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study attempted to survey decision support systems and expert system literature to provide 
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identify adoption patterns that would be useful for this purpose. However, this attempt, using a 
bibliometric approach and a very high level traditional literature review, was unsuccessful due to 
the overly broad scope of the study. We then surveyed the existing scientific software domain, 
finding there to be a huge breadth in what constitutes scientific software. However, we do glean 
some lessons from previous patterns of adoption of scientific software by simply looking at 
historical examples (e.g., the electronic spreadsheet)
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Abstract-

 

The objective of this work was to elucidate paths for 
expediting and enhancing scientific research productivity from 
the emerging AI paradigm of foundation models (e.g., 
ChatGPT). Faster scientific progress can benefit mankind by 
speeding up progress toward solutions to shared human 
problems like cancer, aging, climate change, or water scarcity. 
Challenges to foundation model adoption in science threaten 
to slow progress in such research areas. This study attempted 
to survey decision support systems and expert system 
literature to provide insights regarding these challenges. We 
first reviewed extant literature on these topics to try to identify 
adoption patterns that would be useful for this purpose. 
However, this attempt, using a bibliometric approach and a 
very high level traditional literature review, was unsuccessful 
due to the overly broad scope of the study. We then surveyed 
the existing scientific software domain, finding there to be a 
huge breadth in what constitutes scientific software.

 

However, 
we do glean some lessons from previous patterns of adoption 
of scientific software by simply looking at historical examples 
(e.g., the electronic spreadsheet). Ultimately all of these were 
unable to provide the degree of guidance that the study had 
aspired to, which could be used to assist in expediting the 
adoption of these systems, but our analysis of the speed of 
progress in these domains points to the likelihood of the future 
impact of large language models on science being more 
closely tied to augmenting or automating the creative tasks of 
hypothesis and experiment generation. In the discussion we 
explore the implications of these findings that suggest future 
work on this topic could benefit from focusing on empirical 
methods to better understand the natural roles of large 
language models in augmenting and automating scientific 
tasks.

 
I.

 

Introduction

 
echnological progress is widely considered the key 
driver of economic growth (Moykr et al. 2015), and 
it is the result of knowledge creation from scientific 

research and development. Over the past fifty years, 
software has played an increasingly important role in 
scientific research and development, and it is poised to 
play an even greater role in accelerating technological 
progress in the future as artificial intelligence (AI) 
becomes widely used for productivity and creativity 
enhancement applications1

AI technologies have continued to make 
incredible progress for more than a decade (Krizhevsky 

 

(Gruetzemacher 2022). 

 

                                                             
1  Google’s DeepMind AI research lab has a goal of “solving 
intelligence to advance science and humanity” (Hassabis 2022). 

et al. 2012, Mnih et al. 2015, Silver et al. 2016, Brown et 
al. 2020, Reed et al. 2022). While this progress hasn’t 
translated to practice as dramatically as some have 
anticipated (Brynjolfsson et al. 2018), it is unlikely that 
we are at the onset of a third AI winter2

This recent progress has been driven by 
advances initially in the AI subdomain of natural 
language processing (NLP). These advances have most 
commonly been associated with language models, 
which are statistical models of human language that are 
essentially trained to be able to predict the next word in 
a sentence. To be certain, this is an oversimplification, 
but more detail is beyond the scope of this study

. In fact, the latest 
family of AI models appears to be ready to live up to the 
growing AI hype of the past decade, with many 
describing these models as a general purpose 
technology (Bommasani et al. 2021; Eloundou et al. 
2023). 

3

Language models are one type of foundation 
model, but they are only trained on language data. 
However, foundation models can be trained on different 
types of data, for example on image data or video data, 
in a semi-supervised fashion like language models 
(Bommasani et al 2021); they can even be trained on 
multiple data types in what can be described as 
multimodal models. An example of this is DALL·E 2 
(Ramesh et al. 2022), a multimodal model that can take 
text as input and generate images as output. A version 
of GPT-4 (OpenAI 2023) integrated into ChatGPT 
(OpenAI 2022) was used to generate Figure 1 (see 
Figure caption for more detail), and is now being 
marketed by OpenAI for creative design tasks. An even 
more powerful multimodal model was used to create a 
generalist agent capable of interacting with the real 
world through robotics and natural language, and 

. 
However, the progress in NLP is now bleeding over to 
other subdomains of AI such as computer vision and 
robotics (Reed et al. 2022). This progress is in an 
emerging research area that is known as foundation 
models (Bommasani et al. 2021).  

                                                             
2 AI has historically gone through two previous hype cycles that have 
been followed by periods of reduced interest and funding. The periods 
of reduced interest and funding are commonly described as AI 
winters. 
3 Interested readers can refer to Gruetzemacher and Paradice (2022). 
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capable of outperforming humans at video games 4

                                                             
4 This agent, Gato (Reed et al. 2022), was very impressive with respect 
to the breadth of its capabilities, and interested readers are 
encouraged to visit https://www.deepmind.com/publications/a-gener-
alist -agent. 

 
(Reed et al. 2022). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Given the tremendous potential for capabilities 
such as those demonstrated by DALL·E 2, foundation 
models are expected to lead to a new generation of AI-
driven software tools for enhancing creativity and 
productivity (Gruetzemacher 2022). Foundation  models  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
are actually thought to be a general purpose technology  
(GPT; Bommasani et al. 2021), with the potential to 
transform society in a manner similar to previous GPTs 
like electricity or the internal combustion engine (Lipsey 
et al. 2005). It is difficult to imagine how an emerging 
technology with such tremendous transformative 
potential will come to be used in society, much like it 
would be difficult to anticipate the impact that electricity 
would later have in 1882 when electricity generation 
began to first be used to light streets at night. We are 

Leveraging Foundation Models for Scientific Research Productivity 

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
T
ec

hn
ol
og

y 
( 
D
 )
 X

X
II
I 
Is
su

e 
II
I 
V
er
si
on

 I
 

 Y
ea

r 
20

23

32

© 2023 Global Journals

Figure 1: An Image Generated from a Text Prompt: “Create a Photorealistic Image of a Scientist Putting 
herself out of work by using an AI System to Generate Hypotheses and to Propose Experiments that her
Research Assistants can conduct in her Laboratory.” This Image was Created Using GPT-4 (Openai 2023)
Via Chatgpt Plus



particularly interested in how foundation models, or 
other powerful AI tools of the future, might enhance 
creativity and productivity for research and experimental 
design, particularly as it relates to advancing science, as 
this appears to have the greatest potential for positive-
and negative-impact to humanity.  

There has been a significant amount of 
discussion regarding the use of AI for scientific 
discovery or as a driver of scientific progress. Google 
DeepMind’s mission is to “solve intelligence to advance 
science and humanity” (Hassabis 2022), and Lila 
Ibrahim, their COO, recently explained that for scientific 
research the “ability to  use a more generalized 
intelligence to augment human knowledge-to have 
some of these breakthroughs-is really going to be quite 
spectacular” (Kopytoff et al. 2022). While DeepMind 
may ultimately seek to automate scientific progress, 
augmenting human knowledge is the direction that 
current AI models are moving toward most rapidly. 
Software that uses AI, like foundation models, to 
augment human knowledge and enhance scientific 
research productivity and creativity is the focus of this 
study. 

While we are more interested in AI technologies 
that can augment human intelligence to enhance 
scientific research productivity and creativity, it is 
important to point out other ways in which AI is being 
used to progress science. DeepMind’s use of AI in 
science is already a game changer (Service 2020) 
because they have effectively solved the problem of 
protein folding with AlphaFold (Jumper et al. 2021) and 
created a comprehensive open source database of over 
two hundred million protein structure predictions 5

While foundation models offer great potential for 
transforming the scientific landscape, they are also 
anticipated to create challenges. Applications of 

. 
Previously, AI software took the form of expert systems, 
which contained encoded expert knowledge but were 
limited to preprogrammed solutions. However, 
DeepMind is applying machine learning which enables 
learning generalizable solutions from first principles. 
DeepMind has also made progress in other scientific 
areas, such as nuclear fusion (Degrave 2022). 

What is common about DeepMind’s AI systems 
for the protein folding problem and for nuclear fusion is 
that they are systems developed to excel at a single 
well-defined task (i.e., predicting protein structures or 
maintaining stability in a high-energy plasma). The 
promise of foundation models, and tools that can be 
used to augment human intelligence, lies not in their 
ability to do one task well, but in the ability of these tools 
to adapt to whatever task humans require of them. In 
machine learning, this adaptability is known as the ability 
of a model to generalize. 

                                                             
5 AlphaFold is the system that was used for this, and the database can 
be found at: https://alphafold.ebi.ac.uk/. 

language models for science will involve the creation of 
academic work used for peer review, as well as more 
general productivity and creativity tools. Because 
language models are trained on data from the internet, 
they can come to exhibit biases or flawed data, which 
could make their use as an aid in peer review more 
difficult as scientists will not want to trust them (Okerlund 
et al. 2022). Moreover, because the models require a 
large amount of data for training, they will likely reinforce 
Anglo-American dominance in science. 

a) Spreadsheets, The First “Killer Application” 
In 1978, Dan Bricklin, a student at Harvard 

Business School, noticed a pattern in the errors his 
professor made when completing rows and columns of 
a table for a business case during a lecture 
(Castelluccio 2019). Dan noticed that the errors would 
propagate through the table; one error often required 
replacing multiple entries in the table to correct for it. 
Personal computers were emerging at the time, and 
Dan came up with the idea for a program that could act 
as a visual calculator for operations organized in tabular 
form. This idea is what we now think of as a 
spreadsheet, and while it was not entirely new, Dan’s 
program VisiCalc became the first electronic 
spreadsheet and the first “killer application” for the 
personal computer (Zynda 2013). 

 

 
In the decades since, electronic spreadsheets 

have grown to be used nearly ubiquitously for a variety 
of analytics-related tasks while changing very little from 
the initial versions. Looking at the history of 
spreadsheets, we see a pattern of development 
centered on creating a standardized product, one that 
looks, functions and feels like all other spreadsheets 
(Campbell-Kelly 2003). This may be the case because 
spreadsheets are functional as they are, and adding to it 
is not necessarily desirable (Sachs 2007). Microsoft 
Excel is now dominant in the market, but competitors 
are also widely used, such as Google Sheets, a cloud 
spreadsheet alternative. 

The ability to complete a broad range of 
computing tasks without the need to know how to 
program was a game changer in 1979, and it meant that 
spreadsheets were software that had a great ability to 
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The power of the electronic spreadsheet lay in 
its ability to do general computing tasks without 
requiring users to know how to program (Zynda 2013). 
Moreover, the application was designed with user 
experience in mind so as to be straightforward and easy 
to use for non-programmers. This led to many users 
purchasing personal computers solely for VisiCalc. 
Bricklin and his business partner Bob Frankston were 
urged not to pursue a patent for the software, which 
would have been difficult to get for software at that time. 
This left VisiCalc vulnerable to competition, and over the 
following years Lotus-1-2-3 overtook VisiCalc’s market 
share (Sachs 2007).



generalize to a wide variety of problems. Due to their 
ability to generalize to a wide variety of tasks, they are a 
useful example to study when considering the next 
generation of software that AI will lead to—the next 
generation of AI is going to help create tools with this 
ability to generalize 6

b) This Study 

. Perhaps foundation models are 
going to lead to a new ‘killer app’ similar to the 
spreadsheet, and in this study we will more carefully 
analyze what it means to be generalizable software. In 
fact, the generalizability of software is key to what we 
consider productivity and creativity enhancing software, 
the focus of this study that we will define in the following 
subsection. 

Spreadsheets were one of the earliest decision 
support systems to become widely popular. To 

technologies relevant to this study, we can look at how 
frequently these technologies have been mentioned 
over time. In Figure 2 we use this approach to track the 
significance of six technologies-spreadsheets, expert 
systems, decision support systems, natural language 
processing, machine learning, and artificial intelligence-
over the past 50 years. AI, spreadsheets and expert 
systems all gained a lot of interest in the 1980s. Interest 
in expert systems quickly diminished. Interest in AI and 
spreadsheets diminished also; significantly for AI, 
although substantial interest continued steadily; interest 
for spreadsheets diminished slightly, and stayed steady 
for some time, although it seems to have started to 
diminish more.

 
 

 

                                                             
6
 Tools like Elicit, from ought, are already attempting to become the 

next ‘killer app’: 

 
Lately, interest in machine learning and AI have 

begun to explode. Interest in natural language 
processing is also increasing, but it is unclear how 
significant this increase will become (i.e., will it increase 
dramatically  like   machine   learning   and   AI).  Natural 
language processing aside, it is important to note that AI 
is used more frequently now than ever, and that 
machine learning is used twice as often as AI was used 
during the last AI summer in the 1980s. This time it is 
unlikely that AI is as overhyped as it was four decades 
ago, and it is more likely that we will begin to see 
profound applications of foundation models-the new 
general purpose technology-across a wide variety of 
economically valuable applications. 

We know that spreadsheets were the first ‘killer 
app’ for the personal computer, but it is an open 
question as to what is going to be the first ‘killer app’ for 
foundation models, the latest general purpose 
technology? Will the characteristics of spreadsheets that  

https://www.elicit.org. 
7
 https://books.google.com/ngrams/  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
made them useful for a broad range of applications-their 
ability to generalize to a variety of tasks-lead to a new 
AI-driven app that transforms business? We do not 
know the answers to these questions, but in this study 
we attempt reviewing the existing literature to provide a 
lens through which to view these questions. Specifically, 
we review literature related to the development of 
software, scientific software, decision support systems, 
expert systems, etc. in order to identify insights that can 
improve the development and adoption of next-
generation, AI-driven (i.e., foundation model-driven) 
software, thereby contributing to the progress of 
science. 

We begin in the next section by identifying 
definitions of research and experimental development, 
science, scientific software, etc. We identify criteria for 
making classifications among different types of scientific 
software, resulting in a critical distinction between 
specialized scientific software, like what DeepMind is 
using for protein folding and nuclear fusion, and more 
generalizable scientific software, such as tools like 
spreadsheets which are not always strictly limited to 
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understand the significance of spreadsheets and other 

    Figure 2: The Frequency of Select Words and Phrases in the Google Books Corpus Since 19707.



scientific applications. In the following section we review 
relevant bodies of literature, ranging from software 
development, to scientific software, to earlier AI-based 
software like expert systems. We follow this with a 
discussion and synthesis of the literature, before finally 
making concluding remarks. 

II. background 

Scientific software has been a topic of research 
since the early 1970s (Hatton 1970; Madison et al. 
1970), although it was not heavily studied in academia 
until over a decade later. While not scientific software 
per se, electronic spreadsheets were initially developed 
in the late 1970s and have been widely used in scientific 
research. In this study, we are interested in both 
scientific software and more generally useful 
applications such as electronic spreadsheets. The latter 
can be used for a wider variety of applications but that    
also significantly enhance productivity and creativity with 
respect to scientific research and are our primary 
concern. However, before diving more deeply into the 
literature concerning the development of these tools, we 
first must define what is meant by terms such as 
scientific software or productivity and creativity 
enhancement software. 

a) Definitions 
We consider scientific research to encapsulate 

all research driving technological progress, be it in the 
social sciences, engineering, the hard sciences, etc. 
Thus, we define science broadly as a communal and 
systematic enterprise that builds and organizes 
knowledge through the process of research and 
experimental development (Wilson 1999; National 
Academies of Science 2019). The final portion of this 
definition-research and experimental development-is key 
to this study because this is the process through which 
scientific knowledge is created. 

The Frascati Manual8

The Frascati Manual makes a critical distinction 
of the three components of R & D: 1) basic research, 2) 
applied research and 3) experimental development 

 is widely thought to be the 
authoritative source of metrics for evaluating scientific 
progress, especially for economic purposes (OECD 
2015). The Frascati Manual is not directly concerned 
with scientific research, but focuses entirely on research 
and experimental development-referred to in the manual 
simply as R & D-and its components as measurement 
of such activity is of principal concern to economists. 
The Frascati Manual defines research and experimental 
development as creative and systematic work 
conducted to advance the body of knowledge, including 
knowledge of humanity, culture and society, and to 
generate new applications of available knowledge.  

                                                             
8  The first edition was published in 1963, and the current edition, 
published in 2015, is the 7th edition of the manual. 

(OECD 2015). Basic research is experimental or 
theoretical work undertaken primarily to acquire new 
knowledge without a specific aim or application. Such 
research is often undertaken by academics or 
governments. Applied research refers to investigations 
that seek to generate new knowledge, but that have a 
specific, practical aim at the outset. Often applied 
research attempts to determine uses for theory or 
knowledge generated in basic research, and it is often 
conducted by organizations as the results are intended 
for practical applications to products, operations, 
methods and systems. Finally, experimental 
development draws on knowledge from research and 
practice to produce additional knowledge in the attempt 
to create novel products or processes, or to improve 
existing products or processes. Experimental 
development should not be confused with product 
development, as it is not concerned with 
commercialization of a product-it is only a single stage 
in the product development cycle. 

Kanewala and Bieman (2014) define scientific 
software simply as “software used for scientific 
purposes”. In other prominent literature on scientific 
software, little effort has been made to define scientific 
software (Hannay et al. 2009; Joppa et al. 2013). We 
defer to Kanewala and Bieman’s definition for this study, 
and we point out that this would include software such 
as electronic spreadsheets if they are used for scientific 
purposes. This is appropriate for this study, as we are 
interested in generally capable software that can have a 
wide range of applications in science and R & D. 
However, the broad definition is not implicit in much of 
the prominent literature on the topic. Consequently, we 
will clarify this distinction between what is traditionally 
considered scientific software and the more general 
software that we also consider to be relevant in this 
study. 

The use of the term scientific software in the 
existing literature is varied. A significant amount of 
previous work involving scientific software is tied to 
scientific computing and computational science. In 
these cases, scientific software refers to software 
designed to run in a distributed environment such as for 
high performance computing (i.e., supercomputing; 
Grannan et al. 2020). Other work refers to a scientific 
software ecosystem comprised of scientists developing 
custom software for specific domains, commercial 
scientific software developers and administrators of 
platforms for high performance computing (Howison et 
al. 2015). This broader vision of the scientific software 
ecosystem better captures the intent of our broad 
definition of scientific software. 
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We define specialized scientific software as 
software that is developed for a specific class of 
problems in a single domain or closely related domains 
which doesn’t have utility to those working on other 
problems or outside the domain(s). This could be a 



commercial program run on individual workstations, 
such as Pointwise for generating grids for computational 
engineering; it could be a proprietary program like 
DeepMind’s AlphaFold that is run using distributed 
computing; or it could be an custom application for 
controlling physical actuators such as the software 
DeepMind created for steadying superheated plasma in 
nuclear fusion or software used in robotics. Specialized 
systems such as control systems, decision support 
systems and expert systems, when used for scientific 
applications, would also be considered specialized 
scientific software. 

 
 

 

b) Categories of Scientific Software 
Above we have key terms such as science and 

research and experimental development (R & D; OECD 
2015). We further made a distinction between 
specialized scientific software and generalizable 
scientific software. Here, we build on this dichotomy and 
again draw from the Frascati Manual to develop a set of 
criteria that we can use for mapping the space of 
scientific software.  

As discussed in the previous subsection, the 
Frascati Manual proposes distinctions between three 
different categories of research and experimental 
development: 1) basic research, 2) applied research 
and 3) experimental development. The manual further 
lays out five criteria that are to be used when 
determining whether an activity constitutes an R&D 
activity. Specifically, the manual requires that activities 
be: 
• Novel-the activity should be aimed at generating 

new knowledge. 
• Creative-the activity should involve concepts that 

are original and not obvious. 
• Uncertain-there should be substantial uncertainty 

about the outcome a priori. 
• Systematic-the activity should be fastidiously 

planned and conducted systematically. 
• Transferable and/or reproducible-it should lead to 

results that are reproducible. 
Anything assisting in the criteria above can be 

considered to assist in the development of scientific 
software. However, we also need to understand the 
common activities that comprise scientific R & D. Below 
we propose lists of common activities for both basic and 
applied research.

 
There is a large amount of software that could 

be construed as scientific software, and in order to map 
the space of scientific software we must identify 
categories of software based on the activities or tasks 
that they assist scientists with. We have already 
described two broad categories—specialized scientific 
software and generalizable scientific software—and we 
discuss these further below. However, we also need to 
categorize further specialized scientific software so that 
we are able to create the map we desire.

 
First, we might identify software that can be 

used for scientific research but that is not relevant to the 
objective of our study. For one, we feel that project 
management software and its adoption lies outside the 
scope of this work9

III.

 

Review of Literature

 

. 

 
Another categorization that may be useful is that 

of ‘click-and-run’ software and ‘syntax-driven platforms’; 
‘click-and-run’ refers to software with polished user 
interfaces whereas ‘syntax-driven’ refers to either 
application programming interfaces (APIs) or software 
navigated via command line interfaces (CLIs). In a 
survey conducted by Joppa et. al. (2013) scientific 
software users

 

were split between those who preferred 
‘click-and-run’ programs and those who preferred 
‘syntax-driven’ programs. 

 
Software that doesn’t seem to fit nicely into one 

of the two categories provided poses challenges to the 
proposed definitions. An example might be computer-
aided design software that enables designers, 
engineers and researchers to design parts, products 
and experimental apparati might be an example of 
something that doesn’t fall clearly into one of the two 
categories. This would be the case because the task is 
very specific, to simply create a 3D object digitally. 
Objects can vary so much that there is often software 
specific to different domains, but some of the most 
generic applications can be useful to a wide range of 
domains. Because it is unclear how to classify such 
software, we further specify that in such cases of 
ambiguity, consider the task the software performs or 
the problem that it solves, and whether or not this is 
general or specialized. 

 

a)

 

Scientific Software Literature

 
Increasingly, the generation of new knowledge 

in science and engineering is heavily dependent on 
software, and this trend is pervasive through all domains 
(Joppa et al. 2013). 

 
A substantial amount of extant work in the 

literature on scientific software relates to the use of high 
performance computing (HPC) in the computational 

                                                             
9 For more on this topic, interested readers can see Romano et al. 
(2002) or Liberatore and Pollack Johnson (2003). 
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We define generalizable scientific software as 
software that is capable of tasks that are very general 
and which are useful for a wide variety of applications, 
with science and R&D being common applications. 
Generalizable scientific software is often software 
designed at enhancing creativity and productivity. Excel 
could be considered as part of this group. Other 
examples and a more granular discussion of 
generalizable scientific software are included in the next 
section.

sciences (Basili et al. 2008; Joppa et al. 2013; Grannan 



 

 

 The problems of parallelization of large 
distributed systems, even for the most simple of tasks, 
were so tremendous that the first real solution didn’t 
emerge until the demands of the growing search market 
in the early 2000s led to Google’s MepReduce 
programing paradigm, first reported in 2004 (Dean and 
Ghemawat 2004). Hadoop was created as an open 
source version of Google’s MapReduce in 2007 
(Borthakur 2007; Shvachko et al. 2010). Spark (Zaharia 
et al. 2012), built on top of the Hadoop distributed file 
system similarly works well for parallelizing general 
problems, but both Hadoop and Spark still are 
insufficient for scientific computing, even if still very 
useful for analysis of data generated in scientific 
computing applications. The only similar software 
enabling large scale distributed computing on compute 
clusters with various architectures might be Google’s 
Tensorflow (Abadi et al. 2016) and Meta’s Pytorch 
(Paske et al. 2019). These platforms are used 
specifically for deep learning applications, which would 
most likely be for scientific computing—specialized 
scientific software or generalizable scientific software—
but would not necessarily be.

 We describe the examples of MapReduce 
(Dean and Ghemawat 2004), Hadoop (Borthakur 2007), 
Spark (Zaharia et al. 2012), Tensorflow (Abadi et al. 
2016), and Pytorch (Paske et al. 2019) to illustrate the 
limited number of platforms able to support automate 
parallelization on large-scale distributed compute 
clusters. This is important because HPC software is 
typically written for specific system architectures due to 
the need for parallelization under specific system 
constraints. While Tensorflow and Pytorch are written 
specifically to be able to be applied to a broad range of 
tasks, parallelization on very large models again 
encounters the challenges traditionally found in scientific 
computing (Basili et al. 2008; Joppa et al. 2013; 
Grannan et al. 2020). Challenges of parallelization on 
the proliferation and use of foundation models for all 

applications, including for scientific applications, is 
something that companies appear to be increasingly 
cautious of publishing publicly. One recent exception to 
this would be Google’s description of their Pathways 
program (Barham et al. 2022). This architecture was 
used to train Google’s largest model to date, PALM 2 
(Anil et al. 2023), which is referenced in the acronym 
PALM is derived from Pathways Language Model 
(Chowdhery et al. 2022). Pathways is able to scale 
beyond the limitations of the TPU v4’s 3d torus network 
topology (Jouppi et al. 2023), although the scalability is 
unclear beyond two TPU Pods. In the future, if 
proprietary systems for distributed inference are 
required, this could be problematic for sharing of open 
source systems or testing and evaluation of systems if a 
single architecture is not adopted. The architecture that 
is likely to be adopted will be that dictated by the market 
leader, Nvidia, with their Superpod architecture used in 
HPC systems like Nvidia’s Selene compute cluster, 
number 13 on the Top 50010

b)
 

Technology Acceptance
 

 
as of November 2023. It is 

likely that cloud providers will continue to use this 
architecture, and even possible that Nvidia provides a 
parallelization process for models that require more than 
a single pod to run inference or train on.

 

Substantial work has been conducted on the 
topic of technology acceptance, and the Technology 
Acceptance Model (TAM), first proposed by Davis 
(1986), is the most commonly employed and influential 
theory related to an individual’s acceptance of 
information technology (IT; Lee et al. 2003). TAM 
enables researchers to understand how users will 
respond when interacting with a new technology. It 
builds on Ajzen and Fishbein’s (1980) theory of 
reasoned action, and it assumes that an individual’s 
acceptance of IT is determined by two primary variables: 
perceived usefulness and perceived ease of use. It is 
very versatile, being able to be applied to various 
technologies in various situations with different control 
factors and with different subjects.

 When discussing
 
the results of prior research 

utilizing TAM, Lee et al. (2003) identify four categories of 
target IT systems: communications systems, general-
purpose systems, office systems and specialized 
business systems. The issue with TAM is that it is 
specifically intended to analyze case studies in business 
applications, and is intended largely to provide 
theoretical contributions. It is intended to have 
implications for practitioners, but this is not the case in 
practice. Moreover, it is thought by researchers in 
information systems research to be a topic that 
academics should avoid because it is devoid of 
valuable contribution, and, in a period of what might 

                                                             
10

  https://www.top500.org/lists/top500/2023/11/  
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et al. 2020). While this may not seem relevant, there are 
some things that might be valuable from this literature.
Consider that AI systems like foundation models require 
large amounts of computation to process language 
(Sevilla et al. 2022; Kaplan et al. 2020; Amodei and 
Hernandez 2018). And, another term for NLP is 
computational linguistics, and it is a subdiscipline of 
computer science that is effectively a computational 
science. 

Many of the problems described in the HPC 
scientific software literature involve the portability of this 
software from one system architecture to another 
system architecture (Joppa et al. 2013). This can be 
particularly challenging, and may be relevant to the 
proliferation of AI scientific software. Particularly, two 
things may be impacted: large, open source foundation 
models and regulatory testing and evaluation of large 
foundation models. 

seem to be a Kuhnian “mopping-up” period, or even a 
post “mopping-up” period (Kuhn 1962).



 

  

 

 

 

 

  

  

 

 

 

 
 

genetic algorithms had become widely used as 
decision support system tools.

 
•

 

The third installment of this series, covering the final 
time frame-between 1995 and 2001 (Eom and Kim 
2006)-concludes that during this time there were 
several important changes in decision support 
system application development including the 
development of negotiation support systems, 
organizational decision support systems, inter-
organizational decision support systems, intelligent 
decision support systems, and web-based decision 
support systems.

 We identified one other decision

 

support 
systems literature review worth mentioning. Hosack et 
al. (2012) conducted a literature review to assess the 
future of decision support systems research. This study 
came to three valuable conclusions:

 1.

 

The paper suggested using the term decision 
support within a work system. 

 
2.

 

For research to continue to produce meaningful 
ideas for organizations, researchers of the future 
must strive to integrate technology evolution into the 
concept of organizational decision support while 
understanding that technology, decision-making 
processes, and organizational support are different 
foci of the research. 

 
3.

 

They predicted that knowledge management-based 
decision support systems and data warehousing, 
social media decision support, mobile computing, 
negotiation support would drive future trends

 

in 
decision support systems research.

 Clearly, these surveys did not illuminate any 
extant research relevant to the adoption of decision 
support systems for scientific applications. The 
technology acceptance model (TAM) remained the only 
robust body of relevant literature on technology 
acceptance (Davis 1989), but was insufficient for 
providing the guidance desired in this study related to 
adoption of new AI tools for scientific applications and 
expediting scientific progress.

 
Moreover, our literature review discovered that 

there were many, many more surveys of decision 
support system literature related to specific types of 
decision support systems. For example, reviews on a 
broad range of topics from agricultural decision support 
systems (Zhai et al. 2020), to manufacturing decision 
support systems (Kasie et al. 2017), to agent-based 
decision support systems for clinical management and 
research (Foster et al. 2005), to knowledge-based 
decision support systems in financial management 
(Zopounidis et al. 1997), to decision support systems’ 
use in dental practices (Goh et al. 2016). A very large 
number of literature reviews focus on clinical decision 
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c) AI-Based Software
We conducted literature reviews of expert 

systems’ and decision support systems’ literature, first 
identifying existing surveys to provide an overview, and 
then using a bibliometric approach. For the bibliometric 
approach we used very generic search terms, and it was 
clear from the start that, for both decision support 
systems and expert systems, we would be unable to get 
useful results for a review so broad in scope. 

For both topics we queried the database 
Scopus database, which allowed for querying large
numbers of abstracts. We conducted our queries in May 
of 2022. Given our interest in enhancing scientific 
research productivity with foundation models, we 
focused broadly on decision support systems and 
expert systems to try to understand broad adoption 
trends.

d) Decision Support Systems

i. Existing Surveys 
Prior to our bibliometric analysis of decision 

support systems literature, but using the results from our 
Scopus query, we reviewed extant literature reviews on 
decision support systems. After filtering the articles with 
100 citations or more from the “decision support 
system” query, we identified those that were either 
surveys or literature reviews. There were several well-
cited and broad literature reviews on the topic. The most 
significant of these involves a series of three surveys 
covering different spans of time: from 1971 to 1988 
(Eom and Lee 1990), from 1988 to 1994 (Eom et al. 
1998), and from 1995 to 2001 (Eom and Kim 2006). We 
summarize these literature reviews below:

• The first literature review in this group covering the 
earliest period-from 1971 to 1988 (Eom and Lee 
1990)-concludes that Alter's proposed taxonomy for 
information systems (Alter 1977) was not suitable for 
decision support systems and proposed that 
integrating the separate decision-support systems 
that coexist in an organization was the next task in 
the future.

• The second literature review of this series covers the 
middle period-from 1988 to 1994 (Eom et al. 1998). 
In this survey, the authors proposed that: 1) 
supporting strategic decisions and the application 
of decision support systems to global management 
decision making should be the focal point of 
decision support system research, 2) the production 
and operations management and management 
information systems areas have become the two 
predominant fields of decision support systems 
research between the 1980s and the first half of the 
1990s, and 3) graphics, visual interactive modeling, 
artificial intelligence techniques, fuzzy sets, and 

support systems (Wright et al. 201611; Kawamoto et al. 
2005; Ahmadian et al. 2011; Kaushal et al. 2003; Sittig et 
al. 2006; Robinson et al. 2010). There is even a review 
related specifically to AI in clinical decision support 



  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                             
11

 This was actually uncovered in a search and filtering, but not listed 
with the general literature reviews described above. In both expert 
systems and decision support systems Scopus searches, it was the 
only result in the contents filtered by citation that was not a review on 
the topics more broadly. 
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ii. Bibliometric Analysis

systems (Montani et al. 2019). There are even numerous 
surveys on the use of machine learning in decision 
support systems alone (Hogenboom et al. 2016; Merkert 
et al. 2015; Ngai et al. 2011). There are many more 
domain-specific literature reviews, but we feel that those 
cited here demonstrate the breadth and volume of 
literature reviews on domain-specific topics as opposed 
to those more broadly on decision support systems 
research as a whole.

On the topic of decision support systems, we 
collected 120,019 abstracts using the search term 

“decision support systems”. We used latent Dirichlet 
allocation (LDA; Blei et al. 2002), a statistical natural 
language processing technique widely used for topic 
modeling to identify the salient topics in the corpus. 
Based on the criterion of perplexity, commonly used as 
an evaluation metric when using LDA, it was determined 
that 23 topics was an optimal number of topics. We 
used 1-gram analysis with a default set of stop words 
and a default search for hyperparameters.

Again, extensive effort was not placed on 
bibliometric analysis because 1) this study was not 
initially intended to utilize bibliometrics or scientometrics 
and 2) previous work had not had significant success 
with bibliometrics. Bibliometrics and scientometrics are 
more often used for identifying trends and predicting 
progress in technological development (Daim et al. 
2016). Use of large language models may provide better 
results. However, given the findings of other elements of 
this literature review, we do not feel that further analysis 
of the data would have proven very valuable.

We concluded from these results, and their poor 
quality, that the breadth of the topic was too great to 
identify the types of trends we sought for providing a 
guide to enhancing scientific research productivity using 
foundation models. Foundation models are a novel, 
emerging technology, with emergent capabilities 
themselves (Bommasnie et al. 2021) that are difficult to 
predict (Wei et al. 2022). Thus, there are inherent 
challenges in finding insights that apply to our target 
topic, beyond just the challenges in the overly ambitious 
aims of our study.

e) Expert Systems

i. Existing Surveys
As depicted in Figure 2, the use of the term 

“expert systems” in literature exploded in the 1980s but 
had largely subsided by the end of the 1990s. Expert 

Figure 3: Above is a word cloud generated from the results of the LDA topic modeling for decision support systems. 
The trend noticed in the extant literature reviews of a large focus on clinical decision support systems can be seen to 
some degree with the terms clinical, patients, diagnosis, and health appearing in descending relevance. However, 
largely there is little with respect to structure in the clusters that is often associated with the use of LDA. We 
additionally had difficulty labeling the topics due to their poor quality.



 

 
  

  

 

 

period: 1) expert systems methodologies were tending 
to develop towards expertise orientation and expert 
systems applications development was a problem-
oriented domain; 2) that different social science 
methodologies, such as psychology, cognitive science, 
and human behavior could implement expert systems 
as another kind of methodology; and 3) that the ability to 
continually change and obtain new understanding is the 

 

driving power of expert systems methodologies, and 
should be the expert systems application of future 
works.

 

A text mining or bibliometric analysis of the 
topic was conducted and published relatively recently 

by Cortez et al. (2018). This paper talked significantly 
about authors’ national affiliations, and worked used the 
results to propose a taxonomy which they compared 
with others, including not only a specialized expert 
systems taxonomy (Sahin et al., 2013) but also the two 
general library classification systems: the Dewey 
Decimal Classifications (DDC; Scott, 1998), and the 
Library of Congress Classifications (LCC; Chan, 1995). 
The EXSY journal recently (from 2018) adopted their 
taxonomy system.

 

Similar to what we found in decision support 
systems, there were numerous narrower reviews on 
specific types of expert systems. For example, we 
identified reviews on a breadth of subtopics including 
explanation in expert systems (Moore and Swartout 
1998), expert systems in production planning and 
scheduling (Metaxiotis et al. 2002), expert systems 
evaluation techniques (Grogono et al. 1993), expert 
systems for fault detection (), and 

 

Interestingly, expert systems showed up as 
topics in literature reviews focused on

 

artificial 
intelligence techniques, as well (Bharammirzaee 2010; 
Horvitz et al. 1988). 

 

ii.

 

Bibliometric Analysis

 

On the topic of expert systems, we collected 
65,551 abstracts using the search term “expert 
systems”. We again used latent Dirichlet allocation 
(LDA; Blei et al. 2002) for our topic modeling. Based on 
the criterion of perplexity, it was determined that 16 
topics was an optimal number of topics. Similar to the 
LDA analysis of the decision support systems corpus, 
we used 1-gram analysis with a default set of stop 
words and a default search for hyperparameters.
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systems are a form of AI system that encode expert 
knowledge for retrieval and use in specific context to 
support the activities of professionals in a variety of jobs 
where extensive expertise is required. It could be 
thought that expert systems use AI techniques for 
information retrieval to the behavior or judgment of an 
organization, a human expert, or a group of human 
experts with exemplary expertise in a specific field.

As with decision support systems, we began by 
exploring the extant literature reviews on the topic. 
Again, we attempted to draw literature reviews from the 
bibliometric search we conducted of the Scopus 
database, after filtering out articles having less than 100 
citations. Doing so, we found one highly cited literature 
review on the topic. Thus, we expanded our search 
slightly to try to identify more work.

The most widely cited reviews in this domain 
was that of Liao (2005) covering work done on expert 
systems in the decade from 1995 to 2004. This was the 
period during which interest in the topic was subsiding, 
at least based on the Google Books Corpus, as 
depicted in Figure 2. This review reported that, over this 

Figure 4: Above is a word cloud generated from the results of the LDA analysis. This illustrates the lack of value in 
the topics that were identified. It was difficult labeling the clusters in any meaningful way with the results from this 
process.



 

 

Overall, our perception of the expert systems 
literature was—just like the decision support system 
literature—that the scope was too broad to produce 
meaningful results. There were more general literature 
reviews than with decision support systems, but, in 
inspecting these studies we were unable to identify 
insights of substantive value to our goal of enhancing 
scientific productivity from foundation models. Much 
may lie in the fact that expert systems, like decision 
support systems, are more often used in business 
applications and not for advancing science. We see that 
much of the time neither decision support systems or 
expert systems would be categorized as specialized 
scientific software or generalizable scientific software as 
we define these terms in this study.

 

iv.

 

Discussion

 

a)

 

Scientific Software Development

 

There seem to be lessons that can be learnt 
from HPC-specific scientific software. One thing that 
we’re not encountering yet is the need to port large 
language models or foundation models to different HPC 
compute clusters. However, as the need to test and 
evaluate increasingly generalizable systems grows, it will 
likely be necessary to have generic HPC architectures 
that large language models and foundation

 

models can 
easily be ported to-at least for inference tasks-in order to 
test and evaluate them, particularly in the case of final 
pre-deployment system evaluations.

 

Particularly, the sensitivity of large AI 
models/systems to the coprocessor architecture, the 
system topology, and the interconnect bandwidth, will 
become an increasingly significant factor to porting 
large models to other systems. However, it is also 
critical that large models be deployed in very secure 
environments with near military levels of information 
security (Patel 2023). Therefore, any government 
facilities that are designed to test or evaluate such 
systems need to be very secure, and possibly even air-
gapped or classified. The challenges of porting HPC 
software described by others are things that must be 
avoided for such testing and evaluation protocols to 
work, and these protocols must be enacted in legislation 
quickly due to the rapid pace of tech progress and the 
pace with which legislation is going to need to keep up 
(e.g., the NIST AI Safety Institute, the Federal AI Risk 
Management Act of 2023).

 

b)

 

Emerging AI Software Tools

 

Some of the most valuable lessons from the 
literature regarding the development and adoption of 
novel software tools might be those taken from the case 
of the electronic spreadsheet. VisiCalc was novel, and 
brought new capabilities to non-programmers because 
it made general computing tasks possible without 
having to know a programming language or how to write 
a program. It is also significant to remember how 
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particularly the ease of use. We also note that Lotus 1-2-
3 was able to overtake VisiCalc because it targeted IBM 
PCs, which were more widely adopted by businesses 
due to the reputation of IBM. 

Other relevant lessons for enhancing scientific 
productivity from foundation models may involve the 
open sourcing of such models, but, there are inherent 
risks in open sourcing such powerful models. 
Additionally, lessons relevant to this were described in 
the previous subsection, being drawn from literature on 
software design in HPC.

For more complex software the users’ need for 
trust increases, as they are not able to independently 
validate the results provided (Joppa et al. 2013). This is 
in contrast to previous generalizable scientific software 
that has been more transparent, with operations that are 
able to be verified with a calculator. Insights about 
emerging AI software tools was the inspiration for this 
study, and this proved to be a very difficult topic to 
glean insights on. However, we feel there is much 
greater potential in the automation of science described 
in the following subsection. 

c) Beyond Scientific Software Tools
AI-powered NLP tools like ChatGPT (OpenAI 

2022) have tremendous abilities, including abilities for 
foresight and creativity (Gruetzemacher 2022), and it 
would not be prudent to underestimate the transfor-
mative potential of AI driven by the capabilities of future 
systems (Gruetzemacher and Whittlestone 2022). 

Moving beyond the notion of simply using 
foundation model-powered scientific software as a tool 
for discovery of new proteins (Jumper et al. 2021; Ferruz 
et al. 2023) or for accelerating human-supervised 
literature review (Gruetzemacher 2022; Manning et al. 
2023; Haman and Skolnik 2023), it is possible to 
consider the use of increasingly powerful systems to 
automate literature review to the point where systems 
are able to 1) identify gaps in the existing literature and 
2) to propose experiments and hypotheses to contribute 
to the body of knowledge in a field or domain. Perhaps 
this might be useful for scientific progress, albeit the 
mundane, or what Kuhn (1962) refers to as the 
“mopping-up”.

Science has been thought to fundamentally be 
a process of conjectures and refutations (Popper 1963), 
and while at present much of experimentation seems 
likely to require human involvement, it is easy to expect 
that conjectures could be made by powerful foundation 
models in the near future. Moreover, conjectures that 
involve hypotheses testable by computational 
experiments might either avoid falsification or be refuted 
without human involvement. This is why Shevlane et al. 
(2023) foresee automation of AI research as an extreme 
risk. Ignoring that this is considered a risk, it is obvious 

important the user interface and user experience was-



 

 

 

 

  

 

 

 

Thus, we could see automation of such scientific areas 
in the future, first with “mopping-up” (Kuhn 1962) types 
of research, and later with novel or profound work. 

 

Given the pace of recent progress in AI (Sevilla 
et al. 2022), and that progress is likely to continue 12

i.

 

Future work

 

 

(Gruetzemacher et al. 2020) with continued scaling of 
model’s training compute and dataset

 

size (Amodei and 
Hernandez 2018; Kaplan et al. 2020), we must be 
cautious to not ignore these seemingly science fiction 
possibilities. Thus, this has significant potential for future 
work. In fact, we feel that a complete research agenda 
on the topic of automation of science is merited, but we 
outline some specific starting points for future work 
below.

 

One obvious starting point is to start 
experimentally trying to determine what hypothesis 
generation capabilities exist in today’s cutting edge

 

frontier models like GPT-4 (OpenAI 2023). Simple 
experiments could begin to uncover this, and we 
foresee a large range of potential experiments that could 
demonstrate different abilities of this phenomena. For 
example, simply identifying ten papers from a

 

research 
group that could be confirmed to not be in the training 
data for a model, and then prompting the model-
assuming a large enough context window, such as that 
with Claude 2 (Anthropic 2023) of 100,000 tokens-with 
the papers, asking it to propose new

 

experiments and 
hypotheses. The results from this could simply be 
compared to the research group’s actual plans for new 
experiments, or those that are published in the following 
six to twelve months.

 

Many variations of the above experiment could 
be conducted, and this could be done over a variety of 
domains. It might be useful to identify strengths and 
weaknesses of early systems, even if current systems 
are not practically useful, so as to anticipate 
weaknesses in future systems, and how we might go 
about

 

addressing such deficiencies to expedite 
scientific progress. 

 

Beyond just exploring the proof-of-concept, 
work could be done on the other half of the automation 
of science; i.e., for domains where experiments can be 
conclusively decided computationally. Research could 
be conducted to evaluate how well systems were able to 
take existing code from previous experiments in 
computational fluid dynamics or computational biology, 
and extend or adapt that code accurately and precisely 
enough to conduct an experiment testing a different 
hypothesis. These experiments need not begin with 
hypotheses generated from the systems, but rather, with 
very basic hypotheses simply extending the previous 

computational experiment. The key to this would be to 
understand the limitations of current foundation models 

                                                             
12  Albeit possibly not as quickly as in the past five years 
(Gruetzemacher et al. 2020).  
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that hypotheses beyond just machine learning or 
computer science can also be falsified computationally. 

at coding for scientific computing applications. It would 
be interesting to work on predicting whether the 
bottleneck for automating computational research 
disciplines will lie in the rigorous and robust 1) 
hypothesis creation, 2) design of experiments, or 3) 
execution of experiments.

Research along these lines could pave the way 
for a new pseudo-discipline of automated science. 
Previous work has described automated science for 
decades (King et al. 2009; Lenat 1979), but foundation 
models have unprecedented potential for this process. 
Further work should attempt to better understand how 
this might impact the economy and society, ensuring 
that rapid progress on this type of research does not 
wind up disproportionately benefitting the wealthiest of 
nations and ignoring the impacts to the Global South.

V. Conclusion

This paper has described an extensive effort to 
use literature review to identify potential paths for 
enhancing scientific research productivity through the 
use of foundation models. The initial plan, to review 
decision support systems and expert systems literature 
did not reveal much of value because the survey was 
overly ambitious. This was evidenced by previous 
literature reviews on these topics, which largely focused 
on reviews specific subtopics of the content in these 
broad topics. A review of the development of scientific 
software, such as literature on HPC software, as well as 
a review of applications often not considered scientific 
software, like the electronic spreadsheet, offered some 
useful insights, but none of the magnitude that we had 
sought.

During the course of the study, tremendous 
changes occurred in the field of artificial intelligence 
research, particularly the release of ChatGPT (OpenAI 
2022) and the addition of GPT-4 (OpenAI 2023) into 
ChatGPT Plus. This has changed AI research 
dramatically, leading to governments taking seriously 
the transformative potential of AI for society more 
broadly (Gruetzemacher and Whittlestone 2022; Lazar 
and Nelson 2023). In the final subsection of the 
discussion we discussed some salient activities for 
future work to explore involving the use of advanced AI 
for driving and expediting scientific progress. We are 
particularly keen on the idea of using foundation models 
for automating scientific research, and encourage future 
work in this direction. Pursuing such research may avoid 
the limitations encountered by this study by looking 
forward to anticipate enhancing scientific software 
research productivity instead of looking backward. 
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