-3 SAT problem, A its 
associated matrix and G its associated graph on n

 

vertices (n≥6). Therefore, F is satisfiable if and only if G 
is a K6 -free graph.

  

Proof:

  

First, we will prove that if G is a K6 -free graph 
then F is satisfiable (i.e. there exists a truth assignment 
setting

 

exactly one literal to 1 in each clause of F). This 
is an immediate consequence of propositions 5 and 3: 
Since G is

 

a K6 -free graph then its independence 
number is at least n/3 by proposition 5. However, by 
proposition 3)

 

i), this

 

independence number is at most 
n/3. Therefore, the independence number of G is equal 
to n/3, and by proposition

 

3)

 

ii), F is satisfiable.

  

Now, the converse is also true: if F is satisfiable, 
then by proposition 4 and 3)

 

ii), G is a K6 -free graph.

  

Corollary:
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In all cases, we have shown that the 
independence number of G is at least (k + 1)/3.

has fewer than n/3 independent vertices, then G 
contains K6 as an induced subgraph.

There exists a polynomial time algorithm that 
decides whether a formula F∈ Cubic Monotone 1-in-3 
SAT problem is satisfiable.

Removing w and v from graph G will leave us with a 
K6-free graph on k-1 vertices that satisfies the given
conditions. Since the graph on k-1 vertices satisfies 
the induction hypothesis, its independence number 
is at least (k-1)/3. Adding w back to this 
independent set I and adding v back to G, we have 
an independent set of size at least (k-1)/3+ 1, 
greater than or equal to (k + 1)/3.

Another way to prove this result is to use the 
following contrapositive-argument:



 
 

 
  

 
Proof:

  

Consider the following algorithm.

  
Table 1:

 

Pseudo-Code of Proposed Algorithm 1

 INPUT:

 

F∈

 

Cubic Monotone 1-in-3 SAT problem

  
Step 1: Define the A matrix of F.

   
Step 2:

 

Calculate det

 

(A), if det

 

(A) ≠0 then OUTPUT(' F has a unique solution: x=A-1b ') else go

 

to step 3.

 
Step 3: Construct the associated graph G of F.

  
Step 4:

 

Check if K6 is an induced subgraph of G then OUTPUT(' F is not satisfiable') else

  

OUTPUT('F is 
satisfiable')

 

 

The correctness of this algorithm is an 
immediate consequence of the previous propositions. 
Indeed, it starts by

 

computing det

 

(A), if it is≠0 then the 
algorithm outputs the unique solution

 

of the problem: 
the vector x=A-1b (proposition 1), else it constructs the 
associated G graph of the input formula. Then it checks 
if G contains K6 as

 

an induced subgraph. If G has K6 as 
an induced subgraph then the algorithm outputs that F 
is not satisfiable else it

 

outputs that F is satisfiable (i.e., 

 
 
 

there exists a truth assignment x setting exactly one

 

literal to 1 in each clause of

 

F) by proposition 6.

  

Steps 1 and 3 can be done in O

 

(n2) times. Step 
2 requires O

 

(n3) times. Whereas step 4 requires O

 

(n6) 
times. Thus, the overall complexity of this algorithm is O 
(n6).

  

Proposition 7:

  

Let G be a K6 -free graph and a graph on n 
vertices (n≥ 6), with minimum degree 3 and maximum 
degree 6 then G is a P4 –indifference graph and a block 
graph.

  

Proof:

  

We will prove that G under (the given 
conditions) is a P4 –indifference graph i.e. G admits an 
acyclic orientation

 

in which each induced P4 is of the 
type: o->o->o->o.

 

To prove this, we can use induction.

  

Base Case (n = 6):

 

For n = 6, consider the graph G with minimum degree 
3, maximum degree 6, and no induced K6 subgraph. 

 

Since

 

G is K6-free, there must be at least one 
vertex in G that is not adjacent to any other vertex in G. 
Let v be such a

 

vertex.

  

Remove vertex v from G to obtain a subgraph 
G' with 5 vertices. Since G' has

 

less than 6/3 = 2 
independent

 

vertices, by the previous arguments, G' 

 
  

Now, add vertex v back to G and its edges to 
vertices in G'. The orientation of the edges involving v 
maintains the

 

acyclic orientation with each induced P4 

being of the type: o->o->o->o.

  

Therefore, the base case holds

  

Inductive Hypothesis:

  

Assume that for any graph G with k vertices (k 
≥ 6), with minimum degree 3 and maximum degree 6,

 

the graph

 

admits an acyclic orientation in which each 
induced P4 is of the type: o->o->o->o.

  

Inductive Step:

  

Now, consider a graph G with k + 1 vertices (k 
≥ 6), with minimum degree 3 and maximum degree 6. 
We will

 

show that if G is K6-free, it admits an acyclic 
orientation in which each induced P4 is of the type: o-
>o->o->o.

  

Since G is K6-free, it cannot contain an induced 
subgraph isomorphic to K6. This means there must be at 
least one

 

vertex in G that is not adjacent to any other 
vertex in G. Let v be such a vertex.

  

Remove vertex v from G to obtain a subgraph 
G'. G' has k vertices, minimum degree 3, and maximum 
degree 6.

  

By the inductive hypothesis, G' admits an 
acyclic orientation in which each induced P4 is of the 
type: o->o->o->o.

  

Now, consider the vertex v that was removed. 
Since G has minimum degree 3, v must be adjacent to 
at least three

 

other vertices in G. Let w1, w2, and w3 be 
three such vertices.

  

Add vertex v back to G and

 

orient the edges vw1, vw2, 
and vw3 as follows:

  

•

 

vw1: o->o

  

•

 

vw2: o->o

  

•

 

vw3: o->o
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contains an induced K4 (complete graph on 4 vertices), 
and the orientation of the induced P4 within G' follows 
the type o->o->o->o.

Since G' admits an acyclic orientation in which 
each induced P4 is of the type: o->o->o->o, adding 
vertex v and the specified orientation of its edges will 
not create any directed cycles. Furthermore, any 
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induced P4 that includes

 

v will have the selected 
orientation: o->o->o->o.

  

Therefore, admits an acyclic orientation in which each 
induced P4 is of the type: o->o->o->o.

  

By induction, we have shown that any K6-free 
graph on n vertices (n ≥ 6), with minimum degree 3 and 
maximum

 

degree 6, admits an acyclic orientation in 
which each induced P4 is of the type: o->o->o->o. This 
is because the

 

structure of these graphs allows for the 
removal of vertices and subsequent addition without 
creating directed

 

cycles or violating the specified 
orientation for induced P4s.

 

Note that there exists a linear time algorithm LA 
for finding a maximum independent set in P4 –
indifference graphs

 

[11].

  

To prove that G is a block graph, we will prove 
that every maximal 2-connected component (block) is a 
clique. This can be proven by contradiction.

  

A 2-connected component of a graph is a 
subgraph that remains connected even if any edge is 
removed. A maximal

 

2-connected component is a 2-
connected component not adequately contained in any 
other 2-connected

  

component. A clique is a subgraph 
in which every pair of vertices is adjacent.

  

Proof by contradiction:

  

Assume that there exists a K6-free graph G with 
a minimum degree of 3 and a maximum degree of

 

6 
such that not

 

every maximal 2-connected component is 
a clique.

  

Let H be a maximal 2-connected component of G that is 
not a clique.

  

   

  

  

   

  

  

   

 

 

 
  

 

  

 
   

Proof:
   

Consider the following algorithm:  
Table 2: Pseudo-Code of Proposed Algorithm 2 

INPUT: F∈ Cubic Monotone 1-in-3 SAT problem  
Step 1: Define the A matrix of F.   
Step 2: Calculate det (A), if det (A)≠0 then OUTPUT(' F has a unique solution: x=A-1b ') else go to step 3. 
Step 3: Construct the associated graph G of F.  
Step 4: Check if K6 is an induced subgraph of G then OUTPUT ('F is not satisfiable') else goto step 5.  
Step 5: Run LA algorithm with input G.  
if α (G)=n/3 then OUTPUT('F is satisfiable') else OUTPUT('F is not satisfiable') 

 The correctness of this algorithm is an 
immediate consequence of the previous propositions.  
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Since H is a maximal 2-connected component, 
it cannot be extended to a larger 2-connected 
component by adding any edges.

Since H is not a clique, there exists a pair of 
non-adjacent vertices u and v in H.

By the minimality of H, there must exist edges in 
G connecting u and v to vertices outside of H.

Let w be a vertex in G that is adjacent to u but 
not in H, and let z be a vertex in G that is adjacent to v 
but not in H.
Consider the subgraph of G induced by the vertices {u, 
v, w, z}.

Since G is K6-free, this subgraph cannot be 
extended to a K5 or a K6 by adding edges to any other 
vertices in G. Therefore, the subgraph induced by {u, v, 
w, z} must be a K4, a complete graph on four vertices.

However, this contradicts that H is a maximal 2-
connected component, as adding the edge (u, v) to H 
would create a larger 2-connected component.

Therefore, our initial assumption that there 
exists a K6-free graph G with a minimum degree of 3 
and a maximum degree of 6 such that not every 
maximal 2-connected component is a clique must be 
false. Therefore, any K6-free graph G with a minimum 
degree of 3 and a maximum degree of 6 must have the 
property that every maximal 2- connected component is 
a clique.

Note that there exists a polynomial time 
algorithm for finding a maximum independent set in 
block graphs [12].

Corollary:
There exists a polynomial time algorithm that 

decides whether a formula F∈ Cubic Monotone 1-in-3 
SAT problem is satisfiable.

Indeed, steps 1 to 3 are similar to algorithm 1. In step 4, 
it checks if G contains K6 as an induced subgraph. If G 

contains K6 as an induced subgraph then the algorithm 
outputs that F is not satisfiable else it apply LA algorithm 
with input G (because in this case since G is K6 -free it is 
also P4 –indifference graph by proposition 7). Therefore, 



 
 

  

 

  
  

 
  

 
 

  
  

       
  

 
  

     
  

  
   
    
 

  
  

  
  

      
  

 
  

     
  

  
   
    
 

  

    
II.

 

Discussion

 In this paper, two polynomial time algorithm that 
decides whether a formula F∈

 

Cubic Monotone 1-in-3 
SAT

 

problem is satisfiable were proposed. Since this 
problem is NP-complete, then it implies that the 
conjecture P=NP

 

is true.

  
Future work will consist of developing an 

efficient implementation of the proposed algorithm to 
conduct some

  

experiments on various instances of the 
problem.
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if α (G)=n/3 then it outputs that F is satisfiable (i.e. there 
exists a truth assignment x setting exactly one literal to 1 
in each clause of F) by proposition 3, else it outputs 
that F is not satisfiable by proposition 4.

Steps 1 and 3 can be done in O(n2) times. Step 
2 requires O(n3) times. Whereas step 4 requires O(n6) 
times. In step 5, LA algorithm run in O (n) time, thus the 
overall complexity of this algorithm is O (n6).

Example 1:  

n=6  

  

   

Therefore F is not satisfiable.  

Example 2:  

n=6  
  

   

Therefore F is satisfiable and (a1,a2,a3,a4,a5,a6)=(1,1,0,0,0,0) is a truth assignment setting exactly one 
literal to 1  in each clause of F.  

F=(a1a3a4) (a1a5a4) (a1a2a6) (a2a3a5) (a5a3a6) (a2a6a4)

A=

(

  
 

1 0 1 1 0 0

1 0 0 1 1 0

1 1 0 0 0 1

0 1 1 0 1 0

0 0 1 0 1 1

0 1 0 1 0 1)

  
 

                       G= K6

F=(a1a3a4) (a1a6a4) (a1a5a6) (a2a3a5) (a2a3a6) (a2a5a4)

A=

(

  
 

1 0 1 1 0 0

1 0 0 1 0 1

1 0 0 0 1 1

0 1 1 0 1 0

0 1 1 0 0 1

0 1 0 1 1 0)

  
 

                       and G is not isomorphic to K6
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