
© 2023. Kruti P. Shah & Emanuel S. Grant. This research/review article is distributed under the terms of the Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference
this article if parts of the article are reproduced in any manner. Applicable licensing terms are at
https://creativecommons.org/licenses/by-nc-nd/4.0/.

Global Journal of Computer Science and Technology: H

Volume 23 Issue 1 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Towards Verification of UML Class Models using Formal
Specification Methods: A Review

 By Kruti P. Shah & Emanuel S. Grant
 University of North Dakota

Abstract- In today's world, many elements of our lives are being affected by software and for that we are in
greater need of high-quality software. The Unified Modeling Language (UML) is considered the de facto
standard for object-oriented software model development. UML class diagram plays an important role in
the design and specification of software systems. A class diagram provides a static description of system
components. The purpose of a class diagram is to display classes with their attributes and methods,
hierarchy (generalization) class relationships, and associations (general, aggregation, and composition)
between classes in one model. However, there are many concepts in the UML with imprecise semantics
for that reason the models created may be incorrectly designed. Also, there are number of designers
involved in the model designing process who are prone to making mistakes, which gives rise to potential
conflicts, uncertainty, and ambiguity. The development of these models is a highly time-intensive process.
Therefore, it is extremely important to check the correctness of these models and identify the problems in
the early stage of the software development process.

Keywords: formal methods; model verification; MDE; UML models; UML class diagrams.

GJCST-H Classification: FOR Code: 090699

TowardsVerificationofUMLClassModelsusingFormalSpecificationMethodsAReview

 Strictly as per the compliance and regulations of:

Information & Technology

Towards Verification of UML Class Models using
Formal Specification Methods: A Review

Kruti P. Shah α & Emanuel S. Grant σ

Abstract- In today's world, many elements of our lives are
being affected by software and for that we are in greater need
of high-quality software. The Unified Modeling Language
(UML) is considered the de facto standard for object-oriented
software model development. UML class diagram plays an
important role in the design and specification of software
systems. A class diagram provides a static description of
system components. The purpose of a class diagram is to
display classes with their attributes and methods, hierarchy
(generalization) class relationships, and associations (general,
aggregation, and composition) between classes in one model.
However, there are many concepts in the UML with imprecise
semantics for that reason the models created may be
incorrectly designed. Also, there are number of designers
involved in the model designing process who are prone to
making mistakes, which gives rise to potential conflicts,
uncertainty, and ambiguity. The development of these models
is a highly time-intensive process. Therefore, it is extremely
important to check the correctness of these models and
identify the problems in the early stage of the software
development process. Error detection and verification of these
models at early stage may save costs and time of software
development. Therefore, an integration of UML and formal
methods is required to overcome such type of issues. Formal
methods have proven effective in the development of safety
critical systems. The purpose of this work is to provide an
overview of formal specification methods (Z notation and OCL)
for verifying the UML class model. This review will be helpful to
understand current research trends and identify open issues
or other areas for improvement in the domain of UML class
model verification.
Keywords: formal methods; model verification; MDE;
UML models; UML class diagrams.

I. Introduction

raphical models of software systems are
designed and developed in the initial phase of
the Software Development Life Cycle (SDLC) [1].

A model is an abstract representation that is used to
analyse and understand a different aspect of software
system [2]. In Model-Driven Engineering (MDE), the
software design model is considered a foundation of all
development activities. Models in software engineering
are used to elicit requirements, design the system, and
develop the code of the proposed system.

In software engineering, it is essential and
beneficial to design a model before the implementation.

 Author α σ: School of Electrical Engineering and Computer Science,
University of North Dakota, Grand Forks, ND, USA.

 e-mails: kruti.shah@ndus.edu, emanuel.grant@und.edu

It provides an understandable view of the system and
improves communication among technical developers
and non-technical users. Along with that, the software
design model provides identification of ambiguities and
uncertainties at the initial level of SDLC with the help of
model verification techniques [3,4].

Unified Modeling Language (UML) [2] is a
widely used graphical modeling language, and it is
extensively used in MDE. It is used to specify, simulate,
and construct software system components. The UML
has been adopted and standardized by the Object
Modeling Group [5]. It has many static and dynamic
models for dealing with different aspects of software.

The class model is an essential part of UML
which performs a major role in analysis and design of
software [5].This work considers the UML class
diagram, which is the most fundamental and widely
used among all UML models according to a survey
presented in [6]. A Class Diagram provides a static
description of system components. The key
components of a class model are classes with their
attributes and methods, hierarchy (generalization) class
relationships, and associations (general, aggregation,
and composition) [2, 7].

UML is considered the standard for object-
oriented software model development that allows
modeling of various aspects of complex systems [2, 7].
However, there are many concepts in the UML with
imprecise semantics, which limit the use of the UML and
reduce the quality of the UML models. Also, they lack a
formal foundation. Therefore, model verification is not
possible in them. Thus, developing technologies for the
analysis and verification of UML models is significant to
developers who use UML for system modeling.

The programming language code is developed
with the reference of the design models in MDE, and
defects and ambiguities in the model can implicitly
transfer into the programming code, making it more
difficult to determine and rectify. Also, the development
of these models is a highly time-intensive process.
Therefore, it is extremely important to check the
correctness of these models and identify the problems
in the early stage of the software design process.

Model verification ensures that the design
model is unambiguous, correct, and bug-free. It
essentially verifies the model's accuracy and guarantees
that the model is consistent and acceptable. The ability
to analyse and validate UML models is provided by

G
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

1

 (

)
H

Y
e
a
r

20
23

© 2023 Global Journals

formal specification methods [8]. Formal methods
involve the use of a specification language and
mathematical theories to design models. They enhance
consistency, eliminate design flaws, and improve
system reliability.

Despite the challenges that model complexity
has introduced into MDE-based software development
processes, as well as the benefits of using formal
methods to verify software, there has been a lot of work
done on applying formal methods and formal analysis
techniques to ensure the model correctness.

This paper reviews the progress of some
research articles on UML class model verification
methods Z(zed) and Object Constraint Language (OCL)
and directs future research in the area of formal
specification language. The primary goal of this work is
to provide a summary of approaches considered in
selected articles, along with the quality of their results
and conclusions. This review will be useful for
researchers to understand the important open issues in
existing methods and limitations that need to be
addressed in the area of model correctness.

The remainder of the paper is organized as
follows. Section 2 represents the review process
including the research questions and the
inclusion/exclusion criteria. Section 3 gives a brief
theoretical background of UML class model along with
the model transformation and formal methods to verify
the correctness of UML models. Section 4discusses the
studies and work done in the area of verification and
correctness of UML class models using formal methods.
Section 5 discusses the review summary and important
open issues in the domain of formal specification
methods followed by the conclusion.

II. Review Process

This section discusses the Research Questions
followed by defining inclusion and exclusion criteria for
the review.

a) Research Questions
This paper focuses on providing an analysis

and comparison of the research initiatives done in the
field of formal verification approaches mainly Z(zed)
notation and Object Constraint Language (OCL). More
precisely, we aim to answer the following research
questions in this literature review:

RQ1: What is the importance of UML models and static
CD models?

RQ2: What is the importance of model transformation
and formal specification methods?

RQ3: Which model defects have been undertaken in
proposed approach?

RQ4: Is a verification approach supported by the tool?

RQ5: What are the deficiencies associated with the
selected formal approach?

Table 1: Selected studies for this survey

Study Method Reference Title

S1 Z-notation

1) The UML as a formal modeling notation
2) Reasoning with UML class diagrams
3) Foundations of the unified modeling language
4) The Z notation Manual

S2 OCL

1) Finite satisfiability of UML class diagrams by constraint programming
2) A UML model consistency verification approach based on meta-
modeling formalization
3) Reasoning about UML/OCL class diagrams using constraint logic
programming and formula
4) Incremental verification of UML/OCL models
5) Verification of UML/OCL class diagrams using constraint programming
6) UML to CSP: A tool for the formal verification of UML/OCL models using
constraint programming
7) Towards domain refinement for UML/OCL bounded verification

III. Theoretical Background

This section covers some of the theories and
prior work in the area of UML models and various

aspects of UML class diagrams along with the
description of the requirement of model transformation
and formal specification methods to verify the
correctness of such models.

Towards Verification of UML Class Models using Formal Specification Methods: A Review

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

2

 (

)
Y
e
a
r

20
23

H

b) Inclusion/Exclusion Criteria
In this section, we defined inclusion/exclusion

criteria to determine the related works. The inclusion
criteria focus on: 1)studies related to the verification of
UML class model using formal methods Z and OCL and
2) paper published in English. On the other hand, We
exclude the formal verification studies that are related to
dynamic UML models. Based on the inclusion/exclusion
criteria, I have selected following studies that are related
to the Z-notation and OCL for this review.

a) Unified Modeling Language (UML)
UML [2,7] has been widely accepted as the

standard language for modeling and documenting
software systems. Their significance has been
enhanced with the beginning of the Model-Driven
Development (MDD) approach, in which analysis and
design models play an essential role in the process of
software development. The UML offers a number of
diagram forms to describe particular aspects of software
artifacts. These diagram structures can be divided into
two categories static or dynamic views:

Static view: It describes the structural aspect of the
system and its components. It includes objects, classes,
attributes, operations, and their inter-relationships. The
structural view can be represented by class diagrams
and composite structure diagrams.

Dynamic view: It describes the behavioral aspect of the
system. The dynamic view reflects the changes related
to the internal states of individual objects and changes
in the system's overall state. This view can be
represented by sequence, activity, and state chart
diagrams.

i. UML Class Diagram
The UML class diagrams are used to represent

the static structure of system components [2,7]. It
describes the system structure in terms of classes,

attributes, and constraints imposed on classes
(operations) and their inter-relationships.This work
focuses on the use of the UML class diagrams. Class
diagrams are used at the analysis phase to present a
view of the static entities in the problem domain, and at
the design phase to present a view of the static entities
(classifiers) in the solution domain. A class diagram is
best described as a set of graph elements connected by
their relationships.

Classes in UML models are represented as
rectangles. Each class consists of a name, set of
attributes, and set of operations on the class's attributes.
Figure 1 shows an example of a class diagram
consisting of classes, associations (aggregations and
compositions), and generalizations.

ii. UML Association (Aggregation, Association,
Composition, generalization)

There are some rules and requirements for
combining the classes to construct partial or complete
UML class models.

Association It can be depicted as bi-directional
or unidirectional. The association lines indicate the
possible relationship between the class entities [9]. An
association represents attributes and objects from the
related classes, such as the relationship between class
A and class C seenin Fig. 1.

Figure 1: UML Class Diagram

Association ends can be annotated with labels,
known as association end names and multiplicities. For
example, multiplicity can be expressed as specific
numbers, ranges of numbers, or unlimited numbers, as
shown in Figure 1 between classes A and C.

Aggregation An aggregation is represented
as an association with a white diamond on one end,
where the class at the diamond end is the aggregate
(container class). It includes or owns instances of the
class (contained class) at the other end of the
association [9] (e.g., the relationship between class A
and B in Figure 1).

Composition It is a special type of
aggregation in which instances of the contained class
are explicitly owned by instances of the container
classes [9]; if an instance of the container class is
deleted, the instances of the contained class are also

deleted. Figure 1 shows class C, the container class,
and class D, the contained class. It is represented as an
association with a black diamond.

Generalization A generalization is represented
by an association with a triangle on one end represents,
where the class at the triangle end of the association is
the parent class of the classes at the other ends of the
association, called subclasses [9]. A subclass inherits
all of the parent class's attributes, operations, and
associations (e.g., subclasses E and F inherit properties
of parent class C in Figure 1).

b) Model Transformation
Models provide a level of abstraction that allows

developers and stakeholders to visualize different parts
of the system while avoiding implementation details. A
large number of models can exist for any given system,

Towards Verification of UML Class Models using Formal Specification Methods: A Review

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

3

 (

)
H

Y
e
a
r

20
23

© 2023 Global Journals

and it is essential to assure the consistency of those
models [10].

Most software engineering operations have
included model transformation in their development life
cycle. It is the process of transforming
a graphical model for the purposes of
analysis, optimization, evolution, migration, or even
code generation. Model transformation employs a
collection of rules known as transformation rules, which
take one or more input models and output one or more
target models [11].

Model transformation can be either manual or
automatic. Manual transformation involves an
application of custom transformation rules while in
automatic transformation the predefined transformation
rules are applied to class model [11]. Regardless of the
transformation method used, it is essential that the
software engineer has a thorough understanding of the
project's scope, as well as the syntax and semantics of
the source and target models. Transformation rules will
be designed and applied to the models in order to
automate the transformation process. The source
models will be UML class diagrams, and the target
models will be their equivalent formal specification
schemas.

c) Formal Specification Methods
The inadequacies of system and software

specifications are one of the primary issues with
software-intensive systems. Although the requirements
should usually accurately describe the functions of the
software system, many of the details that should be
carried out and defined in a more detailed specification
are not addressed.

As a result, there are inconsistencies and
misinterpretations, which lead to issues in the latter
stages of design and implementation. These issues are
frequently identified during the system integration
stages. There are graphical software development
methods, such as data-flow diagrams, finite state
machines, and entity relationship diagrams, that have
been shown to help with the development of better
specifications, but they lack precision in the details of
the specification and a smooth way of developing a
design and implementation.

Formal specification methods are feasible
solution to these issues. They precisely define the
system and ensure a smooth transition from
specification to design to implementation. There are a
number of formal specification languages such as Z
notation, Object Constraint Language (OCL), VDM, Alloy
etc. In general, all of these formal specification
languages involve formal specification, refinement, and
verification, which comprise of set theory, predicate
logics, and algebra, among other things. The primary
goal of our review is to compare two of these formal
specification approaches i.e., Z notation and OCL.

The syntax and semantics of static and dynamic
aspects of a system are formally specified in terms of
mathematical notations in formal languages. Formal
languages improve the system's reliability and
security by reducing ambiguity in the system's
requirements using their mathematical representation.
The use of formal languages is essential while working
with the large/complex real-time software systems in
which the accuracy of the system is important.

The importance of formal languages increases
in real-time safety critical systems where the primary
concern is reliability and performance of the
system. There is decent amount of work done in terms
of defining and specifying formal languages
for software systems and UML models, with some
being accepted by the industry, such as Z, OCL, VDM,
B, Alloy, etc. As each language has its own pros and
cons, this survey compares two languages Z and OCL
that can be utilize for verifying real-time safety critical
systems.

i. Z-notation
The Z notation [12]-[15] is based on first-order

logic and typed set theory. A schema i.e., a component
of Z notation that describes the state and operations of
a specification. A schema is a collection of variable
declarations accompanied by a set of predicates that
constrain the variable's possible values.

ii. Object Constraint Language (OCL)
The Object Constraint Language (OCL) [16]-

[22] is a constraint expression language for object-
oriented languages and other modeling artifacts. OCL is
a component of the Unified Modeling Language (UML)
that plays a key role in the software lifecycle's analysis
phase. For a detailed and unambiguous specification,
traditional graphical models, such as class models, are
insufficient. Therefore, We require to add some more
constraints to the objects to resolve those issues.
However, the classic formal method requires a
significant knowledge of mathematics, making it difficult
for the average business or system modeler to employ.
OCL has been designed to bridge this gap. It was
created by IBM's Insurance group as a business
modeling language.

IV. Literature Review

a) Z notation
The Z notation is used in the first research [S1,

12-15] to formalize and verify the UML class model. The
authors (Evans et al.) employed Z notation to develop
the formal foundation for the UML core meta model in
S1. They claimed that the formal foundation provides a
number of benefits, including transparency,
extendability, consistency testing, refinement, and proof
[12, 13].

They have defined a compositional schema
with multiple subschema a as to represent the UML

Towards Verification of UML Class Models using Formal Specification Methods: A Review

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

4

 (

)
Y
e
a
r

20
23

H

class model. The sub-schemas formalize UML model
elements such as type, instance, values, operation,
associations, generalization etc. The authors also
propose three alternatives for formalizing the UML
model [12]: 1) Supplementary: In this way, the UML
model's informally specified elements are formally
expressed. 2) Object-Oriented Extended Formal
Language: In this approach, established formal
methods are extended with object-oriented principles
such as Object-Z and Z++. 3) Method Integration: In
this method, the complete UML model is translated into
a formal model in order to improve its precision.

The authors of [12] expanded on their previous
work by proposing a graphical representation
transformation of the UML class model. They also
offered a three-step roadmap for formalizing and
verifying models: 1) Select a formal language that is
both expressive and well supported by the tools for the
model's static and dynamic features of UML class
model. 2) Formally describe a graphical modeling
notation's abstract syntax. 3) Define a function that
transforms the model's syntax and semantics into formal
notation. Finally, tools for validating formal semantics
should be developed.

The authors of [14] suggested that formal UML
analysis alone is insufficient for determining semantic
correctness. Furthermore, the authors stated that it is
not particularly accessible to practitioners with limited
knowledge of discrete mathematics, and that industry
experts' comments is also necessary for the semantic
validity of the UML model. In [15], Authors designed a
formal methods reference manual for Z notation, which
precisely and explicitly specifies the semantics of UML
concepts. Along with that, the Inference rules for
examining various UML model properties are provided
in the reference manual [15].

b) Object Constraint Language (OCL)
In the second study [S2, 16-22], object

constraints language (OCL) used for verification of the
UML class model.

Cadoli et al. [16] proposed a constraint
programming-based linear inequality-based method for
finite model verification. They used the Constraint
Satisfaction Problem (CSP) to represent the UML class
model, and the ILOG's Solver assessed the satisfiability
of the UML class model [16]. The Managed Object
Format (MOF) syntax is used by the ILOG solver as an
input. In addition, two class model correctness issues
were addressed and encoded into CSP. In the first
problem, they check that all the model's classes are
completely satisfied at the same time. In the second
problem, they prove that a finite non-empty model can
be generated from the class model.

To verify the UML class model, Malgouyres and
Motet [17] employed Constraint Logic Programming
(CLP). They used CLP clauses to translate the UML

class model, metamodel, and meta-metamodel [17]. In
this approach, c Concrete metamodel and UML class
model elements are translated into CLP facts while
abstract elements and constraints are transformed into
rules. CLP's goals are also specified, which contradicts
the consistency standards. Finally, the inconsistencies
are handled by a unified checker. The UML class model
is considered inconsistent if the unified checker
identifies the solution to the goal and if the goals are
resolved.

Pérez and Porres [18] proposed a system for
using CLP to assess the satisfiability of a UML class
model. The suggested methodology detects design
flaws in UML class models with OCL annotations. They
used the bounded verification approach and used the
model-finding tool formula to reason about finite
constraints for the number of instances of the
model. The suggested method verifies predefined
correctness features such as satisfiability and the lack of
redundant constraints. It can also be used to analyze
complex models in order to discover the optimal object
model for the domain. They also used an eclipse plug-in
called CD-to-Formula to design the proposed
framework.

Cabot et al. [19] presented incremental
verification of the class model's OCL integrity constraint.
Integrity checking is a technique used for determining
whether an operation violates a specified integrity
constraint. They introduced the term Potential Structure
Event (PSE) and stated that verifying integrity
requirements after each structure event (e.g., Insert,
Update, Delete, or Specialized Entity) can be costly
and time-consuming [19]. As a result, PSEs for each
integrity constraint are recorded, and only those events
that can violate the constraint are represented.
Furthermore, only the instances of entity and
relationship types that have been affected by PSEs are
validated and verified.

Cabot et al. [20] presented an approach to
translate UML class models annotated with OCL
constraints into a constraint satisfaction problem (CSP).
The authors briefly discussed translation of UML/OCL
classes, associations, generalization sets, and OCL
invariants into CSP. A tool based on CSP [21] is then
used to verify a predefined set of correctness properties
for the original UML/OCL diagrams. The UML/OCL
language combination integrates well with automated
inference systems. If the generated CSP is solvable, the
model is considered satisfiable otherwise is considered
unsatisfiable. The CSP tool supports bounded
reasoning about satisfiability, consistency, finite
satisfiability, independence of invariants, and partial
state completion. It handles class diagrams with
multiplicity, class hierarchy, association-class
constraints but does not allow multiple inheritance.
Along with that, tool does not support all the features in

Towards Verification of UML Class Models using Formal Specification Methods: A Review

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

5

 (

)
H

Y
e
a
r

20
23

© 2023 Global Journals

OCL specification, such as constraints on a string,
aggregation, and composition relationship.

Cabot et al. presented the UML to CSP tool in
[21]. It takes the XMI format for the class model and
OCL as a separate text file for input. The model and
OCL are translated to CSP, which is then verified by the
CSP solver. The XMI file is parsed using the Metadata
Repository API, while OCL constraints are processed by
the Dresden OCL Toolkit.

Cabot et al. [22] expanded on their previous
work [20], arguing that an insufficient constraint or
bound could miss defects in the model due to a small
search space or could be inefficient if set too large.
Large initial bounds and constraints are set in the
proposed solution [22]. Then, using the interval
constraint propagation technique, the set of bounds is
tightened up as much as feasible with user input,
and unwanted value from the bounds is removed. Since
then this technique has been enhanced to the point
where verification bounds are now defined automatically
whenever its possible.

V. Review Summary and Conclusion

Software design models play an important part
in modern software development. They are useful for
more than just documentation; they are also used for
analysis, design, testing, and even code development
using an automated transformation technique. The

transformation technique allows existing software
artifacts to be reused automatically. However, it has
several flaws, such as the fact that model flaws are
automatically transmitted to the changed model through
the transformation. These flaws are difficult to detect
and correct. Model verification appears to be a viable
solution to the problem.

The verification of the UML class model is
essential for assuring model quality prior to
transformation. Verification of the UML class model
through formal notation has been discussed in several
studies. In this review, we discussed prior works in the
field of formal specification specially related to Z and
OCL methods. We presented a comparison of these
formal methods in Table 2 based on the analysis of
studies [12]-[22]. This comparison is performed based
on the features like support for UML features, Tool
support, feedback for the user, and the efficiency of the
methods and verification tool. Both the methods provide
support for association, aggregation, and generalization
relationships and do not support the features like
dependency relationships (aggregation and
composition) and x or constraint. Z notation is
supported by Z word and Z/Eves verification tools. USE
and UML to CSP tools are capable of working with OCL.
Both of these tools support semi-automatic
transformation.

Table 2: Comparison of Z and OCL formal methods

Method Support for UML Features Tool Support Feedback to user Efficiency

Z
Association, Generalization,

Multiplicity Constraints
Z Word, Z/Eves

Error: Does not provide
meaningful feedback

Successful: message in
textual form on a pop-up

window

Not efficient with large
or complex UML class

models

OCL
Association, Association
Classes, Generalization,
Multiplicity Constraints

USE Tool
UMLtoCSP

Error: Does not provide
meaningful feedback

Successful: object model

Not efficient with large
or complex UML class

models

Both the tools (Z word and USE) provide
feedback to users in order to notify them of the
verification process's outcome. Z word provides the
successful message in textual form on a pop-up
window. In case of USE tool, if the verification process
ends successfully it is complemented by a sample
object model. This sample object model acts as the
proof of the verification. When the verification process
does not succeed, the Z Word and USE tools can
display some hints in textual form on a window. This can
help model designers in identifying the reasons for the
failure and adjusting the model accordingly.

However, this models or tools require from the

user a significant level of expertise on formal aspects in
order to understand the feedbacks and resolve the
issues. Overall, We can say that the existing verification
tools, apart from being certainly limited in size, is in

some cases targeted at a very limited or specific
audience.

Finally, efficiency is a major concern. Current
UML class model verification methods effectively
verify the correctness of small models with few
constraints. However, in some circumstances, especially
when dealing with large and complex models, their
performance suffers. Along with that, they also lack
support for certain key features of the UML class model.

Unfortunately, none of the verification tools
examined in this study performs well in terms of
achieving the verification requirements. These tools and
methods in general do not integrate well and have
been developed to conduct verification apart from the
rest of the activities that characterize a model designer's
work. It forces users to switch between model editors
and verification tools to check for errors every time

Towards Verification of UML Class Models using Formal Specification Methods: A Review

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

6

 (

)
Y
e
a
r

20
23

H

models are refined or improved, usually with little or no
hint on where to apply fixes if the verification fails.

To conclude this, in my opinion, a verification
tool, in order to be effective and widely adopted, has to
present, at least, few important characteristics: 1) It
should provide support for some key features of UML
class model (i.e., aggregation, composition, x or
constraint), 2) It should easily integrate into the model
designer tool chain, 3) It should offer meaningful
feedback for the user, and 4) It should be relatively
efficient while verifying the large or complex real-world
UML class models.

References Références Referencias

1. Davis, Alan M., Edward H. Bersoff, and Edward R.
Comer. "A strategy for comparing alternative
software development life cycle models." IEEE
Transactions on software Engineering 14, no. 10
(1988): 1453-1461.

2. G. Booch, J. Rumbaugh, and I. Jacobson, The
Unified Modeling Language, Rational Software
Corporation, Addison-Wesley, Indiana, USA, 1997.

3. Mens, Tom, and Pieter Van Gorp. "A taxonomy of
model transformation." Electronic notes in
theoretical computer science 152 (2006): 125-142.

4. Meedeniya, Dulani Apeksha. "Correct model-to-
model transformation for formal verification." PhD
diss., University of St Andrews, 2013.

5. Object Modeling Group. Unified Modeling
Language Specification. Version 2.5. October 2012.

6. Dobing, Brian, and Jeffrey Parsons. "How UML is
used." Communications of the ACM 49, no. 5
(2006): 109-113.

7. Rumbaugh, J.; Jacobson, I.; Booch, G. The Unified
Modeling Language Reference Manual; Pearson
Higher Education: Hoboken, NJ, USA, 2004.

8. Lano, A. Evans R. France K., and B. Rumpe. "The
UML as a Formal Modeling Notation." Computer
Standards and Interfaces 19 (1998): 325-334.

9. C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S.
Leipert, and P. Mutzel. "A New Approach For
Visualizing UML Class Diagrams." Proc ACM Symp.
Software Visualization (SOFTVIS03), June 2003,
Association for Computing Machinery, pp. 179-188.

10. Varró, Dániel. "Model transformation by example." In
International Conference on Model Driven
Engineering Languages and Systems, pp. 410-424.
Springer, Berlin, Heidelberg, 2006.

11. Sendall, Shane, and Wojtek Kozaczynski. "Model
transformation: The heart and soul of model-driven
software development." IEEE software 20, no. 5
(2003): 42-45.

12. France, Robert, Andy Evans, Kevin Lano, and
Bernhard Rumpe. "The UML as a formal modeling
notation." Computer Standards & Interfaces 19, no.
7 (1998): 325-334.

13. Evans, Andy S. "Reasoning with UML class
diagrams." In Proceedings. 2nd IEEE Workshop on
Industrial Strength Formal Specification Techniques,
pp. 102-113. IEEE, 1998.

14. T. Clark and A. Evans, ``Foundations of the unified
modeling language,'' in Proc. 2nd Northern Formal
Methods Workshop. Ilkley, U.K.: Springer, Jul. 1997,
pp. 1-15.

15. Spivey, J. Michael, and J. R. Abrial. The Z notation.
Vol. 29. Hemel Hempstead: Prentice Hall, 1992.

16. Cadoli, Marco, Diego Calvanese, Giuseppe De
Giacomo, and Toni Mancini. "Finite satisfiability of
UML class diagrams by Constraint Programming."
CSP Techniques with Immediate Application
(CSPIA) 2 (2004): 2-16.

17. Malgouyres, Hugues, and Gilles Motet. "A UML
model consistency verification approach based on
meta-modeling formalization." In Proceedings of the
2006 ACM symposium on Applied computing, pp.
1804-1809. 2006.

18. Pérez, Beatriz, and Ivan Porres. "Reasoning about
UML/OCL class diagrams using constraint logic
programming and formula." Information Systems 81
(2019): 152-177.

19. Cabot, Jordi, and Ernest Teniente. "Incremental
evaluation of OCL constraints." In International
Conference on Advanced Information Systems
Engineering, pp. 81-95. Springer, Berlin, Heidelberg,
2006.

20. Cabot, Jordi, Robert Claris, and Daniel Riera.
"Verification of UML/OCL class diagrams using
constraint programming." In 2008 IEEE International
Conference on Software Testing Verification and
Validation Workshop, pp. 73-80. IEEE, 2008.

21. Cabot, Jordi, Robert Clarisó, and Daniel Riera.
"UMLtoCSP: a tool for the formal verification of
UML/OCL models using constraint programming."
In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software
engineering, pp. 547-548. 2007.

22. Clarisó, Robert, Carlos A. González, and Jordi
Cabot. "Towards domain refinement for UML/OCL
bounded verification." In SEFM 2015 Collocated
Workshops, pp. 108-114. Springer, Cham, 2015.

Towards Verification of UML Class Models using Formal Specification Methods: A Review

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

7

 (

)
H

Y
e
a
r

20
23

© 2023 Global Journals

	Towards Verification of UML Class Models using FormalSpecification Methods: A Review
	Author
	Keywords
	I. Introduction
	II. Review Process
	a) Research Questions
	b) Inclusion/Exclusion Criteria

	III. Theoretical Background
	a) Unified Modeling Language (UML)
	i. UML Class Diagram
	ii. UML Association (Aggregation, Association,Composition, generalization

	b) Model Transformation
	c) Formal Specification Methods
	i. Z-notation
	ii. Object Constraint Language (OCL)

	IV. Literature Review
	a) Z notation
	b) Object Constraint Language (OCL)

	V. Review Summary and Conclusion
	References Références Referencias

