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Abstract- Internal Combustion Engines play a crucial role in various sectors of modern 
transportation and industry. However, the ever-stringent regulations ask for enhanced efficiency 
and reduced pollutant emissions. To address these challenges, the adoption of advanced 
technologies, such as Machine Learning (ML) approaches, has emerged as a promising 
solution. 

In this study, the authors extend previous research by simultaneously predicting the 
torque and fuel consumption of a three-cylinder spark ignition engine to determine overall engine 
efficiency. Specifically, they compare the performance of a NARX algorithm with the traditional 
Backpropagation (BP) structure. They conducted a preliminary sensitivity analysis to optimize 
prediction accuracy, eliminating less influential parameters from the dataset, and significantly 
reducing computational effort and operational time. 
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Abstract- Internal Combustion Engines play a crucial role in 
various sectors of modern transportation and industry. 
However, the ever-stringent regulations ask for enhanced 
efficiency and reduced pollutant emissions. To address these 
challenges, the adoption of advanced technologies, such as 
Machine Learning (ML) approaches, has emerged as a 
promising solution.

In this study, the authors extend previous research by 
simultaneously predicting the torque and fuel consumption of 
a three-cylinder spark ignition engine to determine overall 
engine efficiency. Specifically, they compare the performance 
of a NARX algorithm with the traditional Backpropagation (BP) 
structure. They conducted a preliminary sensitivity analysis to 
optimize prediction accuracy, eliminating less influential 
parameters from the dataset, and significantly reducing 
computational effort and operational time.

The experimental dataset used for training and 
testing the algorithms was obtained from transient cycle 
experiments.  The grid search method performed 
hyperparametric optimizations for both BP and NARX 
architectures. The results demonstrated that the NARX
approach consistently outperformed the BP model. The BP 
model achieved an average error of under6%, while NARX 
yielded average errors up to3.8%. NARX effectively captured 
fast signal oscillations and accurately followed torque trends.
Overall, the NARX model showed superior performance in 
accurately predicting torque behavior and fuel consumption 
compared to the traditional BP architecture. The application of 
ML algorithms like NARX has the potential to significantly 

enhance the efficiency of ICEs, reduce fuel consumption, and 
mitigate pollutant emissions. This research provides valuable 
insights into the effective use of ML approaches for optimizing 
engine design and performance in the pursuit of a sustainable 
future for the transportation and industrial sectors. The study 
enables the estimation of fundamental parameters such as 
instantaneous torque and fuel consumption, that are not 
provided on any engine control unit of real vehicles.

I. Introduction

nternal combustion Engines (ICE) play a crucial rolein 
modern transportation and industry, being employed 
in diverse sectors like planes, cars, and power 

generation [1-3]. The ever-strict regulations on pollutant 
emissions of harmful gases (NOx, CO, HC and soot) 
and CO2are forcing the ICE to become more efficient to 
reduce their impact on the environment [4, 5]. Therefore, 
the research field is called to make significant efforts to 
enhance the overall efficiency of ICEs [6, 7]. In the 
industry, achieving a 0.05% improvement in efficiency is 
a challenging and exceptional endeavor, directly 
impacting both fuel consumption and emissions. The 
provided Table exemplifies this; for instance, NOx 
emissions decrease from 0.08 to 0.06 g/km. Even minor 
differences between Euro standards require substantial 
efforts, motivating advanced research.

Table 1: European Emission Standards for Gasoline Engines [2]

Starting 
from

CO2

(g/km)
HC

(g/km)
NOx

(g/km)
HC + NOx

(g/km)
PM

(g/km)

Euro 1 12/1992 2.72 / / 0.97 /

Euro 2 01/1997 2.30 / / 0.5 /

Euro 3 01/2000 2.20 0.20 0.15 / /

Euro 4 01/2005 1.00 0.10 0.08 / /

Euro 5 09/2009 1.00 0.10 0.06 / 0.005

Euro 6 08/2014 1.00 0.10 0.06 / 0.005

Original Equipment Manufacturers (OEMs) and 
the engine research community agree in considering an
engine thermal efficiency, of   the  Spark - Ignition (SI) 

Author α σ ρ: Engineering Department, University of Perugia, Via 
Goffredo Duranti, 93, 06125 Perugia, Italy.
e-mail: francesco.mariani@unipg.it (F.M.) 

engines, above 40% as a feasible goal [8, 9]. Advanced 
combustion techniques such as cooled external exhaust 
gas recirculation (EGR) [10], engine boosting in 
conjunction with downsizing [11], water injection [12], 
and lean mixture operations [13-15] proved to be 
effective ways to meet these demands. EGR reduces 

I

combustion temperatures, mitigating NOx emissions 



while improving efficiency by reducing pumping losses 
and improving combustion stability. Combining boosting 
with downsizing results in smaller engines that maintain 
or even enhance power output. This reduces fuel 
consumption and emissions due to the smaller engine 
size. Water injection improves efficiency by cooling the 
intake charge, reducing knock, and allowing for higher 
compression ratios. It also reduces emissions by 
lowering combustion temperatures. Operating with a 
lean air-to-fuel mixture reduces fuel consumption and 
CO2 emissions. It can, however, increase NOx 
emissions, which is where technologies like EGR and 
water injection can offset these drawbacks. However, 
the implementation of new technologies increases the 
engine complexity and magnifies the amount of data to 
be collected from the different physical sensors both 
during engine calibration and run-time operations [16]. 
As a result, significant computational efforts are 
required, resulting in longer operating times and 
increased costs [17]. Advanced technologies, such as 
the Machine Learning (ML) approach [18], are currently 
being investigated to effectively monitor the vehicle’s 
parameters of spark ignition (SI) engine with the aim of 
overcoming the abovementioned issues. The 
optimization of the engine design passes through 
effective efficiency, whose knowledge can be of pivotal 
importance to improve the engine’s performance while 
reducing fuel consumption and pollutant emissions, at 
the same time. 

 Incorporating insights from advanced 
technologies like Machine Learning, the optimization of 
engine design can be further refined, leveraging data-
driven approaches to enhance combustion strategies 
and ultimately achieve greater efficiency and emission 
reduction. Efficient performance can be assessed by 
measuring the engine's delivered torque and fuel 
consumption. However, implementing these measure-
ments directly on-board is challenging using physical 
instruments. Preliminary characterizations on specific 
test benches are required to calibrate the engine 
properly [19]. In the present study, an unconventional 
methodology, primarily leveraging a NARX ML model, is 
being introduced to forecast engine parameters that 
would typically pose significant challenges for 
experimental measurement. This model is intended to 
function as a virtual sensor for quantities not typically 
available in today's commercial vehicles. Extending this 
concept, this approach might potentially substitute the 
measurement of certain parameters currently 
ascertained using conventional sensors and actuators, 
thereby resulting in cost reduction. 

In a study conducted by Togun and Baysec 
[20], they used an artificial neural network (ANN) to 
predict the specific fuel consumption (SFC) and torque 
of a gasoline engine. The input parameters considered 
were ignition advance, throttling status, and engine 
speed, while the outputs were predicted separately 

using different network architectures. To predict engine 
torque, a network architecture consisting of 3 input 
parameters, one hidden layer with 13 neurons, and one 
output layer was used. For predicting brake-specific fuel 
consumption (BSFC), a 3-15-1 network architecture was 
used. The results for torque prediction showed 
correlation coefficients of approximately 0.99 for both 
training and testing. For BSFC prediction, the correlation 
coefficients were 0.9971 for training and 0.98331 for 
testing. The mean absolute percentage error (MAPE) for 
torque measurement was 0.2912 for training and 1.74 
for testing. As for BSFC prediction, the MAPE values 
were 1.0186 for training and 2.7588 for testing. Cay [21] 
developed three separate artificial neural network (ANN) 
models to predict brake-specific fuel consumption 
(BSFC), exhaust gas temperature (EGT), and effective 
power. They wanted to study the impact of three input 
parameters on these output parameters. The inputs to 
the ANN included fuel flow, speed, inlet manifold 
temperature, torque, and water temperature. During 
testing, the mean error percentage was found to be less 
than 2.7%, and root mean square error (RMSE) values 
were less than 0.02, indicating the accuracy of the 
predictions. For both training and testing data, the R2 
value, which represents the goodness of fit, was close to 
0.99, further demonstrating the effectiveness of the ANN 
models. Golcu et al. [22] investigated how variable valve 
timing affects the performance and fuel economy of an 
engine. They experimented by changing the crank angle 
by 10 to 30 degrees and created an artificial neural 
network (ANN) model using valve-timing and speed as 
inputs. The output data chosen were fuel flow and 
torque. The testing results for torque and fuel flow 
showed root mean square errors (RMSE) of 
approximately 0.9% and 0.28%, respectively. All the 
mentioned references used the Back Propagation (BA) 
approach for the forecasting activities. 

A previous work of the same research group 
[23], showed the performance of a NARX (nonlinear 
autoregressive network with exogenous inputs) structure 
in reproducing with remarkable accuracy across various 
transient cycles the torque delivered by a SI engine. The 
optimized NARX architecture exhibited an average error 
up to 70% less than a critical threshold of 10%.  

Within this context, the present work aims to 
extend the results of the previous analysis by 
simultaneously computing the torque and the fuel 
consumption of a three-cylinder SI engine in order to 
define a methodology to determine the engine’s overall 
efficiency through artificial intelligence (AI). The 
performance of a NARX algorithm was compared with 
the ones of a BP structure. A preliminary sensitivity 
analysis was performed to identify and eliminate the less 
influential parameters for the prediction of the outputs, 
i.e. torque and fuel consumption, from the initial dataset. 
As a result, the amount of data to be processed was 
reduced, significantly decreasing computational effort 
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and operational working time. Hyper parametric 
optimizations of the tested architectures, i.e. BP and 
NARX, were realized through the grid search method 
based on a transient cycle experimentally realized. The 
results show that BP reproduces physical trends well 
with an average error of 5.9% for torque and 4.7% for 
fuel consumption, both below a critical threshold of 
10%. NARX outperforms BP by 35% in both cases, with 
a lower average error under 4% for torque and fuel 
consumption.  

II. Materials and Methods 

a) Experimental Setup 
Tests were performed on a 1L three-cylinder 

turbocharged engine of 62 kW, chosen to represent a 
common and efficient configuration in modern 
automobiles and in all test benches, enabling a realistic 
and relevant assessment of engine parameters for 
widespread applicability and industry relevance. The 
engine operates in Port Fuel Injection (PFI) with 
European market gasoline, and it is controlled by an 
electric motor both in motored and firing conditions.  

More detailed information about the engine and 
experimental setup can be found in [23]. The torque 
delivered by the engine is measured using a torque 
meter located near the engine crankshaft whereas the 
fuel consumption is computed by a dynamic AVL 
733Sfuel meter. An AdaMo Hyper software records all 
parameters during engine operations, enabling the 
simultaneous control of engine speed, torque, and valve 
throttle position. AdaMo acquired data from various 
sources, including the Engine Control Unit (ECU), 
pressure sensors, thermocouples, torque meter, and 
dynamic fuel meter, at a sampling frequency of 10 Hz. 
From this data, a total of 15 variables, that were deemed 
most characteristic, were selected as inputs (red in 
Figure 1) for the neural structure to predict torque and 
fuel consumption (blue in Figure 1). The signals coming 
from thermocouples TCK and pressure sensors PTX 
1000 are acquired by data acquisition systems of 
National Instrument. All the above quantities are 
recorded by the AdaMo Hyper software during engine 
operations. Table 2 displays some values of the 
variables acquired during the experimental activities. 

 

Figure 1: Schematic Representation of the Engine Setup and Corresponding Features Considered to Predict Torque 
and Fuel Consumption 

Table 2: Some Values of the Input and Output Variables Acquired During the Experimental Activities 

Timestamp s 0.1 0.2  ........  200  200.1  ........  349.9  350  ........  525.3  525.4  
F_TorquemeterAI Nm 14.9 14.9  ........  4.8  5.3  ........  7.2  6.3  ........  6.8  6.3  
AVL733SGetMeas kg/h 1.908 1.827  ........  0.587  0.57  ........  0.945  0.945  ........  0.25  0.511  

EngineSpeed rpm 1201 1201  ........  1369  1361  ........  2311  2348  ........  2403  2439  
F_Throttle Position % 8.2 8.2  ........  6.6  6.2  ........  10.9  11.7  ........  10.2  10.2  

F_Engine Oil T °C 57.2 57.2  ........  60.1  60.7  ........  63.2  63.2  ........  65.8  65.8  
F_TC_Turbine IN °C 151.9 179.2  ........  476.3  476.3  ........  559.6  559.6  ........  567.9  567.9  

F_TC_Turbine OUT °C 112.5 112.5  ........  295  295  ........  387.6  388.1  ........  402.9  402.9  
F_TC_Air_Intake °C 34.2 34.2  ........  35.9  35.9  ........  36.2  36.2  ........  35.9  35.9  

FC_TC_Intercooler_OUT °C 33.8 33.8  ........  34.9  34.9  ........  35.9  35.9  ........  35.6  35.6  
F_TC_Compressor_OUT °C 12.01 12.01  ........  10.13  10.13  ........  11.12  11.12  ........  14.09  14.09  
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F_P_Compressor_OUT mbar 987 987 ........ 985.1 985.1  ........  986.1  986.1  ........  989.1  989.1  
F_P_Turbine_Out mbar 982.29 982.29 ........ 982.83 982.83  ........  983.22  983.22  ........  981.69  981.69  

Fuel_Pressure bar 3215 3215 ........ 3215 3215  ........  3204  3204  ........  3215  3215  
InjectionTime us 3404 3404 ........ 2361 2440  ........  2361  2361  ........  2167  2010  

SparkAdvance CAD 24.5 24.5 ........ 26.75 27  ........  32.5  32.5  ........  32.75  32.75  
TC_H2O °C 49.4 49.4 ........ 46.9 46.9  ........  49.4  49.4  ........  50.6  50.6  
Lambda - 1.008 1.008 ........ 0.969 0.938  ........  0.945  0.945  ........  0.883  0.898  

b) Data Correlation Analysis 
Starting from the initial dataset, it is important to 

understand the relationship between the numerous input 
parameters recorded during the experimental activities 
and their impact on the engine-delivered torque and fuel 
consumption.  

It is essential to evaluate each parameter 
individually to understand the influence of such 
parameters on the output prediction to identify if they 
can be removed in order to reduce the model’s 
complexity by improving its accuracy at the same time. 

It is worth mentioning that the variables for which you 
want to assess the correlation should be sortable and, 
ideally, continuous. To this aim, three different 
correlation parameters have been employed: Pearson 
correlation coefficient R [24], Spearman correlation 
coefficient ρ [25] and Shapley value φ [26]. 
The Pearson correlation coefficient R evaluates the 
degree of linear correlation between parameters by 
assessing the direction and strength of their relationship 
based on their actual values, as follows (eq.1): 

R=  CoV  (X,Y)
σxσy

 = 
𝑛𝑛  ∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖−∑ 𝑥𝑥𝑖𝑖 ∑ 𝑦𝑦𝑖𝑖

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

�𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖
2−(∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 )2𝑛𝑛

𝑖𝑖=1 �𝑛𝑛 ∑ 𝑦𝑦𝑖𝑖
2−(∑ 𝑦𝑦𝑖𝑖

𝑛𝑛
𝑖𝑖=1 )2𝑛𝑛

𝑖𝑖=1

 
 

(1) 

 

where n is the number of input parameters xi, yi the 
variable to be predicted, CoV(X,Y) is the covariance of 
two sets of data X and Y, and σx and σy the standard 
deviations of such sets. The Pearson correlation 
coefficient also ranges from -1 to +1. A positive value 
indicates a positive linear relationship, while a negative 
value indicates a negative linear relationship. A 
coefficient close to 0 means there is little to no linear 
relationship between the variables. 

The Spearman correlation coefficient ρ is a 
statistical method used to determine the strength and 

direction of the relationship between two variables. It is a 
non-parametric measure, meaning it doesn't assume a 
specific distribution for the data. Instead, it focuses on 
assessing the monotonic relationship between the 
variables. Monotonicity implies that as one variable 
increases, the other variable consistently either 
increases or decreases, though not necessarily at a 
constant rate. The Spearman correlation (eq. 2) 
evaluates the similarity of the rank orders of data points, 
disregarding their actual numerical values. 

ρ = 1 - 6 ∑ 𝑑𝑑𝑖𝑖
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛(𝑛𝑛2−1)

 
(2) 

where di
2 is the rank difference of two variables after 

sorting. The Spearman correlation coefficient ranges 
from -1 to +1. A positive value indicates a direct 
(increasing) monotonic relationship, while a negative 
value indicates an inverse (decreasing) monotonic 
relationship. A coefficient of 0 means there is no 
monotonic relationship between the variables and 
indicates a weaker correlation and a smaller influence 
relationship. 

The Shapley value φ [26] (eq. 3) attempts to 
explain an instance's prediction by assessing the 
contribution of each attribute to the forecast. The 
Shapley Value calculates the average contribution of 
each player across all possible coalitions to quantify the 
impact of the single measured quantities on the 
objective function.  

φi(v) =∑ |𝑆𝑆|!(𝑛𝑛−|𝑆𝑆|−1)!
𝑛𝑛 !𝑆𝑆𝐶𝐶𝑁𝑁\{𝑖𝑖}  (v(S U {𝑖𝑖}) - v(S)) (3) 

where φi is the Shapley value for player i, v(S) is the 
worth coalition S, n is the number of total players and m 
is the number of players in the coalition S before player i 
joins (0 ≤ m ≤ n -1).Positive values imply a positive 
correlation between input and target while negative 
values imply that the player detracts from the coalition's 
value when they join. It is worth highlighting that, as 
dealing with two output variables, two separate 

sensitivity analyses were conducted, one for torque and 
one for fuel consumption. This allowed to identify how 
the input variables can independently influence the 
outputs.  

To explain the choice of the input parameters 
used to build the tested neural structures, a step-by-
step explanation is reported below. Table 3 shows 
positive and negative values to highlight the trend 

© 2023   Global Journals

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
X
III

 I
ss
ue

 I
I 
V
er
sio

n 
I 

  
  
 

  

66

  
 (

)
Y
e
a
r

20
23

H
Using Artificial Intelligence to Evaluate the Effective Efficiency of Internal Combustion Engines



correlation between input and output. To quantify the 
influence, the absolute value (ABS) of such quantity 
must be taken into account.  

Since the goal of the study is to build a single 
ANN capable of simultaneously predicting both 
variables under examination, some considerations were 
made regarding the indicators, in order to include all 
influential variables while avoiding the exclusion of 
others that might positively impact one of the two 
outputs. First, all variables that simultaneously exhibit 
negative Shapley values have been removed from the 
input dataset, i.e., SparkAdvance, F_P_Turbine _Out, 
FC_TC_Air_Intake,Lambda, F_TC_Turbine OUT,FC_TC_ 
Compressor_OUT. Even if Fuel_pressure positively 

influences the FC prediction, the high negative value 
showed for the torque forecasting led to excluding it as 
well. F_Engine Oil T presents a shapley close to zero for 
one output and negative for the other: therefore, also 
sucha variable has been excluded from the initial 
dataset. Engine Speed was included in the initial dataset 
because, despite the negative Shapley value for torque, 
the Spearman and Pearson correlations of both output 
variables with Engine Speed were among the highest 
values.  

In other words, 8 of the initial 15 variables have 
been excluded resulting in roughly over 50% of the initial 
input variables. 

Table 3: Correlation Analysis Results between Input Parameters and Output, I.E. Engine Delivered Torque 

Variable Name Unit 
Torque (F_TorquemeterAI) 

Fuel Consumption 
(AVL733SGetMeas) 

Shapley Spearman Pearson Shapley Spearman Pearson 

FC_TC_Compressor_OUT °C -8.40 0.55 0.53 -2.56 0.82 0.83 

EngineSpeed rpm -0.20 0.59 0.58 0.05 0.82 0.73 

F_Throttle Position % 1.03 0.81 0.83 0.01 0.84 0.79 

F_Engine Oil T °C 0.19 -0.01 -0.09 -0.13 -0.17 -0.19 

F_TC_Turbine IN °C 2.19 0.42 0.35 0.03 0.53 0.43 

F_TC_Turbine OUT °C -1.95 0.36 0.26 -0.08 0.43 0.37 

F_TC_Air_Intake °C -9.95 -0.11 -0.14 -1.50 -0.27 -0.24 

FC_TC_Intercooler_OUT °C 16.37 0.19 0.12 0.73 0.13 0.14 

F_P_Compressor_OUT mbar 55.37 0.55 0.53 61.43 0.82 0.83 

F_P_Turbine_Out mbar -54.43 0.12 0.06 24.40 0.06 0.09 

Fuel_Pressure bar -7.49 -0.40 -0.41 1.17 -0.35 -0.33 

InjectionTime μs 0.96 0.62 0.64 0.04 0.22 0.35 

SparkAdvance CAD -0.62 0.43 0.40 -0.02 0.70 0.55 

TC_H2O °C 4.22 0.18 0.10 0.11 0.10 0.09 

Lambda - -1.00 -0.20 -0.34 -0.01 -0.32 -0.37 

Since, previous work of the same research 
group [27] certified increments in the prediction 
performance when operating with a reduced dataset, 
the artificial architectures presented have been built by 
considering a total of 7 input variables.  As mentioned 
before, by reducing the number of input variables, the 
model becomes more compact, requiring less storage 
space and this leads to faster training times, quicker 
model convergence, and shorter inference times during 
predictions. 

c) Preparing the Initial Dataset 
After conducting the initial analysis to identify 

the relevant input parameters, the data (Table 3) is 
normalized to reduce potential prediction errors and 
enable the model to converge more quickly. 

Normalization is necessary to handle variations in input 
and output parameters effectively. During normalization, 
the values are scaled to fit within the range [0,

 
1]. Once 

the prediction process is complete, the predicted data is 
de-normalized to facilitate a direct comparison with the 
actual target values obtained from experimental 
measurements. Figure 2illustrates the complete dataset 
used in this study, including the separation of input and 
output. The training session

 
was realized on 80% of the 

entire dataset, while the test session, concerning the 
prediction was realized on the remaining 20%. It is worth 
reminding that AdaMo acquires data with a sampling 
frequency of 10 Hz, therefore 5254samples correspond 
to 525.4 seconds. 
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Figure 2: Representation of Input and Output Used to Construct the Artificial Neural Networks (Left) and Subdivision 
of the Initial Dataset into Training and Test Sessions (Right) 

III. Construction of The Neural 
Architectures 

This section details the design and refinement 
of neural network architectures to predict SI engine 
torque and fuel consumption. It includes considerations 
for optimal structure, training techniques like Back 
Propagation and the NARX approach, and evaluation 
metrics for performance assessment. 

a) Preliminary Considerations 
This section describes the different neural 

network architectures employed in this study to predict 
the torque delivered and fuel consumption of the SI 
engine (see 2.1 Experimental setup) and all the 
operations the authors made to optimize the internal 
structure of each of them. In the process of optimization, 
dealing with numerous variables can be quite 
challenging. To address this issue, certain 
considerations must be made to streamline the task. By 
incorporating these considerations [28-30]: 

− The number of neurons N in each hidden layer 
should be between the number of inputs and the 
number of outputs (i.e., 2<N<7). 

− The number of neurons in each hidden layer should 
be 2/3 the number of inputs, plus the number of 
outputs (i.e., N=6). 

− The number of neurons in each hidden layer should 
be less than twice the number of inputs (i.e., N<14). 

The optimization process can be more efficient. 
A maximum of 4 hidden units, equal to the double 
number of variables to be predicted, has been chosen. 
Each hidden layer is composed of diverse numbers of 
neurons, i.e. from 4 to13, by following the considerations 
listed. The number of the epoch was set equal to 1000, 
since this value has been observed to achieve good 
performance with reduced computational efforts. To 

avoid over fitting issues, Early Stopping technique [31] is 
also employed to stop the training process if no 
significant improvement in performance (MSE eq.4) is 
recorded above a certain number of epochs. The initial 
learning rate is set to 0.0001 and the bias and weights of 
each neuron are continuously optimized by Adaptive 
Moment Estimation (Adam) which combines the benefits 
of both RMSprop and momentum optimization to 
automatically adjusts the learning rate, based on 
historical gradients and past updates [32]. In fact, it is 
worth highlighting that, if the learning rate is too high, 
the model can become unstable and therefore unable to 
find the best solution. On the other hand, if the learning 
rate is too small, the model may take a long time to 
learn without finding a good solution. So, finding the 
right learning rate is important to train the model 
effectively [33]. To sum up: 

• The number of neurons varies from 4 to 13. 
• The hidden layers vary from 1 to 4. 
• The number of the epoch is set to 1000. 
• The initial learning rate is set at 0.0001. 

The definition of the optimal neural structures is 
determined through preliminary analysis considering the 
training sessions’ performance. To evaluate the training 
performance of model parameters, the loss function is 
created, and the mean square error (MSE) is chosen as 
the loss function (eq.4): 

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑛𝑛
�(𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 − 𝑌𝑌𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑡𝑡𝑑𝑑𝑖𝑖 )2
𝑛𝑛

𝑖𝑖=𝑜𝑜

 (4) 

with n the number of samples. Set the number of 
network epoch iterations to 1000, to calculate the final 
value of the loss function for each prediction model 
once the network training reaches the maximum 
learning iteration. 
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Erri = 
�𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖 −𝑌𝑌𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑡𝑡𝑑𝑑

𝑖𝑖 �

𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖 ×100 (5) 

where N is the number of samples considered for the 
test case and i the ith sample. The average percentual 
error, i.e. Erravg, is computed as well to draw attention to 
the global prediction quality. For this kind of application, 

a maximum critical threshold of 10 is established for the 
abovementioned errors. Moreover, other two evaluation 
metrics are used to compare the test performance of the 
architectures, i.e. RMSE (eq.6) and R2 (eq.7). 

RMSE = �1
𝑛𝑛
∑ (𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 − 𝑌𝑌𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑡𝑡𝑑𝑑𝑖𝑖 )2𝑛𝑛
𝑖𝑖=𝑜𝑜  

(6) 

𝑅𝑅2 = 1 −
∑ (𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖 −𝑌𝑌𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑡𝑡𝑑𝑑
𝑖𝑖 )2𝑛𝑛

𝑖𝑖=𝑜𝑜
∑ (𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖 −𝑌𝑌𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖 )2𝑛𝑛
𝑖𝑖=𝑜𝑜

 
(7) 

where 𝑌𝑌𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖  is the average value of the prediction.  
Due to the large number of combinations 

analyzed for each structure, it is not feasible to illustrate 
the performance of every single one. As a result, the 
authors focused on presenting the features of the best-
performing structure for each ANN.  

b) Back Propagation 
The BP structure has been optimized through 

the grid search method by testing the following hyper 
parameter combinations: 

• One input layer with size equals the number of 
features in the input data. 

• From 1 to 4 hidden layers HL each of which with 4 to 
13 neurons N. After each hidden layer, a fully 
connected layer is applied, followed by a ReLU 
activation function [35].  

• An output layer with two output units for the two 
target variables which directly provides the 
predicted values without any further processing. 

• A regression layer computes the mean squared 
error (MSE) loss between the predicted output and 
the target output during the training process. 

• The training process presents an Adam optimizer, 
as previously mentioned, a maximum of 1000 
epochs, and the data is processed in mini-batches 
Mb of 8, 16, 32, 64 or 128 samples per iteration.  

c) NARX 
NARX approach is a type of recurrent dynamic 

neural network employed for modeling nonlinear 
dynamic systems and time-series forecasting [36]. The 
NARX network can have either a series-parallel (i.e., 
open-loop) or a parallel architecture (i.e., close-loop) 
[37], as illustrated in Figure 3. 

 

Figure 3: Design of the Type of NARX Architectures: (A) Open-Loop Configuration and (B) Close-Loop One 

In the series-parallel architecture (Figure 3 (a)), 
the network predicts the desired output value, denoted 
as 𝑦𝑦� (t), based on the current and past values of the 

input x(t) and the actual past value of the time series, y  
(t) (eq.8).  

𝑦𝑦�(t) = 𝑓𝑓(𝑦𝑦0(𝑡𝑡 − 1); x(𝑡𝑡 − 1)) = 𝑓𝑓(𝑦𝑦(𝑡𝑡 − 1), y(𝑡𝑡 − 2))… 
…, 𝑦𝑦 (𝑡𝑡 − 𝑛𝑛𝑦𝑦), x(𝑡𝑡 − 1),x(𝑡𝑡 − 1) … , x(𝑡𝑡 − 𝑛𝑛𝑦𝑦)) (8) 

with nx
 e ny  input memory order and output  memory order,  respectively.  
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To make a comparison over the entire predicted 
range, for each forecast i, the deviation of the prediction 

𝑌𝑌𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑𝑖𝑖𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑𝑖𝑖 from the target 𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 throughout the range is 
computed (eq.5):



  

𝑦𝑦�(t+1) = 𝑓𝑓(𝑦𝑦0(𝑡𝑡 − 1); x(𝑡𝑡 − 1)) = 𝑓𝑓(𝑦𝑦(𝑡𝑡 − 1), y(𝑡𝑡 − 2))… 
…, 𝑦𝑦 (𝑡𝑡 − 𝑛𝑛𝑦𝑦), x(𝑡𝑡 − 1),x(𝑡𝑡 − 1) … , x(𝑡𝑡 − 𝑛𝑛𝑦𝑦)) (9) 

During the training phase, a series-parallel 
architecture is utilized because it has access to the true 
past value of the time series. Subsequently, this 
architecture is transformed into a parallel one, which is 
more suitable for multi-step-ahead forecasting.  

The NARX structure has been optimized 
through the grid search method by testing the following 
hyper parameter combinations. 

• From 1 to 4 hidden layers HL
 each of which with 4 to 

13 neurons N. 

• An output layer with two output units for the two 
target variables which directly provides the 
predicted values without any further processing. 

• A regression layer computes the mean squared 
error (MSE) loss between the predicted output and 
the target output during the training process. 

• The training process presents an Adam optimizer, 
as previously mentioned, and a maximum of 1000 
epochs. 

IV. Results and Discussions 

a) Results on Training 

The first comparison between the proposed 
algorithms is performed via training_loss function as 
described in the previous paragraph. The structure of 
the architectures presenting the best performance on 
training are composed as follows. 

• Back Propagation is composed of three hidden 
layers HL, respectively with 11, 9, and 9 neurons N, 
mini-batch size Mb

 equals 128, and learning rate 
equals 0.01.  

• NARX is composed of two hidden layers HL, 
respectively with 4 and 9 neurons N (Figure 4). Also, 
the sum of neurons of the two hidden layers (i.e 13) 
does not exceed twice the number of inputs (see 
the previous considerations listed regarding the 
definition of the number of neurons.  

 

Figure 4:
 
NARX Optimized Structure used to Predict Torque and Fuel Consumption

Figure 5 illustrates a comparison of the training 
loss among the different architectures. In all cases, there 
is a consistent decreasing trend in training loss as the 
number of epochs increases. These architectures tend 
to reach a point of stability around 600 epochs, where 
the training loss falls below 0.001 by the time the

 
1000th

 

epoch is reached. This indicates that the models 
converge effectively without experiencing over

 
fitting 

issues.
 

Notably, the NARX architecture demonstrates 
the quickest convergence, achieving a training loss 
below 0.005 in approximately at 100 epochs. 
Furthermore, once it reaches this stabilized state, it 
exhibits minimal oscillations in the training loss, 
suggesting that it may be more robust compared to the 
other architectures.
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On the other hand, in the parallel architecture (Figure 3 (b)), the prediction relies on the current and past 
values of x(t) and the predicted value of 𝑦𝑦� (t) (eq.9).



 Figure 5:
 
Training Loss for the Tested Architecture during the Training Session

 b)
 

Results on Test
 Starting from the Back

 
Propagation, Figure 6

 displays the comparison between the experimental 
traces experimentally obtained (black color) and the 
ones predicted by the optimized BP structure (red 
color). The prediction error distribution generated by the 
BP architecture is also presented to enhance the 
assessment of forecasting accuracy. This approach 
aims to provide a more precise evaluation of the 
predictive performance in quantitative terms. From a 
qualitative point of view, BP is capable of reproducing 
the physical trend of both analyzed targets. In particular, 
it well-reproduces the fluctuation of the FC signal, which 
is characterized by lower oscillations if compared to the 
torque signal. It is worth noting that, BP model 
reproduces greater signal fluctuation, particularly 
noticeable from 465 seconds to 495, taking the torque 
signal as an example. However, it underestimates the 
highest peak around 490 seconds. The architecture

 performs an average error Erravg of about 5.9% regarding 
the torque prediction and of about 4.7% on the fuel 
consumption, both less than the critical threshold of 10. 
Concerning the torque prediction, the architecture 
exceeds 169 times the Err=10%, corresponding to 
about 16% of the total samples predicted while, for the 
fuel consumption, it is able to enhance the prediction 
quality. In fact, even if the number of samples predicted 
over the 10% threshold is equal to213, the structure is 
capable of well-reproducing the target trend. However, 
the maximum error computed in the FC prediction is 
28%, corresponding to about 0.025 kg/h in the initial 

part of the test (around 420 seconds), and therefore 
negligible.
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Figure 6: Forecasting Results of the BP Structure. (Left) Comparison between the Performance of the BP Algorithm 
(Red Curve) and the target Signals (Black Curve) 

  Figure 7 illustrates the outcomes of the NARX 
architecture, following the same format as Figure 6 did 
for the BP architecture. From a qualitative point of view, 
such a structure is able to mitigate the error in the 
prediction of BP where the experimental signals are 
approximatively constants, i.e. in the range from 142 to 
152 seconds, and conversely to BP, is capable of 
reproducing the three highest torque peaks in the 
interval 450÷500 seconds. NARX outperforms BP with 
Erravg respectively with about 3.8% and 3.1% of Erravg in 
torque and fuel consumption prediction, corresponding 
to improvements of about 35% in both cases. It shows 
only 6%of the predicted samples exceeding the 10% of 
Err, in the torque and FC predictions. In the latter case, 
the Err on prediction never exceeds 16%, conversely to 
BP which shows errors up to 28%. 
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Figure 7: Forecasting Results of the NARX Structure. (Left) Comparison between the Performance of the NARX 
Algorithm (Green Curve) and the Target Signals (Black Curve) 

Figure 8 illustrates the regression accuracy of 
each model, as defined by eq.7, along with the 
corresponding Root Mean Square Error. Concerning the 
Torque Prediction, the NARX model stands out with 
superior accuracy and smaller prediction errors, as 
previously demonstrated. In contrast, the BP structure 
exhibits deviations in the lowest and highest ranges 
tested. Specifically, it tends to overestimate predictions 
for low values and underestimate them for high torque 
levels. NARX improves BP's R-squared values of about 
6%, and significantly reduces RMSE of about a 40%.  

These improvements mitigate the error associated with 
BP in all the analyzed range. Concerning the fuel 
consumption, the R2 and RMSE certify again the 
capability of both structures to well-predicted such an 
output feature. Bot structures show R2 close to the unit 
and RMSE approximately equals to 0.02. These results 
confirm the higher ability of NARX to effectively 
addresses prediction of the analyzed targets and its 
superior nonlinear fitting capabilities. 
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Figure 8: Comparison between the Predictions Performed by the Tested Structures in Terms of R2 and RMSE 

 
 

 

ŋeff 
= Torque

 
×w

FC
 

×LHV
×100

 (10) 

with Torque expressed in Nm, w the engine speed in 
rad/s, FC the fuel consumption in kg/s and Lower 
Heating Value (LHV) of the gasoline equals 44 MJ/kg.   
Figure 9reports the preliminary attempt to compare the 
efficiency computed from the signals experimentally 

obtained and the ones predicted by the optimized NARX 
structure and certifies effectiveness in accurately 
estimating efficiency across transient conditions.  
 

 

Figure 9: Effective Efficiency Computed by Following Eq.10 

V. Conclusions 
The goal of this study was to develop an AI-

based methodology for evaluating the overall efficiency 
of a three-cylinder SI engine by simultaneously 
predicting its torque and fuel consumption. It compared 
the performance of a Back Propagation (BP) structure 
with a Nonlinear Autoregressive Network with 
Exogenous Inputs (NARX) algorithm. In an effort to 
optimize prediction accuracy, a sensitivity analysis was 
conducted to select influential parameters while 
reducing computational complexity and operational 
time. The experimental dataset was acquired through 
transient cycle experiments, and hyper parameter 
optimizations were performed for both BP and NARX 
architectures using a grid search method.

 
The results clearly demonstrated that.

 •

 

All models effectively converged without over

 

fitting, 
with training loss consistently decreasing as epochs 
increase.

 

Notably, the NARX architecture exhibited 
the quickest convergence, reaching a training loss 
below 0.005 in around 100 epochs. This suggests 
its potential robustness if compared to BP.

 •

 

NARX outperformed BP in the test phases with an 
average error of about 3.8% for torque prediction 
and 3.1% for fuel consumption, representing a 35% 
improvement in both cases.

 

The NARX model had 
fewer samples exceeding the 10% error threshold 
compared to BP.

 

© 2023   Global Journals

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
X
III

 I
ss
ue

 I
I 
V
er
sio

n 
I 

  
  
 

  

74

  
 (

)
Y
e
a
r

20
23

H
Using Artificial Intelligence to Evaluate the Effective Efficiency of Internal Combustion Engines

Based on the obtained results, from the torque 
and FC signals, it's possible to calculate the effective 

efficiency ŋeff of the engineby usingeq.10, and then 
compare it with the experimental efficiency.



• NARX demonstrated superior accuracy and smaller 
prediction errors in torque prediction compared to 
BP.BP exhibited deviations in the lowest and highest 
ranges, overestimating for low values and 
underestimating for high torque levels. NARX 
improved BP's R2values by approximately 6% and 
significantly reduced RMSE by about 40%, 
mitigating errors across all analyzed ranges. Both 
models performed well in fuel consumption 
prediction, with high R-squared values close to the 
unit and low RMSE. 

In summary, the NARX model consistently 
outperformed the BP architecture in terms of accuracy, 
prediction error, and robustness, particularly in torque 
prediction and efficiency estimation. Its ability to capture 
complex patterns and adapt to changing conditions 
underscores its superiority in nonlinear fitting. These 
compelling results underscore the NARX model's critical 
role in revolutionizing automotive design by significantly 
enhancing engine efficiency assessment. The model's 
remarkable predictive accuracy and adaptability hold 
immense promise for fostering innovation in the 
automotive industry, ultimately driving the development 
of greener and more sustainable automotive 
technologies. The NARX model stands as a valuable 
tool for engineers and researchers seeking to optimize 
internal combustion engines, shaping a future where 
energy-efficient and environmentally friendly vehicles 
play a central role in transportation. 
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