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Abstract- 

 

Power systems serve social communities that 
consist of residential, commercial, and industrial customers. 
The social behavior and degree of collaboration of all 
stakeholders, such as consumers, prosumers, and utilities, 
affect the level of preparedness, mitigation, recovery, 
adaptability, and, thus, power system resilience. Nonetheless, 
the literature pays

 

scant attention to stakeholders’ social 
characteristics and collaborative efforts when confronted with 
a disaster and views the problem solely as a cyber-physical 
system. However, power system resilience, which is not a 
standalone discipline, is inherently a cyber-physical

 

social 
problem, making it complex to address. To this end, in this 
paper we develop a socio-technical power system resilience 
model based on neuroscience, social science, and 
psychological theories and using the threshold model to 
simulate the behavior of power system stakeholders during a 
disaster. We calibrate and validate our model using Tenfold 
cross-validation on datasets of hurricane Harvey of Category 4 
that hit Texas in August 2017 and hurricane Irma of Category 5 
that made landfall on Florida in September 2017. We retrieve 
these datasets from Twitter and Google

 

Trend and then apply 
natural language processing and language psychology 
analysis tools to deduce the social behavior of the end-users. 

 

Index Terms:

 

resilience; social science; power systems; 
social computing; cyber-physical-social system; data 
science; social media; natural language processing.  

i.

 

Introduction

 

he

 

2021

 

winter

 

storm

 

in Tex as,

 

which

 

included

 

three

 

severe storms between 10 and 20 February, 
resulted in widespread power generation failure 

and blackouts. As a result, over 4.5 million homes and 
businesses lost power, leaving them without heat, water, 
or food for several days. Remarkably, during the storms 
numerous grocery stores have closed and some critical 
loads, such as hospitals, were short of electricity while 
experiencing power outages. Thus, the 2021 Texas 
power crisis had a detrimental effect on people’s mental 
and physical health, resulting in a wave of widespread 
anger. On the other hand, because the power system 
managed by the Energy Reliability Council of Texas 
(ERCOT) is disconnected from the US Eastern and 

Western interconnections, importing power from these 
interconnections was impossible during the winter 
storm. ERCOT issued bills to customers as high as 
$17,000 for less than a month of service, compared to 
prestorm prices of less than $60 per month. The power 
outages and high electricity prices were exacerbated by 
a lack of cooperation and empathy and inadequate 
winterization of the power infrastructure. This example 
demonstrates the effect of cooperation on the resilience 
of the power system. 

A power system is inextricably linked to the 
social communities it serves. Indeed, making a power 
system resilient requires that all stakeholders, e.g., 
utilities, consumers, and prosumers, work together. The 
ultimate goal of the power system is to balance supply 
and demand. With the advent of the Internet and the 
energy of things, consumers can play a critical role in 
achieving the grid’s objectives and assisting the 
generation side in increasing its operational efficiency, 
reliability, and resilience. For instance, the consumers 
may take an active role in demand management by 
reducing their consumption during disasters. 
Additionally, prosumers may store their electricity for use 
during times of peak demand, support critical loads, 
and share it with their neighbors during power outages. 
End-users willingness to assist the power utilities during 
and in the aftermath of a disaster is contingent upon 
their satisfaction and cooperation. Without collaboration, 
a power system may struggle to respond to and recover 
from a disaster as it was the case of the 2021 Texas 
winter storm. In the literature, a number of papers have 
proposed a variety of models for power system 
resilience. Although there are papers that discuss the 
effect of social factors on resilience, they have not 
modeled these social factors. The mathematical models 
focus exclusively on the cyber-physical aspects while 
ignoring the social aspects of resilience. Mili [1] 
elucidates the concept of the resilience of a power 
system and discusses its robustness, stability, reliability, 
and homeostasis. Panteli et al. [2] define operational 
metrics for power system resilience from an 
infrastructure perspective. Watson et al. [3] and Panteli 
et al. [4] provide an event-based fragility model for the 
electric grid’s components in order to assess the 
vulnerability of the critical components to extreme 
events. To enhance power system resilience, Huang et 
al. [5] propose to integrate in the power system model 
generation re-dispatch, load shedding, and topology 
switching; Ma et al. [6] develop a model for backup 
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distributed generators and automatic switches; and Mili 
et al. [7] and Panteli et al. [8] propose to utilize adaptive 
islanding. 

 Obviously, all the papers in the literature 
overlook the importance of mathematical modeling of 
the social component of power system resilience since 
they view the latter as a cyber-physical system, not as a 
cyber-physical-social system. The primary reasons for 
this lack of attention is the complexity of modeling the 
social component of power systems. To overcome this 
weakness, in this paper we present a socio-technical 
framework for modeling output-oriented power system 
resilience. To do so, we consider and model the 
behavior of consumers, prosumers, and utilities through 
the lens of computational social science. Additionally, 
we quantify socio-technical resilience characteristics for 
cross-validation purposes. Specifically, we propose a 
new method for assessing the social behaviors of power 
system stakeholders and then we calibrate and validate 
that model by extracting the social behavior 
characteristics from large-scale data sets, such as 
Twitter, while using the natural language processing and 
the text mining techniques. 

The Main Contributions of the Paper are as follows:  
• We propose a socio-technical model for power 

system resilience that leverages social science 
theories and computational social science to model 
the social behaviors of consumers, prosumers, and 
utilities during times of crisis. The proposed multi-
agent-based model has the potential to be 
beneficial for detecting emergent patterns.  

• We develop a new method to assess the consumer 
and presumed social behavior through the use of 
Natural Language Processing (NLP) and language 
psychology analysis tools, such as Linguistic Inquiry 
and Word Count (LIWC), as well as new approaches 
used in contemporary social science.  

• We propose to use the threshold model based on 
the logistic function to consider the inter 
dependence between socio-technical resilience-
related features. This model is based on the theory 
of morphic resonance and formative causation 
initiated by Sheldrake [9]. 

• We investigate the impact of Hurricanes Irma and 
Harvey on socio-technical power system operation 
as real-world case studies. We retrieve tweets from 
Twitter’s streaming API by leveraging hashtag 

search on the terms #electrcity, #power systems, 
#electric, #power utility, #electric utility, #power 
grid, from hurricane Harvey’s 18,336,283 tweets and 
hurricane Irma’s 17,227,935 tweets. Additionally, 
Google Trends is used as another social sensing. 

• We apply M-estimators [10] to calibrate the 
proposed model by processing spatial-temporal 
data sets. Then, this model is validated using 
Tenfold cross-validation.  

The remainder of this paper is organized as 
follows. Section II develops a socio-technical model of 
power system resilience through the application of 
computational social science. Section III provides a 
framework to validate the proposed model that makes 
use of modern social science and explains how 
consumers’ and prosumers’ behaviors can be quantified 
using spatial-temporal data sets. Section IV calibrates 
and validates the proposed socio-technical power 
system model using two real-world events, Hurricane 
Harvey and Hurricane Irma. Finally, Section V concludes 
the paper.  

ii. Socio-Technical Power System 
Resilience 

 To capture the dynamical change in consumer, 
prosumer, and utility behaviors in response to a 
disaster, we develop a multi-agent-based dynamical 
model. This socio-technical model is beneficial for 
capturing emergent processes and for analyzing the 
multi-dimensional aspects of power system resilience. 
Figure 1 illustrates the interdependence between 
disasters, generational factors, and end-user behavior. 
We consider dissatisfaction, cooperation, and physical 
health to be end-user social behaviors. Additionally, we 
consider two distinct types of electricity generation, 
namely, (1) severity dependent type as exemplified by 
electricity generated by utilities and cooperation-
dependent type as exemplified by electricity generated 
by Microgrids (MGs) and Distributed Energy Resources 
(DERs). Indeed, the performance of the utility power 
system to serve the load decreases with the severity of 
the disaster since the latter typically damages part of the 
electric infrastructure. As for the MGs and DERs, they 
are less affected by the disaster and therefore, can 
cooperate with electric stakeholders and share 
electricity during time of shortages. 

 

 

 

 

 

Fig. 1: Interdependence between Disasters, Generational Factors, and end-user Behavior 
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Prior to discussing the socio-technical power 
system resilience model, we will introduce next the 
threshold model using logistic function to consider the 
socio-technical effect, which is widely used in sociology, 
medicine, biology, ecology and neural networks [11], 
[12].  

  

 
 
  

 
Additionally, we define  
 
b)

 
The Socio-Technical Power System Model 

 Eqs. 2-10 describe the dynamical changes in 
socio- technical behaviors. Note that all variables, 
parameters, and functions defined thus far take values 
between 0 and 1.

 
 

 
 

 

 
 

 
 
 

 
 

 
 

  

Eqs. 2-

 

5 are related to the dynamical changes 
in enduser dissatisfaction levels, where
associated with the i-th

 

consumer/prosumer 
dissatisfaction at time t with an incremental change, 

. Note that a value of 0 or 1 for indicates a 
low or a high level of dissatisfaction, respectively. Here, 

 

denotes the magnitude of the absorption 
and amplification’s effect on the end-user emotion [15]; 

indicates that the consumer/prosumer is optimistic. The 
first term (with coefficient of  represents the 
amplification effect while the final term (with coefficient 
of  represents the absorption effect. The 
former effect is based on Fredrickson’s broaden-and-
build theory, and includes upwards and downwards 
spirals [15], [16]. If there is no external disaster within 
the group, the bottom-up absorption effect may be 
used. On the other hand, when an unexpected event 
occurs, the amplification effect should be considered as 
well. Combining the two effects makes sense for 
disaster resilience and planning. Eq. 5 consists of two 
components, namely the social diffusion and the impact 
of external factors. Social contagion or diffusion implies 
that end-users’ dissatisfaction is contingent on the 
dissatisfaction of other consumers and prosumers. 
Additionally, the dissatisfaction is influenced by external 
factors, i.e., cooperation,             physical health,

 [18], and accessibility to electricity,          [19] and 
severity of a disaster.      Eq. 6 is related to the 
dynamical changes in physical health, where 

 denotes the dynamical coefficient of physical health. 
The latter is influenced by the level

 

of dissatisfaction, the 
severity of a disaster,      and the access level to 
electricity,      , [20]. Eq. 7 is related to the dynamical 
changes in the level of consumer and producer 
cooperation, The level of cooperation is a 
function of the positive or negative emotion level based 
on the narrowing hypothesis of Fredrickson’s broaden-
and-build theory [21]. Indeed, cooperation is conditional 
on dissatisfaction [17], physical health [22], and the 
level of optimism among end-users [23], and access

 

level to electricity by the end-users, 

 

Eqs. 8-10 model the dynamical changes of 
accessibility to electricity by the end-users. The primary 
energy sources that supply electricity to consumers 
include utilities, MG, and DERs. Utilities are the primary 
suppliers of the demand of electricity. However, during 
disasters, some communities may lose access to utility-
provided electricity. In this case, depending on their 
level of cooperation, end-users who own DERs, namely 
prosumers, may wish to share their

 

electricity with 
consumers and critical loads that are not connected to 
the grid, but they are connected to them. Here, 

 

denotes the dynamical changes in 
accessibility to DER

 

generated electricity. A value of 1 
for           indicates that the

 

consumer/prosumer 
makes full use of the DERs’ capacity to meet its 
demand. Additionally, available electricity,        is the 
total amount of electricity supplied by utilities and 

  
     

a) Threshold Model using Logistic Function 
The threshold model using logistic function 

allows us to set up thresholds beyond which the socio-
technical behavior changes [13], [14]. For instance, a 
power outage can result in consumer and prosumer 
dissatisfaction if the level of outages exceeds a given 
threshold, φ(X). The logistic value, ψ(X), of each factor 
on the resilience-related feature, X, is expressed as

(X) =
1

1 + e−σX (Xti−φX )
(1)ψ

′
(X) = 1− (X)ψ ψ

© 2023    Global Journals

Additionally,   denotes the strength of the link 
between two consumers/prosumers i and j. A value of 1 
for indicates a strong connection. In Eq. 3
denotes an agent’s optimism. A     value of 1 

 denotes the magnitude of the effect of 
dissatisfaction diffusion among consumers, prosumers, 
and external features on the end-user dissatisfaction. 

∆(XE
ti ) = α

′E
ti (f(X̂E

ti , X
E
ti ) −XE

ti )∆t, (2)

α
′E
ti =

∑
j α

E
ijX

E
tj∑

j α
E
ij

, (3)

f(X̂E
ti , X

E
ti ) = ηE [XO

ti (1 − (1 −XE
ti )(1 − X̂E

ti )) (4)

+(1 −XO
ti )(X̂

E
tiX

E
ti )] + (1 − ηE)X̂E

ti ,

X̂E
ti = wEE(

∑
j α

E
tijX

E
tj∑

j α
E
tij

) +WE(1 −XC
ti (XC

ti )) (5)

(1 −XP
ti (XP

ti )) (1 −Qeti (Qeti))(X
S
ti (XS

ti))

∆(XP
ti ) = ηP

′
(XE

ti )[Q
e
ti(1 −XS

ti) − Pti]∆ (6)

∆(XC
ti ) = ηC (XE

ti ) (XP
ti ) (XS

ti)[X
O
ti (1 −Qeti) −XC

ti ]∆ (7)

∆(QDERti ) = αDERti (αDERti −QDERti )∆t, (8)

αDERti =

∑
j α

E
ijX

C
tjQ

DER
tj∑

j α
E
ijX

C
tj

(9)

ψ

ψ ψ ψ

Qeti = $QDERti + (1 −$)XS
ti (XS

ti)Q
U
ti. (10)

XE
ti

∆(XE
ti ) XE

ti

f(X̂E
ti , X

E
ti )

X̂E
ti

α
′E
ti

αE
ij XO

ti

XO
ti

ηE

(1 − ηE))

XC
ti , [17] XP

ti ,
Qe

ti ,
XS

ti.
∆(XP

ti )
ηP

XS
ti

Qe
ti

∆(XC
ti )

Qe
ti.

∆(QDER
ti )

QDER
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fraction of an end-user’s total electricity consumption 
that is

 

supplied by DERs. 

 

In this section, we have presented a 
mathematical model of the socio-technical power 
system resilience. In the following section, we discuss 
how to calibrate and validate that model using Tenfold 
cross-validation.

 

iii.

 

Active

 

Demand-Side

 

Management

 

as 
Ancillary

 

Service

 

Meteorology organizations predict the weather. 
However, in general, weather is so nonlinear and 
impacts the power system states. There are five power 
system operation states: normal, alert,

 

emergency,

 

in

 

extremes,

 

and

 

restoration.

 

In

 

an

 

emergency condition, 
where the system starts to lose its stability, there is a 
requirement for corrective steps where consumers’ roles 
and level of collaboration are inevitable to retain grid 
resilience. 

 

In case of an approaching disaster, emergency 
services are informed and transmit a signal and required 
information to both utilities and consumers. In 
conventional power systems, the generation side deals 
with numerous issues, whereas in modern power 
systems, by grid modernization, the generation side is 
not alone anymore. Consumers can participate in active 
demand-side management and minimize their 
consumption during disasters in a decentralized power 
system. Decentralization is one of the main foundations 
for grid resiliency. In addition, the prosumers can share 
their electricity with their neighbors and assist critical 
loads. To have a resilient electricity system, the demand 
side plays a significant role. The consumer’s desire to 
help power providers overcome a crisis hinges on 
customer satisfaction and cooperation. In addition, 
sharing electricity is interwoven with the level of 
cooperation of the community. There are four scenarios 
to keep grid resilience, voltage, and transient stability.

 

1.

 

In real-time, it can send a signal through a 
communication system to consumers to turn off 
some of their devices, e.g., a computer, refrigerator 
during the event. One reason that motivates 
consumers to participate in active demand-side 
management is to prevent the automatic cutoff of 
electricity by utilities.

 

In this circumstance, the level 
of collaboration and flexibility of consumers can 
affect grid resilience. Plus, numerous policies might 
be enacted to attract customers to engage. In this 
scenario, the consumers a day ahead (although it 
can be real-time) select they want to participate in 
active demand-side management and which 

 
 

utilities. Here, the level of collaboration of 
consumers can help the utility to manage the 
incident.

 

3.

 

In real-time, utilities can evaluate the risk of 
occurrences and turn off the electricity of consumer 
devices automatically without letting them know. In 
this instance, the consumer’s satisfaction 
diminishes. In addition, some consumers like 
hospitals, while they are in desperate need of 
electricity, may be disconnected. 

 

4.

 

In

 

addition,

 

in

 

the

 

planning

 

mode,

 

prosumers

 

and

 

consumers can share their electricity with their 
neighborhoods and critical loads. We suppose that 
demand is 20 MW. In this scenario, if each home 
shares its electricity with only one neighborhood, the 
electricity demand reduces dramatically to 10 Mw. 
In this scenario, the customers can respond to the 
utility signal that they share their electricity with n 
number/ KW of neighborhoods/consumers. 

 

In all scenarios, a utility may set the level of 
disconnection based on different desired frequency 
thresholds. Utilities may view the 59-61 as a normal 
range of frequency fluctuations. In the case of three 
thresholds, we have the following scenarios:

 

a)

 

If the frequency is lower than 59 HZ, the utility 
decrease the10 percent load to keep grid resilience.

 

b)

 

If the frequency is lower than 55 HZ, the utility drops 
the 30 percent load to keep grid resilience 

 

c)

 

If the frequency is lower than 50 HZ, the utility drops 
the 50 percent load to keep grid resilience.

 

Valinejad et

 

al. [24] pioneered the development 
of an artificial society based on a power system’s social 
demand response.

 

They assumed that consumers 
could engage in demand response to achieve one of 
two goals: cost savings or increased system 
sustainability. Different communities and societies have 
distinct cultures and characteristics, which influence 
both dissatisfaction and cooperation. When the 
enduser’s level of dissatisfaction and cooperation is as 
low as 0.5 and 0.1 in case 4, the proposed motivation 
price cannot meet the marginal level of load shaving of 
20%. To achieve their goal in this situation, utilities must 
either increase the marginal level of load shaving to 
30%, i.e., Case 5, or increase the motivation

 

price

 

by

 

20%,

 

i.e.,

 

Case

 

6.

 

Case

 

6

 

is

 

more

 

expensive for utilities. 
As can be seen, end-user behavior has an effect on 
utility costs and, consequently, on the reliability of power 
systems. When people’s level of dissatisfaction is high, 
the situation becomes even worse. To accomplish its 
objectives, the utility must increase the motivation price 
by at least 40% (appropriate level of load shaving).
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2. In the planning mode, the utility has a contract with 
consumers to turn off their devices during an event. 
Every device has a sensor and can be controlled by 

devices they only use to aid the utility to address 
grid resilience. 

consumers, whereas        is the amount of electricity 
generated by utilities, which varies according to the 
severity of a disaster. A value of 1 for         indicates that
utilities are fully utilizing their capacity to meet 
consumer/prosumer demand. Additionally,  is the 
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IV. Calibrating and Validating the 
Socio-Technical Power System 

Resilience Model 

The process for calibrating and validating the 
sociotechnical power system resilience model proposed 
in Section II is depicted in Figure 2. Prior to validating 
the model, we measure the social behavior of the end-
users. Social scientists and cognitive, personality, 
clinical, and social psychologists use surveys and direct 
qualitative questions to measure social behavior in 
conventional social science. While the surveys provide 
us with an appropriate dataset, they exhibit several 
significant drawbacks. In practice, they are costly and 
time consuming to execute. Typically, they are only 
composed of subsets of the society. Last but not least, 
individuals have varying interpretations of the level of 
social behavior. On the other hand, in the new era of 
language psychology, utilizing community communi-
cation via social media platforms such as Twitter and 

Facebook can circumvent survey limitations and provide 
a rich dataset. This social media platform is being used 
to deduce linguistic and psychological patterns 
associated with social behavior. Due to the strong 
correlation between linguistic patterns and personality 
and psychological state in contemporary social science, 
social behavior is estimated using linguistic patterns. 
The words and language we use on a daily basis reflect 
our internal thoughts, our quality of life, our personality, 
our cognitive styles, our emotions, and our psycho-
logical and social behavior. Now, let us utilize the Twitter 
and Google Trend datasets in order to analyze the 
resiliency during Hurricanes Irma and Harvey. We 
retrieve tweets about the power system by filtering them 
and utilizing the hashtag search for #electricity, #power 
system, #electric, #DER, #power plant, #distributed 
generation, #micro grid, #power utility, #electric utility, 
#renewable energy, #blackout, #power grid, #power 
network. 

 

 

 

 

 

 

 

 

 

Fig. 2:

 

Validation

 

of the Cyber-Physical-Social Power System

 

Following the collection of the raw dataset, we 
employ psychology-based natural language processing, 
specifically the Linguistic Inquiry and Word Count 
(LIWC), to extract endusers social behavior, including 
dissatisfaction, cooperation, and physical health. 

 

•

 

Dissatisfaction:

 

Disasters such as the 2021 Texas 
winter storm, Hurricane Irma, and Hurricane Harvey 
result in end-user dissatisfaction. The latter is 
caused by negative emotional traits, such as 
anxiety, sadness, and anger [25]–

 

[27]. Using the 
Twitter dataset, we quantify spatial-temporal 
dissatisfaction by quantifying these features. The 
measure of dissatisfaction is calculated by 
averaging the normalized values of anxiety, 
sadness, and anger. By using the categories of the 
LIWC, the level of fear is obtained by -

 
 where        means 

outputs of LIWC.

 
•

 

Cooperation:

 

According to psychological research 
on language, the more words used in 
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Social sensing: 

surveys, social media 

(Twitter, Facebook), 

GoogleTrend 

Verification/ Soft validation by using 

neuroscience, social science theories 

Parameter  estimation using 

GM-estimators 

K-fold cross-validation 

(Caibration+validation+test)
Is it validated?

Improve the socio-

technical model

No

Validated

model

Power system  sensors 

and monitoring

Yes

Data analytics, 

text mining, 

NLP

SE = LIWC[′anx′]/LIWC[‘WC′]

LIWC[′anx′] the category of ”anx” from

communication, the greater the level of agreement 
and cooperation. The increased use of complex 
words and words with more than six letters implies a 

decrease in communication efficiency, cooperation, 
and social interaction [28]. Additionally, the plural 
form of the first person indicates group interaction
and cohesion [29]. Increasing the use of social 
process languages, such as family and friend-
related terms, implies an increase in social 
interaction, engagement, and cooperation [30], 
[31]. Finally, assent-related language promotes 
group consensus, interaction, and cooperation [32]. 
Hence, the level of cooperation is obtained by 

• Physical Health: According to psychological 
research on language, increased use of the first -
person singular can imply physical pain [33]. 
Individuals who are physically ill frequently draw 
attention to themselves. The increased use of 

XC = (LIWC[′WC′] − LIWC [′Sixltr′] + LIWC [′we′]

LIWC [′social′ ] LIWC [′family′] LIWC[′friend′]

LIWC[′assent′])/(LIWC[′WC′])

++

motion, leisure, and work-related terms reflect an 
increase in physical activity and health. Additionally, 
the more health-related words a person uses, the 
better their physical health. The increased use of 
positive body-related terms implies physical health 
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The Calibration and Validation Process can be 
Summarized as follows.

 

Step1) Amassing disaster-related data on power 
systems:

 

First, we collect all tweets about the 
considered disaster. Then, we retrieve tweets about the 
power system via a hashtag or related word search. 
Additionally, we utilize Google

 

Trend as a second social 
sensing tool.

 

Step 2) Resilience-related text cleaning:

 

To improve the 
effectiveness of the result for linguistic and behavioral 
patterns, we use natural language processing to remove 
URLs, email addresses, dates, punctuation, and stop 
words from retrieved tweets about power system 
response and recovery. After that, we tokenize all tweets 
for the purpose of word stemming.

 

Step

 

3) Measuring Social Behavior: We leverage 
language psychology analysis tools, such as LIWC, to 
assess social behavior from the cleaned text. We look 
for social patterns associated with resilience using the 
following categories: anxiety, sadness, anger, First-
person singular, health, leisure, work, body, motion, 
word count, words >6 letters, first -person plural, social 
process, family, friends, exclusive, and assent.

 
 

By using the categories of the LIWC, the level of 
fear is obtained by

 
    

 

where means the category of ”anx” from 
outputs of LIWC.

 
 

Hence, the level of cooperation is obtained by-

 
  

 
 

By using the categories of the LIWC, the level of 
physical health is obtained by

 
 

 
 

 
 

 

 
 

   
 

where we set α

 

and 

 

     and        and          are 
the maximum and minimum measure collected during 
the period considered, and is

 

a normalized 
measure as a real number in [0,1]. After that, we deduce 
spatial-temporal trends in end-user social behavior 
during a disaster.

 
 

Step 5) Soft validation:

 

We verify the model using soft 
validation. 

 

Step 6) Parameter estimation: We calibrate the model 
using a Huber M-estimator. The Huber loss are as 
follows: 

 

and 

  

Step 7) Validation by cross-validation:

 

We validate the 
model using tenfold cross-validation. We classify 60% of 
data as calibration data, 20% as validation data, and 
20% as test data. 

 

Step 8) Updating the Model:

 

If the proposed socio-
technical power system resilience model does not 
perform well after cross-validation, we modify the model 
accordingly. 

 

V.

 

Calibrating and Validation the 
Model by using Datasets from 
Hurricanes Harvey and Irma

 

We collect a variety of data samples for 
Hurricanes Harvey and Irma. We retrieve power-system-
related tweets from Twitter’s streaming Application 
Programming Interface (API) by leveraging hashtag 
search on the hashtag search on #electricity,

 

#power 
system,

 

#electric,

 

#DER,

 

#power plant,

 

#distributed 
generation,

 

#micro grid, #power utility, #electric utility,

 

#renewable energy, #blackout,

 

#power grid,

 

#power 
network, from 18,336,283 tweets of Hurricane Harvey 
and 17,227,935 tweets of Hurricane Irma for validation 
purpose. We use the same words as hashtags for word-
related searches. We also use Google Trend as another 
social sensing. Table I provides a summary of 5 
samples for each hurricane. 

 

Hurricane Harvey and Irma’s tracks, in-
hurricane power plants, Tweets, and severity are 
depicted in Figure 3. 

 

The following is a summary of the impact of 
these hurricanes.

 

© 2023   Global Journals

level of physical health is obtained by

SP = −LIWC[′i′] + LIWC[′health′] + LIWC[′leisure′] +

LIWC[′work′] + LIWC[′body′] + LIWC[′motion′])/LIWC

[‘WC′]

(

[34]–[37]. By using the categories of the LIWC, the 

SE = LIWC[′anx′]/LIWC[‘WC′]

LIWC[′anx′]

XC = (LIWC[′WC′] − LIWC[′Sixltr′] + LIWC[′we′] +

LIWC[′social′] + LIWC[′family′] + LIWC[′friend′] +

LIWC[′assent′])/(LIWC[′WC′]).

XC = (LIWC[′WC′] − LIWC[′Sixltr′] + LIWC[′we′] +

LIWC[′social′] + LIWC[′family′] + LIWC[′friend′] +

LIWC[′assent′])/(LIWC[′WC′])

SP = (−LIWC[′i′] + LIWC[′health′] + LIWC[′leisure′] +

LIWC[′work′] + LIWC[′body′] + LIWC[′motion′])/LIWC

[‘WC′]

Step 4) Concluding Social Behavior: We begin this step 
by dealing with missing values via an interpolation 
approach. In order to fairly consider each category to 
estimate community resilience, we normalize the 
measure of each category using min-max scaling. Given 
a feature x(t), an arbitrary interval of values, i.e., [α, β] 
based on min-max scaling, a normalized measure is 
obtained by: 

x′(t) = α+
(x(t)− xmin(t)))(β − α)

xmax − xmin
, (11)

β = 1= 0 xmax xmin

x′(t)

θ = argmin(
∑
log(f(x))) = argmin(

∑
ρ(xi, θ))

ρ(xi, θ) =

{
1
2x

2
i |xi| ≤ σ

σ(|xi| − 1
2σ) otherwise

(12)

Hurricane Harvey in Texas: Between 08/25/2017 
and 09/11/2017, Hurricane Harvey struck Texas and the 
ERCOT
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(a) Harvey track (b) Harvey Tweets (c) Irma track

 

 

 

 

 

 

 

 

 

 

Fig. 3:

 

Hurricane Harvey and Irma’s Tracks, in-Hurricane Power Plants, Tweets Frequency, and Hurricane Severity

Table

 

I:

 

The summary of samples for Hurricanes Harvey and Irma

 

 
 
 
 
 
 
 
 
 

territory. On 08/25/2017, it strengthened to Category 4. 
Like Hurricane

 

Katrina,

 

this

 

hurricane

 

is

 

the

 

most

 

expensive

 

tropical cyclone in the US history. In Texas, 
1168 MW of wind energy capacity and 5679 MW of solar 
energy capacity in ERCOT became unavailable and 
energy production fell by 21%. As a result, power 
systems throughout ERCOT’s territory experienced 
outages between 08/25/2017 and 08/29/2017, leaving 
many people without power or water. The maximum 
number of outages reached 309204, which affected two 
of ERCOT’s major utilities, namely AEP Texas North 
Company (#20404) and AEP Texas Central Company 
(#3278). For these power utilities, the total number of 
meters, including smart and nonsmart meters, is 
1028900. It took about two weeks, namely from 
08/29/2017 to 09/12/2017, for the power system to be 
restored. We extract various samples of tweets about 
Hurricane Harvey

 

from the Table I. Between 2:00 p.m. 
and 11:00 p.m. on 08/30/2017, the customer outage 
dataset contains missing values due to the loss of an 
entity website. 

 

Hurricane Irma in Florida:

 

Between 09/01/2017 and 
09/13/2017, Hurricane Irma made landfall primarily in 
Florida and to a lesser extent in Georgia and South 
Carolina. Between 09/06/2017 and 09/08/2017, this 
storm was a Category 5 hurricane. Hurricane Irma was 
downgraded to a Category 3 storm before making 
landfall in Florida on 09/09/2017. However, on 
09/10/2017, it was upgraded to a Category 4 hurricane. 
Hurricane Irma was then downgraded to Category 1 
status on 09/11/2017. Between 09/09/2017 and 
09/11/2017, power systems faced outages. It damaged 
several utilities, including the City of Tallahassee 
(TAL#18445), the Jacksonville Electric Authority 
(JEA#9617), Gainesville Regional Utilities (GVL#6909), 
the City of New Smyrna Beach (NSB#13485), Florida 
Power Corp. (FPC#6457), Tampa Electric Co. 
(TEC#18454), Seminole Electric Cooperative (SEC), 

 

a)

 

Results for the First Sample
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(d) Irma Tweets

Sample Social sensing Type of search Harvey
Tweets IDs

Irma
Tweets IDs

1 Twitter Hashtag 217 271
2 Twitter Word related 11500 54100
3 Twitter Event related 20000 30000
4 Twitter Word related 82000 245000
5 GoogleTrend Word related - -

Florida Municipal Power (FMPP#19804), and Florida 
Power & (SOCO). The recovery of the power system 
began on 09/11/2017 and lasted 12 days. 

The results of a 10-fold cross-validation of the 
socio technical power system resilience model using the 
Huber Mestimator for the first sample are displayed in 
Fig. 4. This graph depicts consumer/prosumer dis-
satisfaction, physical health, cooperation, and the 
cooperation/severity-dependent electricity using real 
datasets. The figure also show simulation results related 
to various scenarios used for calibration, validation, and 
testing of multi-agent-based model. Each sub figure 
contains information about the type of event, its 
resilience level, value of                                 where     

 We calibrate 
and validate the model using data obtained from both 
Hurricanes Irma and Harvey. Additionally, we calibrate 
and validate the model for Hurricanes Irma and Harvey 
separately. The estimated threshold level at which 
cooperation among end-users has an effect on diss at is
factionise qualto 0.5. Similarly, the estimated threshold 
levels are 0.500002, 0.500017, and 0.500071 for the 
effects of physical health, electricity, and disaster 
severity on consumer/ prosumer dissatisfaction,
respectively. The estimated threshold levels of electricity 
and severity on dissatisfaction among Florida end-users 
are equal to 0.499355 and 0.501454, respectively. These 
estimated threshold levels for ERCOT areas are equal to 
0.500039 and 0.499944, respectively. Additionally, the 
amplification and absorption effects on the level of 
dissatisfaction are 0.501797 and 0.498203, respectively. 
The end users in the ERCOT area and Florida have an
optimistic attitude of up to 0.502206. Florida end-users 
and utilities are less optimistic than their counterparts in 
Texas with an optimistic level estimated to 0.478854 

R2= 1− (RSS/TSS)
, and TSS =

∑
(y − ȳ)2)RSS =

∑
(y − ȳ)2

versus 0.498893 for Texas. For both areas, the
estimated threshold level for the effect of dissatisfaction 
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on physical health is equal to 0.415647. Additionally, this 
threshold is equal to 0.494225, 0.493983, and 0.495111 
for the effect of dissatisfaction, physical health, and 
severity on cooperation, respectively. The estimated 
threshold level for the effect of severity on electric utility 
services is equal to 0.458197. This means that if the 
hurricane is a category three or higher, it has a 
detrimental effect on the utility’s performance. 
Additionally, approximately 100% of electricity services 
are cooperatively provided. The estimated threshold 
level for the effect of severity on ERCOT is 0.457566, 
while that of Florida is 0.479339. Additionally, 76% of 

electricity services in ERCOT is of a cooperative-type 
while 24% are severity-type. Indeed, ERCOT is more 
vulnerable to hurricane damage than Florida utilities. 

Fig. 5 illustrates the QQ-plot for the test 
dataset’s various socio-technical resilience-related 
features. It demonstrates that the simulation and the real 
datasets have a similar distribution. The distributions of 
dissatisfaction and cooperation/severity dependent 
electricity for the simulation case are more similar to the 
real case than the physical health and cooperation of 
the end-users.

(a) Dissatisfaction (b) Physical health (c) Cooperation (d) Electricity

(e) Dissatisfaction (f) Physical health (g) Cooperation (h) Electricity

(i) Dissatisfaction (j) Physical health (k) Cooperation (l) Electricity

Fig. 4: Consumers’ and Prosumers’ Level of Dissatisfaction, Physical Health, Cooperation, and the 
Cooperation/Severity-Dependent Level of Electricity. These are Determined using 10-Fold Cross-Validation, which 
Included Calibration, Validation, and Test. The Socio-Technical Power System Resilience Model is Calibrated using a
Huber M-Estimator and Data Obtained from Hurricanes Irma and Harvey
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Fig. 5:

 

The QQ-Plot Depicts the Level of Dissatisfaction, Physical Health, and Cooperation of Consumers, 
Prosumers, and the Level of Cooperation/Severity-Dependent Electricity of Socio-Technical Power Systems 
Resilience for the Test Data Set
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(a) Dissatisfaction (b) Physical health (c) Cooperation (d) Electricity

Table II shows the results of the statistical 
analysis using real-world and simulation datasets for 
calibration, validation, and test scenarios. The Shapiro-
Wilk normality test demonstrates that the majority of 
cases follow the normal distribution except for 
cooperation during calibration and testing, as well as the 
physical health of end-users in the test scenario. Indeed, 
0.75 of features exhibit normal distribution behavior. 
Additionally, the Pearson and Kendall tau correlations 
demonstrate the high degree of correlation between the 
simulation and the real datasets. Additionally, Student’s 
t-test p-values (as parametric statistical hypothesis test) 
and Mann-Whitney U test p-values (as non-parametric 
statistical hypothesis test) indicate that the distribution of 
the socio-technical resilience-related features obtained 
from the real data set and simulation outputs are similar 
in all cases. 

b) Summary Results for all Samples
Fig. 6 provides the graphs of the tenfold cross-

validation of the socio-technical power system resilience 
model using the median estimated values of five 
samples and a three-hourly based dataset for the real 
and simulated datasets. The results indicate that the 
socio-technical resilience-related features in the three-
hourly-based dataset have a higher R2 value. In other 
words, the 10-fold cross-validation produces more 
precise results than the daily datasets. This is because 

we calibrate the model with more data for the former 
case. Using the median estimated values of five 
samples, we found that the level of optimism is equal to 
0.537192. The estimated threshold levels for the effect of 
electricity and disaster severity on the level of 
dissatisfaction among power system stakeholders are 
respectively 0.499162 and 0.498763. Additionally, the 
estimated threshold level of the effect of severity on 
electricity is equal to 0.45721. On the other hand, using 
10-fold cross-validation on a three-hourly basis, the 
estimated level of optimism among the end-users is 
equal to 0.594039. The estimated threshold levels for 
the effect of electricity and disaster severity on 
dissatisfaction among stakeholders in the power system 
is 0.475009 and 0.538839, respectively. The 
amplification effect, as defined by the broaden-and-
build theory, accounts for 67% of the dissatisfaction 
level, while the absorption effect, as defined by the 
bottom-up emotion theory, accounts for 33%. When we 
use a daily-based dataset, these values are 50% and 
50%. The estimated threshold values for the effect of 
severity on electricity is equal to 0.458702 in three-
hourlybased analyses. Additionally, 76% of electricity 
services are cooperation-based while 24% are severity-
based. As illustrated in Fig. 7, there is a greater similarity 
in the distributions of three-hourly-based datasets than 
in the daily-based dataset. 

Table II: Results of The Statistical Analysis of Socio-Technical Power Systems Resilience Including Shapiro-Wilk
Normality Test, Pearson Correlation, Kendall Tau Correlation, Parametric Statistical Hypothesis Tests ( Student’s T-
Test), and Non-Parametric Statistical Hypothesis Tests (Mann-Whitney U Test). Note that in the Table, the Gaussian 
Probability Distribution is Denoted as ”Gauss.” and the Dependence Between the Simulation and Real Datasets is 
Denoted as ”Dep.”.

10-fold Cross-validation Calibration Validation Test
Statistic test XE

ti XP
ti XC

ti Qeti XE
ti XP

ti XC
ti Qeti XE

ti XP
ti XC

ti Qeti

Real data set p-value 0.3
(Gauss.)

0.24
(Gauss.)

0.012
(not Gauss.)

0.45
(Gauss.)

0.52
(Gauss.)

0.22
(Gauss.)

0.16
(Gauss.)

0.15
(Gauss.)

0.27
(Gauss.)

0.002
(not Gauss.)

0.002
(not Gauss.)

0.28
(Gauss.)

Simulation P-value 0.17
(Gauss.)

0.07
(Gauss.)

0.036
(not Gauss.)

0.16
(Gauss.)

0.34
(Gauss.)

0.21
(Gauss.)

0.09
(Gauss.)

0.16
(Gauss.)

0.07
(Gauss.)

0.007
(not Gauss.)

0.006
(not Gauss.)

0.32
(Gauss.)

Pearson corr 0.74
(Dep.)

0.77
(Dep.)

0.81
(Dep.)

0.99
(Dep.)

0.67
(Dep.)

0.91
(Dep.)

0.96
(Dep.)

0.96
(Dep.)

0.8
(Dep.)

0.88
(Dep.)

0.89
(Dep.)

0.93
(Dep.)

kendalltau corr 0.61 0.43 0.5 1 0.57 0.73 0.82 0.78 0.64 0.64 0.68 0.77
Student’s

t-test p value
0.54

(same)
0.72

(same)
0.69

(same)
0.9

(same)
0.68

(same)
0.84

(same)
0.95

(same)
0.55

(same)
0.61

(same)
0.59

(same)
0.63

(same)
0.57

(same)
Mann-Whitney U

Test p value
0.2

(same)
0.26

(same)
0.48

(same)
0.38

(same)
0.34

(same)
0.33

(same)
0.38

(same)
0.27

(same)
0.22

(same)
0.41

(same)
0.5

(same)
0.22

(same)
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Graphs of the Level of Dissatisfaction, Physical Health, and Cooperation of Consumers and Prosumers, and 
the level of Cooperation/Severity-Dependent Electricity in the Socio-Technical Power Systems Resilience Model for 
two Scenarios: 1) Median of All Samples and 2) Three-Hourly-Based Data Set

(a) Dissatisfaction (b) Physical health (c) Cooperation (d) Electricity

(e) Dissatisfaction  (f) Physical health (g) Cooperation (h) Electricity

VI. Conclusions

In this paper, we use neuroscience and social 
science theories to model the complex collective 
behavior of consumers and prosumers during a 
disaster. The proposed socio-technical power system 
resilience model is beneficial for observing emergent 
processes and developing new hypotheses that can be 
tested in real-world scenarios. We propose an approach 
for assessing the behavior of power system 
stakeholders through the use of social sensing tools 
such as Twitter and Google Trend. We increase the 
proposed model’s reliability by validating it using cross-
validation and data sets related to Hurricanes Harvey 
and Irma. It should be noted that the approach 
proposed in this paper for model validation can be 
applied to a wide variety of socio-technical power 
system problems.
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