
© 2023. Kruti P. Shah & Emanuel S. Grant. This research/review article is distributed under the terms of the Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference
this article if parts of the article are reproduced in any manner. Applicable licensing terms are at
https://creativecommons.org/licenses/by-nc-nd/4.0/.

Global Journal of Computer Science and Technology: H

Volume 23 Issue 1 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Software System Model Correctness using Graph Theory: A Review
 By Kruti P. Shah & Emanuel S. Grant

 University of North Dakota
Abstract- The Unified Modeling Language (UML) is the de facto standard for object-oriented software
model development. The UML class diagram plays an essential role in design and specification of
software systems. The purpose of a class diagram is to display classes with their attributes and methods,
hierarchy (generalization) class relationships, and associations (general, aggregation, and composition)
between classes in one model. A model designing process can include a large number of designers. An
issue with this is that the models created may be incorrectly designed. Moreover, there are many
concepts in the UML that give rise to potential conflicts, uncertainty, and ambiguity. This paper evaluates
the concept of software system model correctness. In this paper,a systematic literature review is
conducted to examine how researchers identify problems related to software system model correctness.
There are seven papers included in the literature review which cover different approaches for handling
model correctness in software systems. The results of this review indicate that UML model correctness is
a highly active area of research. There are already some valuable contributions in this direction. However,
there are many concepts in the UML with imprecise semantics, which limit the use of the UML and reduce
the quality of the UML models. This paper is concluded by providing some directions to identify and prove
the mathematical equivalence of the UML class diagram models using standard graph theorems.

Keywords: UML models, UML class diagrams, software engineering, model correctness, graph theory.

GJCST-H Classification: FOR Code: 090699

SoftwareSystemModelCorrectnessusingGraphTheoryAReview

 Strictly as per the compliance and regulations of:

Information & Technology

Software System Model Correctness using
Graph Theory: A Review

Kruti P. Shah α & Emanuel S. Grant σ

Abstract- The Unified Modeling Language (UML) is the de
facto standard for object-oriented software model
development. The UML class diagram plays an essential role
in design and specification of software systems. The purpose
of a class diagram is to display classes with their attributes
and methods, hierarchy (generalization) class relationships,
and associations (general, aggregation, and composition)
between classes in one model. A model designing process
can include a large number of designers. An issue with this is
that the models created may be incorrectly designed.
Moreover, there are many concepts in the UML that give rise
to potential conflicts, uncertainty, and ambiguity. This paper
evaluates the concept of software system model correctness.
In this paper,a systematic literature review is conducted to
examine how researchers identify problems related to software
system model correctness. There are seven papers included
in the literature review which cover different approaches for
handling model correctness in software systems. The results
of this review indicate that UML model correctness is a highly
active area of research. There are already some valuable
contributions in this direction. However, there are many
concepts in the UML with imprecise semantics, which limit the
use of the UML and reduce the quality of the UML models.
This paper is concluded by providing some directions to
identify and prove the mathematical equivalence of the UML
class diagram models using standard graph theorems.
Keywords: UML models, UML class diagrams, software
engineering, model correctness, graph theory.

I. Introduction

ML (Unified Modeling Language) [1] is a
graphical modeling language used to specify,
simulate, and construct software system

components. The UML has been adopted and
standardized by the Object Modeling Group [2].

UML is considered the standard for object-
oriented software model development that allows
modeling of various aspects of complex systems [2].
However, there are many concepts in the UML with
imprecise semantics, which limit the use of the UML and
reduce the quality of the UML models. Thus, developing
technologies for the analysis and verification of UML
models is significant to developers who use UML for
system modeling.

Author α: School of Electrical Engineering and Computer Science,
University of North Dakota, Grand Forks, ND, USA.
e-mail: kruti.shah@ndus.edu
Author σ: School of Electrical Engineering and Computer Science,
University of North Dakota, Grand Forks, ND, USA.
e-mail: emanuel.grant@und.edu

This work considers the UML class diagram,
which is the most fundamental and widely used among
all UML models. A Class Diagram provides a static
description of system components. The purpose of a
class diagram is to display classes with their attributes
and methods, hierarchy (generalization) class
relationships, and associations (general, aggregation,
and composition) between classes in one model [3].

There is number of designers involved in the
model designing process who are prone to making
mistakes, which gives rise to potential conflicts,
uncertainty, and ambiguity. Also, the development of
these models is a highly time-intensive process.
Therefore, it is extremely important to check the
correctness of these models and identify the problems
in the early stage of the software design process.

In this paper, seven articles related to the field
of software system model correctness were extracted
and considered for review. The primary goal of this work
is to provide a summary of approaches considered in
selected articles, along with the quality of their results
and conclusions.

Research articles included in this review are
based on several different criteria in the scope of model
correctness: problem identified, the approach taken in
addressing the identified problem, results and
conclusions, differences between the selected articles,
and deficiencies in the research of the publications. This
review will be useful to understand the important open
issues in existing methods and limitations that need to
be addressed in the area of model correctness.

The remainder of the paper is organized as
follows. Section 2 gives a brief theoretical background of
UML models and UML class diagram which is the most
fundamental and widely used in UML models. Section 3
describes the review process in the area of verification
and correctness of UML models. Section 4 discusses
the review summary and important open issues in the
domain of software system model correctness followed
by the conclusion in Section 5.

II. Background

a) Theoretical Background
This section covers some of the theories and

prior work in the area of UML models along with various
aspects of UML class diagrams.

U
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

 (
)

H
Y
e
a
r

20
23

© 2023 Global Journals

25

i. Unified Modeling Language (UML)
UML [2] has been widely accepted as the

standard language for modeling and documenting
software systems. Their significance has been
enhanced with the beginning of the Model-Driven
Development (MDD) approach, in which analysis and
design models play an essential role in the process of
software development. The UML offers a number of
diagram forms to describe particular aspects of software
artifacts. These diagram structures can be divided into
two categories static or dynamic views:

Static view: It describes the structural aspect of
the system and its components. It includes objects,
classes, attributes, operations, and their inter-
relationships. The structural view can be represented by
class diagrams and composite structure diagrams.

Dynamic view: It describes the behavioral
aspect of the system. The dynamic view reflects the
changes related to the internal states of individual
objects and changes in the system's overall state. This
view can be represented by sequence, activity, and
state chart diagrams.

ii. UML Class Diagram
The UML class diagrams are used to represent

the static structure of system components [2]. It

describes the system structure in terms of classes,
attributes, and constraints imposed on classes
(operations) and their inter-relationships. Class
diagrams are used at the analysis phase to present a
view of the static entities in the problem domain, and at
the design phase to present a view of the static entities
(classifiers) in the solution domain. A class diagram is
best described as a set of graph elements connected by
their relationships.

Classes in UML models are represented as
rectangles. Each class consists of a name, set of
attributes, and set of operations on the class's attributes.
Figure 1 shows an example of a class diagram
consisting of classes, associations (aggregations and
compositions), and generalizations.

iii. UML Association (Aggregation, Association,
Composition, generalization)

There are some rules and requirements for
combining the classes to construct partial or complete
UML class models.

Association It can be depicted as bi-
directional or unidirectional. The association lines
indicate the possible relationship between the class
entities [4].

Figure 1: UML Class Diagram

An association represents attributes and
objects from the related classes, such as the
relationship between class A and class C seen in fig. 1.
Association ends can be annotated with labels, known
as association end names and multiplicities. For
example, multiplicity can be expressed as specific
numbers, ranges of numbers, or unlimited numbers, as
shown in fig. 1 between classes A and C.

Aggregation An aggregation is represented
as an association with a white diamond on one end,
where the class at the diamond end is the aggregate
(container class). It includes or owns instances of the
class (contained class) at the other end of the
association [4] (e.g., the relationship between class A
and B in fig. 1).

Composition It is a special type of
aggregation in which instances of the contained class
are explicitly owned by instances of the container
classes [4]; if an instance of the container class is
deleted, the instances of the contained class are also
deleted. Fig. 1 shows class C, the container class, and

class D, the contained class. It is represented as an
association with a black diamond.

Generalization A generalization is repress-
ented by an association with a triangle on one end
represents, where the class at the triangle end of the
association is the parent class of the classes at the
other ends of the association, called subclasses [4]. A
subclass inherits all of the parent class's attributes,
operations, and associations (e.g., subclasses E and F
inherit properties of parent class C in fig. 1).

III. Literature Review

In this section, several studies related to the
verification and correctness of UML models are
discussed.

a) Review Process
Seven publications were selected for this study,

each covering a distinct technique to dealing with model
correctness in software systems. The following is a list of

Software System Model Correctness using Graph Theory: A Review

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

26

 (

)
Y
e
a
r

20
23

H

distinct stages that are being considered during the
review process for each publication:

1. Problem identified in the selected publication
2. The approach taken in addressing the issue
3. Results and Conclusion
4. Statement of deficiencies in the research of the

publication

In AGG: A graph transformation environment for
modeling and validation of software [7], the author
Taentzer briefly discussed the graph transformation tool,
that defines the rule-based manipulation of graphs.
Graph grammars and graph transformations are very
mature approaches used to generate, manipulate,
recognize, and evaluate graphs [8].

Taentzer proposed a graph transformation tool
(AGG) [7] which supports the modelling and verification
of software. It has visual editors for graphs, graph
grammars as well as the formal foundation based on the
algebraic approach for graph transformation.
Transformation in AGG can be performed using debug
or interpretation mode. In debug mode one selected rule
is applied exactly once to the current host graph while in
interpretation mode whole sequence of rules applied to
host graph. AGG also offers support for model
validation techniques like graph parsing, consistency
checking, along with the conflict detection of graph
transformation rules. It consequently implements the
theoretical results available for algebraic graph
transformation to support their validation.

The authors extended their work and compared
AGG to other transformation tools (PROGRES, Fujaba,
DiaGen, and GenGED). They found that AGG is the only
tool that implements the theoretical results available for
algebraic graph transformation.

However, there is number of limitations
associated with AGG tool. AGG does not support the
represent of aggregation and composition concepts
used by the UML meta model. Therefore, the type graph
needed to be simplified by using the more generic
concept of association. AGG does not provide a
satisfactory control structure for organizing and
combining rules, also the supplied mechanisms for
composing rules were not sufficient to describe model
refactoring. Along with that, the specification techniques
found in graph grammars and transformation languages
were not sufficient, as they do not follow UML concepts.

In [9],Towards formal verification of UML
diagrams based on graph transformation, authors Zhao
et al. presented a meta-level and highly automated
technique that could formally transform UML diagrams
for verification. UML has a lack of precise formal
semantics [10], which hinders the formal verification and
validation of system design. So, transformations of
UMLmodels in various mathematical domains such as
Petri-nets are significant for the analysis and verification
of the UML model.

Zhao et al. suggested an approach for
transforming UML diagrams into Petri nets based on
meta-modelling and graph transformation techniques
[9]. First, they formally transform UML statecharts and
behavioral diagrams to Petri nets for verification. Then,
they identified three layers of relationship among various
UML diagrams: the relationships among the same UML
diagram from different contextual instances; the
relationships among various diagrams from the same
view of a system; and the relationships among various
diagrams from different views of a system.

Authors extended their work and proposed a
debugging approach to modify the transformation rules
according to the concrete semantic constraints through
a case study. They have also conducted experiments on
the verification of relatively simple UML statechart
diagrams. However, a drawback still persists in
modeling large complex problems. In this work, the
authors only considered experiments on verifying simple
UML statechart diagrams. Also, the third layer, which
describes the relationship between the diagrams of
static structure view and the diagrams of dynamic
behavior view, is rarely considered in this work i.e.,
related to the verification and transformation of UML
models. Along with that, author did not consider the
diagrams of static view (e.g., class diagram) which is an
essential part of UML.

In Verifying UML diagrams with model checking:
A rewriting logic-based approach[11], Mokhati et al.
presented a framework supporting the automatic
translation of UML diagrams into a formal specification
and verification using the Maude language. UML allows
the modelling of various aspects of complex systems.
However, there are many inconsistencies and
ambiguities associated with UML models. Therefore,
UML suffers from a lack of formal semantics [12].

Mokhati et al. presented an approach for formal
verification of static and dynamic features of UML
diagrams using object-oriented and concurrent Maude
language specifications [11]. In this work, the authors
transformed UML models into formal languages and
verify the system's dynamic aspects. The authors
extended their work by defining some Linear-time
Temporal Logic (LTL) properties and used Maude's
model checker to validate those properties associated
with UML models.

Authors in this workclaimed to transform all the
static and dynamic aspects of UML models into formal
languages and validating them using Maude's model
checker [11]. However, they could only translate simple
UML statechart and communication models and a
drawback still persist in translating complex dynamic
models (statechart and communication models). Along
with that, the authors did not mentioned how translation
could be done for other static and dynamic models.

In Verification of UML/OCL class diagrams
using constraint programming [13], Cabot et al.

Software System Model Correctness using Graph Theory: A Review

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

 (
)

H
Y
e
a
r

20
23

© 2023 Global Journals

27

suggested an approach for using the Constraint
Programming paradigm to verify UML/OCL class
diagrams.

UML models become the primary artifacts of
the software development process. Unfortunately,
formal verification of software models is a difficult
process. As a result, verifying the correctness of such
models is a key issue. This is also the case when
focusing on verifying UML class diagrams extended with
Object Constraint Language (OCL). As a consequence,
specification and design problems are not recognized
until the implementation stage, causing the
development process to be more expensive.

In [13], authors presented an approach to

translate UML class models annotated with OCL
constraints into a constraint satisfaction problem (CSP).
The authors briefly discussed translation of UML/OCL
classes, associations, generalization sets, and OCL
invariants into CSP. A tool based on CSP (UMLtoCSP) is
then used to verify a predefined set of correctness
properties for the original UML/OCL diagrams. The
UML/OCL language combination integrates well with
automated inference systems.

The CSP tool supports bounded reasoning
about satisfiability, consistency, finite satisfiability,
independence of invariants, and partial state
completion. It handles class diagrams with multiplicity,
class hierarchy, association-class constraints but does
not allow multiple inheritance. Along with that, tool does
not support all the features in OCL specification, such
as constraints on a string.

In Model checking and code generation for
UML diagrams using graph transformation [14], Chama
et al. developed a formal specification framework that
allows automatic translation of UML models into its
equivalent Maude code using AToM3 graph
transformation tool. UML contains a large number of
diagrams that are used to describe various aspects of a
software system. However, the developed UML models
can contain inconsistencies and uncertainties, which are
difficult to detect manually as UML suffers from a lack

of

formal semantics.

Chama et al. [14] presented a

visual modelling

based automatic approach and a tool to check UML
models using the graph transformations. They
considered both static and dynamic models for
inconsistency checking. Their idea was to map class
diagrams, statecharts, and communication diagrams
into an equivalent Maude specification. They used a
meta-modelling approach that could help in model
checking. The subset of UML diagrams is considered to
develop a metamodeling tool

AToM3 integrated

framework for model checking by transforming them into
a rewriting system expressed in the Maude language
and graph grammars. The formal verification is
performed using the Linear Temporal Logic (LTL) Model

Checker. They also used Maude's model checker to
verify objects interactions.

In Chama et al. [14], the UML models used for
Maude language and LTL model verification were
incorrectly drawn. Since UML models are ambiguous,
validated models can be ambiguous as well.

In Towards an automatic evaluation of UML
class diagrams by graph transformation [15], Outair et
al. presented an approach for evaluating UML diagrams
produced by the students during their course work. As
the number of university students enrolled in courses is
growing, the evaluation of UML diagrams produced by
students is often experienced by teachers as a tedious
and challenging task. Since UML does not provide the
methodology for modeling, the students have difficulties
constructing a class diagram. Furthermore, when
students construct a UML diagram with several
solutions, it might be presented in different ways and
points of view. For this reason, the authors proposed an
approach to offer assistance to the teacher to evaluate
the UML diagrams produced by students. In this work,
the authors mainly focused on evaluating the class
diagram because it is the most used and considered the
most important aspect of object-oriented modeling.

The authors proposed a student diagram
assessment system that provides a verification
mechanism wherein the teacher manually compares
his/her solution with the ones designed by the
student.At the end of the comparison process, the
system generates a list with the differences and
comments that a student can use to improve his/her
diagram. The contribution revealed in this work is the
proposal of a transformation method of the class
diagram into a graph using UML metamodel. In
addition, authors considered a case study for a library
management system to demonstrate their approach.

Outair et al. discussed a student diagram
assessment system where authors considered an
example of a model containing a teacher's class
diagram and a student's class diagram to detect all
differences between them [15]. They have found several
differences in class, attribute, method, relationship,
orientation relationships, and multiplicities. However,
those differences have been listed manually, so there is
a chance of uncertainty and ambiguity. Moreover, for
graph transformation, the authors considered a library
management system case study in which the graph
model is designed manually from a UML diagram.
These manually generated graph models can be
incorrectly designed. Therefore, a tool for verifying the
converted graph model is required to ensure the
correctness of the generated graph.

In the Automation and Visualization of Program
Correctness for Automatically Generating Code [16],
Jason developed a Tool using mathematical analysis
that can verify the correctness of the generated code
from the input specifications in program synthesizer.

Software System Model Correctness using Graph Theory: A Review

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

28

 (

)
Y
e
a
r

20
23

H

Program synthesis systems [17] are used to generate
code automatically from given specifications. It can be
considered as a tool that can make programs. It
involves different applications such as data analysis for
air traffic control data, satellite guidance, navigation, and
control system. Two program synthesis systems
developed by NASA researchers are easy to use, semi-
automated, and quick. However, it includes the manual
design of graphical system models. The development of
these models is highly time-intensive and can be
incorrect. The user would require active assistance to
refine the specification. The results are not easy to verify
manually for a large amount of data. Due to which these
systems suffer from an issue that is the correctness of
the generated code. Mathematical analysis can be used
to correct such models but require a tremendous
amount of work.

Jason [16] extended a technique developed by
Grant et al. in collaboration with NASA researchers [17]
of program correctness (for verification of generated
code from the input specifications) by applying it to
AUTOBAYES. This approach models the input
specifications, the output code, and the relationships
between them using UML Class models and OCL
constraints. The author used Code Generator, in which
input is in the form of a statistical model (class diagram)
and output in the form of a program file in the requested
language, which can be used to define a relationship
between the input and output constraint. Then as a next
step, a class diagram, and constraints for both input

and output are defined. Then, these constraints were
transformed into the formal specification language and
analyzed with the USE tool. Finally, the USE Tool checks
whether the constraints defined on the class diagram
satisfied the model representation or not.

Jason developed techniques for AUTOBAYES in
[16], employing UML class diagrams as an input to a
code generator to offer code verification. However, the
issue still persists in the system as the class diagrams
used as an input for verification are manually designed,
which can be ambiguous. Moreover, the USE Tool
checks whether the constraints defined on the class
diagram satisfied the model representation or not.
However, USE is not concentrating on the correctness
or verification of the class diagrams.

b) Significant difference in research publications
Table 1 briefly described the differences

between the selected research publications. The
comparison of selected approaches will be beneficial for
researchers to understand existing approaches more
efficiently.

For each reference, the following information is
listed: the approach or tool used to transform UML
models into graphs, supported UML models (static or
dynamic), the translation procedure from UML to
graph(manual, semi-automatic, or automatic), the
verification process (manual, semi-automatic, or
automatic)and other limitations of the associated
method.

Table 1: Significant difference in research publications

Software System Model Correctness using Graph Theory: A Review

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

 (
)

H
Y
e
a
r

20
23

© 2023 Global Journals

29

In UML metamodel [15], both the translation
and verification of UML class models done manually
while UML metamodel [10], Maude Model Checker [12],
and UML to CSP [13] offer both automated translation
and verification procedures, although [10] and [12] do
not take static view diagrams into account. UML to CSP
[13] supports static diagrams (UML class models) with
general OCL constraints but does not consider multiple
inheritance or the aggregation and composition
relationships in the UML class model.

In [14] authors used the AToM3 tool, which is
based on the Maude model checker, although the
translation into UML meta model is done manually.
Furthermore, the UML models utilized for verification
were incorrectly drawn, resulting in ambiguous verified
models.

AGG [8] utilizes semi-automatic approach for
both the translation and verification procedures of UML
models. The only limitation is that it does not support
some UML metamodel concepts (e.g., aggregation and
composition).USE tool [17] considers a manually
generated class diagram as an input for translation while
the verification process is automatic.

IV. Review Summary and Conclusion

There are several studies related to the
verification and correctness of UML models identified for
this review, of which seven were selected for this work.
These studies are selected based on methodology used
and level of automation for the translation and
verification process in the domain of software system
models. The result of this review shows that model
correctness is a highly active area of research. There are
several approaches proposed in this area. However, it
still has some important open issues and limitations
e.g., these studies did not provide enough support for
verification and correctness of UML class model.

It is important to check and verify the
correctness of UML models to enhance its usability. To
achieve that goal as a first step, my plan is to consider
the UML class diagram, which is the most fundamental
and widely used among all UML models. Therefore,
future work can concentrate on identifying and proving
the mathematical equivalence of features of the UML
class diagram models by applying standard graph
theorems.

Mathematically equivalency would reduce
concepts in the UML class diagram model, thus leading
to a better understanding of the model. An approach to
resolve this problem is to simplify the semantics of the
class diagram through the application of mathematical
formality to the definition and usage of class diagram
concepts. The applicable mathematical principles result
in a reduction of complexity in the UML class diagram
model. Along with that, we can eliminate redundant
components (e.g., generalization/specialization

relationship) by applying mathematical principles and
set theory.

A correlating effort of the future work would be
proving the correctness of the class diagrams
developed with the reduced number of model concepts.
A tool that transforms the class diagram into a graph
representation and then applies appropriate graph
theories to identify anomalies in the class diagram
model's design will be developed. Then, this work will be
validated by integrating the class diagram correctness
technique with an industrial program synthesizer
input/output validation process.

By resolving certain limitations and open issues
associated with verification and correctness of UML
class model, we can produce simplified and formalized
concepts of software system modeling notation that will
advance learning and appreciation of skills fundamental
to producing the next generation of reliable and correct
software systems. It will also contribute to the work on
program correctness that is complementary to existing
work on verifying the synthesizer input/output validation
process.

Program synthesizers are used in multiple
safety-critical domains; one is that of space exploration.
These tools have specification language problem
instance inputs and output a program that implements a
solution of the input problem. However, verifying the
output with respect to the input has been a challenging
area of research. A promising approach lacks proof of
correctness of the used UML class diagrams. These
issues can be resolved as a part of future work. This
work will also be beneficial to software engineering
pedagogy, as a simpler set of software modeling
components should lead to a greater appreciation of
modeling strategies.

References Références Referencias

1. G. Booch, J. Rumbaugh, and I. Jacobson, The
Unified Modeling Language, Rational Software
Corporation, Addison-Wesley, Indiana, USA, 1997.

2. Object Modeling Group. Unified Modeling
Language Specification. Version 2.5. October 2012.

3. C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S.
Leipert, and P. Mutzel. "A New Approach For
Visualizing UML Class Diagrams." Proc ACM Symp.
Software Visualization (SOFTVIS03), June 2003,
Association for Computing Machinery, pp. 179-188.

4. S. L. Pfleeger, and J. M. Atlee. Software
Engineering: Theory and Practice 4th Ed..Prentic
Hall, 2010.

5. J. Spivey, J. Sanders, and J. Abrial. The Z notation.
Hemel Hempstead: Prentice Hall, 1992.

6. B. Potter, J. Sinclair, and D. Till, An Introduction to
Formal Specification and Z 2nd ed., Prentice Hall
Europe, 1996.

Software System Model Correctness using Graph Theory: A Review

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

30

 (

)
Y
e
a
r

20
23

H

7. G. Taentzer. "AGG: A graph transformation
environment for modeling and validation of
software." In International Workshop on Applications
of Graph Transformations with Industrial Relevance,
pp. 446-453. Springer, Berlin, Heidelberg, 2003.

8. Rozenberg, Grzegorz, ed. Handbook of graph
grammars and computing by graph transformation.
Vol. 1. World scientific, 1997.

9. Y. Zhao, Y. Fan, X. Bai, Y. Wang, H. Cai, and W.
Ding. "Towards formal verification of UML diagrams
based on graph transformation." In IEEE
International Conference on E-Commerce
Technology for Dynamic E-Business, pp. 180-187.
IEEE, 2004.

10. G. O’Regan, Concise Guide to Formal Methods:
Theory, Fundamentals and Industry Applications,
Undergraduat Topics in Computer Science series,
Springer International Publishing, 2017.

11. Mokhati, Farid, Patrice Gagnon, and Mourad Badri.
"Verifying UML diagrams with model checking: A
rewriting logic based approach." In Seventh
International Conference on Quality Software (QSIC
2007), pp. 356-362. IEEE, 2007.

12. Reggio, Gianna, and Roel Wieringa. "Thirtyone
Problems in the Semantics of UML 1.3 Dynamics."
In Conference on Object-Oriented Programming,
Systems, Languages and Applications
(OOPSLA’99)–Workshop" Rigorous Modelling and
Analysis of the UML: Challenges and Limitations.
1999.

13. Cabot, Jordi, Robert Claris, and Daniel Riera.
"Verification of UML/OCL class diagrams using
constraint programming." In 2008 IEEE International
Conference on Software Testing Verification and
Validation Workshop, pp. 73-80. IEEE, 2008.

14. W. Chama, R. Elmansouri, and A. Chaoui. "Model
checking and code generation for UML diagrams
using graph transformation." International Journal of
Software Engineering & Applications 3, no. 6, 2012.

15. Outair, L. Abdelouahid, and T. Mariam. "Towards an
automatic evaluation of UML class diagrams by
graph transformation." International Journal of
Computer Applications 95, no. 21, 2014.

16. Hicks, Jason Michael. "Automation and Visualization
of Program Correctness for Automatically
Generating Code." PhD diss., the University of North
Dakota, 2020.

17. E. S. Grant, J. Whittle and R. Chennamaneni,
"Checking Program Synthesizer Input/Output," in
Generative Programming and Component
Engineering (GPCE), Anaheim, CA, USA, 2003.

Software System Model Correctness using Graph Theory: A Review

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

 (
)

H
Y
e
a
r

20
23

© 2023 Global Journals

31

	Software System Model Correctness using Graph Theory: A Review
	Author
	Keywords
	I. Introduction
	II. Background
	a) Theoretical Background
	i. Unified Modeling Language (UML)
	ii. UML Class Diagram
	iii. UML Association (Aggregation, Association,Composition, generalization

	III. Literature Review
	a) Review Process
	b) Significant difference in research publications

	IV. Review Summary and Conclusion
	References Références Referencias

