

Global Journal of Computer Science and Technology: D
Neural & Artificial Intelligence
Volume 24 Issue 1 Version 1.0 Year 2024
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Abstract- The increasing complexity of modern business operations demands efficient and
accurate lead time estimation to enhance decision-making processes. This study proposes a
novel approach to automate lead time estimation using machine learning algorithms. Traditional
lead time estimation methods often rely on manual calculations and historical averages, leading
to inaccuracies and inefficiencies. In contrast, machine learning algorithms leverage historical
data, contextual factors, and patterns to predict lead times dynamically. The automation of lead
time estimation not only improves accuracy but also facilitates real-time decision-making. The
system continuously learns from new data, adapting its predictions to changing business
environments. A user-friendly interface is developed to allow easy input of relevant data and to
visualize the lead time prediction.

Keywords: particle swam optimization, k-means clustering algorithm, neural network, analogy-
based estimation.

GJCST-D Classification: LCC Code: HD30.215

AutomatedLeadTimeEstimationforAnomalyDetectionusingaMachineLearningAlgorithm

Strictly as per the compliance and regulations of:

© 2024. Dr. Shivakumar Nagarajan, Ms. Divya T & Dr. Prasanna S. This research/review article is distributed under the terms of
the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors
and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creative
commons. org/ licenses/by-nc-nd/4.0/.

Automated Lead Time Estimation for Anomaly Detection using
a Machine Learning Algorithm

By Dr. Shivakumar Nagarajan, Ms. Divya T & Dr. Prasanna S

Automated Lead Time Estimation for Anomaly
Detection using a Machine Learning Algorithm

Dr. Shivakumar Nagarajan α, Ms. Divya T σ & Dr. Prasanna S ρ

Abstract- The increasing complexity of modern business
operations demands efficient and accurate lead time
estimation to enhance decision-making processes. This study
proposes a novel approach to automate lead time estimation
using machine learning algorithms. Traditional lead time
estimation methods often rely on manual calculations and
historical averages, leading to inaccuracies and inefficiencies.
In contrast, machine learning algorithms leverage historical
data, contextual factors, and patterns to predict lead times
dynamically. The automation of lead time estimation not only
improves accuracy but also facilitates real-time decision-
making. The system continuously learns from new data,
adapting its predictions to changing business environments. A
user-friendly interface is developed to allow easy input of
relevant data and to visualize the lead time prediction. In this
project design an automated time estimation is calculated for
the usage of two

algorithms and to get the accuracy for the
maximum amount of iterations to be fitted by the PSO
algorithm and then use the K-means clustering for the
grouping the classes. From the PSO algorithm get the best
features and then apply the Neural Network and Analogy
Based Estimation for encrypt the data and then apply model to
get the accuracy and time estimation from initialization to the
end of the prediction and compare the two model for the
accuracy and time comparison and also get the best features.

Keywords:

particle swam optimization, k-means
clustering algorithm, neural network, analogy-based
estimation.

I.

Introduction

n the fast-paced world of software engineering,
accurate estimation of lead time is a critical factor that
can significantly impact project planning, resource

allocation, and overall project success. Lead time refers
to the time taken from the inception of a software
development task to its completion, encompassing
various stages such as design, coding, testing, and
deployment. Traditional methods of lead time estimation
often suffer from subjectivity, imprecision, and a lack of
adaptability to changing project dynamics. However, the
rise of data-driven approaches and machine learning
techniques has opened new possibilities for automating
and improving lead time estimation.

The dynamic field of software engineering

encompasses the methodical design, development,
testing, and maintenance of software systems. It
involves using a methodical approach to software
development, which includes defining requirements,

coming up with solutions, writing code, and subjecting
the finished result to rigorous testing. Together, software
developers use a range of methodologies, including as
Agile and DevOps, to continuously build and enhance
software while reacting to shifting input and
requirements. The methodology includes selecting
appropriate programming languages and design
patterns as well as managing version control, assuring
security, and maintaining documentation. A combination
of technical know-how, teamwork, project management,
and a commitment to ethical considerations are required
to produce reliable and efficient software solutions that
address real-world problems the software industry

The K-Means clustering algorithm is one such
powerful technique that is gaining prominence in the
software engineering domain. K-Means is an
unsupervised machine learning approach that uses
similarity to divide data into separate clusters. Its
capacity to detect hidden patterns and structures in
datasets makes it a great candidate for lead time
estimating automation. K-Means can accurately forecast
lead times for new activities by exploiting prior project
data to find intrinsic correlations between development
tasks and their related lead times.

This paper presents an in-depth exploration of
the K-Means clustering algorithm and its application to
automate lead time estimation in software engineering
projects. We will delve into the underlying principles of
K-Means, its strengths, limitations, and how it can be
fine-tuned to suit the unique characteristics of software
development processes. Furthermore, we will discuss
the challenges associated with implementing K-Means
for lead time estimation and propose strategies to
overcome them.

The objective of this research is to equip
software development teams, project managers, and
stakeholders with a data-driven, efficient, and reliable
lead time estimation tool that can facilitate better
decision-making, resource allocation, and project
planning. By harnessing the power of K-Means
clustering, we aim to enhance the accuracy and
efficiency of lead time estimation, ultimately leading to
improved project management and successful software
development endeavours.

Software lead time estimation, a critical aspect
of project management, employs various techniques to
predict the time needed for software development
projects. Among these techniques, analogy-based

I
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

1

© 2024 Global Journals

Author α: Department of Computer science and Engineering,
Thiagarajar college of Engineering. e-mail: shiva@tce.edu

methods, neural networks, and Particle Swarm
Optimization (PSO) play distinctive roles.

Analogy-based methods leverage historical
data from similar projects to estimate lead times. By
comparing known project outcomes and characteristics
to those of the current project, these methods
extrapolate estimates. While intuitive and easily
accessible, their accuracy relies heavily on the quality
and relevance of historical data.

Neural networks, a machine learning approach,
demonstrate their strength in lead time estimation by
learning complex patterns from historical data. These
interconnected layers of nodes process input
parameters to generate accurate predictions. Their
ability to capture nonlinear relationships and adapt to
diverse project variables makes them robust tools,
particularly when adequate data is available for training.
Particle Swarm Optimization, inspired by the social
behaviour of birds flocking or fish schooling, employs
optimization to estimate lead times. It simulates a
population of particles traversing a solution space to
find optimal estimates. Through iterative refinement,
PSO converges towards accurate predictions by
adjusting particle positions based on local and global
information.

II. Related Works

In 2008, Kim1 et al. published the first study on
JIT-SDP, where they described a set of input features for
JIT-SDP models. Other research looked into input
features that could be useful for JIT-SDP, like the day of
the week or the time of day a software change was
produced, and input features to make it possible to
identify software changes that are difficult to fix.
According to Shihab2et al., the amount of lines of code
contributed, the proportion of bug fixes to total file
changes, the number of bug reports associated with a
commit, and the developer experience are all reliable
indications of software modifications that cause defects.
Kamei3 et al. carried out a substantial empirical
investigation to look into a variety of factors extracted
from commits and bug reports as input features for JIT-
SDP models. They considered 14 features grouped into
five dimensions of diffusion, size, purpose, history and
experience, and showed such features to be good
indicators of defect-inducing software changes for
yielding high predictive performance on both open
source and commercial projects. Many subsequent
studies have adopted these features.

In 2022, Elvan Kula4; Eric Greuter5; Arie van
Deursen6; Georgios Gousios7 wrote late delivery of
software projects and cost overruns have been common
problems in the software industry for decades. Both
problems are manifestations of deficiencies in effort
estimation during project planning. With software
projects being complex socio-technical systems, a large

pool of factors can affect effort estimation and on-time
delivery. To identify the most relevant factors and their
interactions affecting schedule deviations in large-scale
agile software development, we conducted a mixed-
methods case study at ING: two rounds of surveys
revealed a multitude of organizational, people, process,
project and technical factors which were then quantified
and statistically modelled using software repository data
from 185 teams. We find that factors such as
requirements refinement, task dependencies, organi-
zational alignment and organizational politics are
perceived to have the greatest impact on on-time
delivery, whereas proxy measures such as project size,
number of dependencies, historical delivery perfor-
mance and team familiarity can help explain a large
degree of schedule deviations. We also discover
hierarchical interactions among factors: organizational
factors are perceived to interact with people factors,
which in turn impact technical factors. We compose our
findings in the form of a conceptual framework
representing influential factors and their relationships to
on-time delivery. Our results can help practitioners
identify and manage delay risks in agile settings, can
inform the design of automated tools to predict
schedule overruns and can contribute towards the
development of a relational theory of software project
management.

In 2021, Lei Zou8, Zidong Wang9, Qing-Long
Han10, Donghua Zhou11 wrote the full information
estimation (FIE) problem is addressed for discrete time-
varying systems (TVSs) subject to the effects of a
Round-Robin (RR) protocol. A shared communication
network is adopted for data transmissions between
sensor nodes and the state estimator. In order to avoid
data collisions in signal transmission, only one sensor
node could have access to the network and
communicate with the state estimator per time instant.
The so-called RR protocol, which is also known as the
token ring protocol, is employed to orchestrate the
access sequence of sensor nodes, under which the
chosen sensor node communicating with the state
estimator could be modelled by a periodic function. A
novel recursive FIE scheme is developed by defining a
modified cost function and using a so-called “backward-
propagation-constraints.” The modified cost function
represents a special global estimation performance. The
solution of the proposed FIE scheme is achieved by
solving a minimization problem. Then, the recursive
manner of such a solution is studied for the purpose of
online applications. For the purpose of ensuring the
estimation performance, sufficient conditions are
obtained to derive the upper bound of the norm of the
state estimation error (SEE). Finally, two illustrative
examples are proposed to demonstrate the
effectiveness of the developed estimation algorithm.

Automated Lead Time Estimation for Anomaly Detection using a Machine Learning Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

2

© 2024 Global Journals

III. Proposed Methodology

a) Particle Swam Optimization (PSO)
PSO was developed by Eberhart4 and Kennedy5

in 1995. It is swarm intelligence meta-Heuristic inspired
by the group behaviour of birds flocks or fish schools. It
is simple, fast and easy to understand. Similarly, to
Genetic Algorithm (GAs), it is a population-based
method, that is, it represents the state of the algorithm
by a population, which is iteratively modified until a
termination criterion is satisfied. In PSO, the potential
solution called particle which searches the whole space
by previous best position (pbest) and best position of
the swarm (gbest). The fitness function can be
evaluated by the following equation.

𝑓𝑓𝑛𝑛 =∑ ∑ ||𝑛𝑛
𝑖𝑖=1

𝑘𝑘
𝑗𝑗=1 𝑥𝑥𝑖𝑖

𝑗𝑗 -𝑐𝑐𝑗𝑗 || 2 (1)

Initially, position and velocity of the particles are
expressed as follows

𝑋𝑋𝑖𝑖=LB+rand (UB-LB) (2)

𝑉𝑉𝑖𝑖=
𝐿𝐿𝐿𝐿+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿)

∆𝑡𝑡
 (3)

The velocity and positions values are updated
during each iteration. Velocity update equation is given
below

𝑉𝑉𝑖𝑖+1 =𝑤𝑤𝑉𝑉𝑖𝑖 +c1 rand
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 −𝑋𝑋𝑖𝑖

∆𝑡𝑡
+c2 rand

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 −𝑋𝑋 𝑖𝑖
∆𝑡𝑡

 (4)

Where, Xi is current position, Vi+1 is the velocity
of next iteration, Vi is current velocity, ∆t is the time
interval, rand is a uniformly distributed random variable
that can take any value between 0 and 1. Pbesti is the
location of the particle that experiences the best fitness,
gbesti is the location of the particle that experiences a
global best fitness value, c1 and c2 are two positive
acceleration constants responsible for degree of
information, w represents inertia weight which is usually
linearly decreasing during the iterations.

Updating position is the last step in each
iteration, it is updated using velocity vector. Position
update equation is given below

𝑋𝑋𝑖𝑖+1
 = 𝑋𝑋𝑖𝑖 +𝑉𝑉𝑖𝑖+1∆𝑡𝑡 (5)

Where, 𝑋𝑋𝑖𝑖+1
 is the next position, 𝑋𝑋𝑖𝑖

 is the current
position, 𝑉𝑉𝑖𝑖+1

 is the next velocity, ∆t is the time interval.

Update the best fitness values at each generation,
based on below equation

𝑃𝑃𝑖𝑖(t+1)=� 𝑃𝑃𝑖𝑖(𝑡𝑡)
𝑋𝑋𝑖𝑖(𝑡𝑡 + 1)

� 𝑓𝑓(𝑋𝑋𝑖𝑖(t+1))≤ 𝑓𝑓(𝑋𝑋𝑖𝑖

(t))

 𝑓𝑓 (𝑋𝑋𝑖𝑖(t+1))> 𝑓𝑓(𝑋𝑋𝑖𝑖

(t))

(6)

Where, f denotes the fitness function Eq. (1), Pi

(t)

stands for best fitness value and the coordination

where the values are computed, Xi(t) is the current
position, t denotes the generation step.

Update the velocity, position and fitness
computations are repeated until the termination criteria
is met.

b) K-Means Clustering Algorithm(KMC)
This K-means clustering is the best

unsupervised learning algorithm. Using a certain
number of clusters, it is simple and easy to classify a
given data set. Initially, select the k centroids, then
calculate the distance between each cluster centre and
each object. Repeat the steps until no more changes
are done. The objective function of k-means clustering is
given as

 𝑓𝑓𝑛𝑛 = ∑ ∑ ||𝑛𝑛
𝑖𝑖=1

𝑘𝑘
𝑗𝑗=1 𝑥𝑥𝑖𝑖

𝑗𝑗 -𝑐𝑐𝑗𝑗 ||2 (7)

Where, n is the number of data points, k is the
number of clusters, ||𝑥𝑥𝑖𝑖

𝑗𝑗 -𝑐𝑐𝑗𝑗 ||2 is the distance between
each cluster centre and each object. The steps of k-
means clustering is shown below
1. Place K points into the space which denotes initial

group centroids.
2. The group closer to the centroid is assigned with a

cluster.
3. When all the objects are assigned to the groups, the

positions of K centroids are reallocated.
4. Repeat Steps 2 and 3 until the centroids no longer

move.

In this paper, combination of PSO and k-means
clustering is used. PSO works efficiently for global
search but its local search ability is poor. K-means
clustering which produces local optimal solution due to
initial partition but it does not work well for global search
ability. Hence the proposed method overcome the
limitation of K-means clustering, PSO offers global
search methodology. Initially PSO is performed to find
the location of cluster centroids. These locations of
cluster centroids are given as input for the k-means
clustering and provide optimal clustering solution. The
steps for the proposed method is given below

Step 1: Randomly generate particles and particles are
grouped which creates population.

Step 2:

Position and velocity of particles are initialized

using Equation (2) and (3).

Step 3:

Compute the fitness value using Eq. (6)

Step 4:

Position, velocity, gbest and pbest values of the

particles are updated using Equation (4) and (5).

Step 5:

Repeat step (3) and (4) until one of following
termination conditions is satisfied. 5(a). The maximum
number of iterations is exceeded. 5(b). The average
change in centroid vectors is less than a predefined
value.

Automated Lead Time Estimation for Anomaly Detection using a Machine Learning Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

3

© 2024 Global Journals

Step 6: Input the number of clusters which is to be
generated.

Step 7: Compute the cluster centroids using the best
positions of k of PSO.

 Step 8: Compute the distance between the particles
and centroids.
Step 9: Cluster centroids of k-means clustering can be
recomputed using Eq. (7).
Step 10: Repeat the steps (8) and (9) until the centroids
no longer move.

The combination of PSO and k-means provides
better clustering result compared to result of each
individual technique. PSO is used to find the optimal
solution, the output of PSO is given as input to the k-
means to obtain the clustering result. Check if the
number of projects in clusters is greater than or equal to
15. For analogy method the number of projects present
in a cluster should be less than fifteen. There are two
reasons for choosing based on 15 projects. First, each
project in the dataset usually has at least 10 features to
train the neural network properly. Second, when using
combination of PSO and K-means clustering the
minimum requirement is 15. Anything less than 15 will
become useless for training Neural Network. Testing
stage consists of following steps. The Euclidean
distance between a particular project and cluster centre
is measured. The it is done for all the projects, the one
with minimum is chosen. If it is marked in the training
stage as ABE, then ABE is used to estimate the lead

time. Otherwise NN is applied to predict the lead time.
Repeat the steps until all test projects are applied to the
hybrid model. For each test project the MRE is
calculated and the final result is computed based on
MMRE and PRED.

IV. Analogy based Method

The most common example of analogy-based
project estimation is case-based reasoning, where
identical projects from the lesson learned are identified
and used for estimation. They can be used in
combination with collective expert opinion and formal
models, Software lead time estimation by using an
analogy-based tech commonly involves the following
steps.
1. Measuring the values of identified metrics of the

software project for which estimation is being
performed (target project).

2. Finding a similar project from the repository.
3. Using the estimated effort values of the selected

projects to use as an initial estimate for the target
project.

4. Comparison of metric’s value for the target project
and selected project.

5. Adjustment of lead time estimates in view of the
comparison performed in the previous step.

V. Neural Network

Neural networks are a type of machine learning
model inspired by the structure and function of the

COLLECT AND TEST
DATASET

SELECT PROJECT

FIND THE CLUSTER
PROJECTS BELONGS TO

TEST WITH NEURAL
NETWORK

TEST WITH ANALOGY
BASED ESTIMATION

FINAL RESULTS OF LEAD
TIME ESTIMATION

Automated Lead Time Estimation for Anomaly Detection using a Machine Learning Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

4

© 2024 Global Journals

human brain. They are mathematical models composed
of interconnected nodes, or neurons, that process
information through a series of weighted connections.
These connections allow neural networks to learn
patterns and make predictions based on the input data.
The artificial neural network is a powerful tool in the field
of machine learning, as it can adapt and learn from data
in a way that resembles human brain processing (Singh
& Shrimali, 2019). It is important to understand the
structure and functionality of neural networks in order to
effectively utilize them for various applications in
machine learning. Additionally, neural networks have
layers, including an input layer, hidden layer(s), and an
output layer. These layers help to organize and process
the data, allowing for more accurate predictions or
estimations. Furthermore, neural networks have been
successfully applied in various fields including image
recognition, natural language processing, and financial
forecasting. By understanding the structure and
functionality of neural networks, researchers and
practitioners can effectively utilize these powerful
machine learning models for various applications. In
today's rapidly changing world, the significance of
accurate weather forecasts cannot be overstated. In the
context of neural networks, understanding their structure
and functionality is crucial for effectively utilizing them in
machine learning applications. Additionally, the
widespread applications of neural networks in the
control field, such as system identification and controller
design, highlight their versatility and potential for solving
complex problems. Overall, understanding the structure
and functionality of neural networks is essential for
harnessing their potential in machine learning
applications and solving a variety of complex problems.
In today's rapidly changing world, the significance of
accurate weather forecasts cannot be overstated.
Neural networks, with their ability to learn from data and
make predictions, have wide-ranging applications in
machine learning.

VI. Exprimental Design

a) Evaluation Criteria
The research community realizes that MMRE,

Pred(x) can be influenced by the presence of outliers,
therefore, we used the following performance metrics to
assess and compare the accuracy.

b) Magnitude of Relative Error
The error ratio between actual and predicted

effort for each project instance in the dataset is
computed using MRE. To calculate the fitness function,
first the MRE is calculated for every project i.

MRE= | 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
| (8)

c) Mean Magnitude of Relative Error
MMRE measure is used for assessing software

estimation technique performance. The values of MRE is
calculated for each software project instance. MMRE
computes the average over N number of project
instances in the data-set.

MMRE =1
𝑁𝑁
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁
𝑖𝑖=1 (9)

d) Percentage of Prediction
PRED(x) represents the percentage of MRE that

is less than or equal to the value x/100 among all
projects.

PRED(X)=100
𝑁𝑁
� 1 𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 𝑋𝑋

100
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� (10)

where A is the number of projects with MRE less than or
equal to X. N is the number of projects in test set.
Usually the ideal value of X is 25% in software
development effort estimation and compared with
various methods.

e) Lead Time Estimation
Lead time estimation is the process of

predicting the amount of time it will take to complete a
specific task, project, or deliver a product or service. It is
a critical aspect of project management and supply
chain management and is used in various industries,
including manufacturing, logistics, and software
development. Accurate lead time estimation helps
organizations plan and allocate resources effectively,
manage customer expectations, and avoid delays and
disruptions in their operations.

f) Leave-One-Out
In this method a project is selected from the

dataset as the target project. The ABE method is
applied to estimate the effort of the target project by
using all the remaining projects in dataset. Then the
target project combined with the dataset and another
project is selected as a target project. This procedure
repeated until all the projects in dataset are estimated.

Automated Lead Time Estimation for Anomaly Detection using a Machine Learning Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

5

© 2024 Global Journals

Table No. 1: Time Estimation Table

Algorithm Time Estimation
Neural Network 3.73
ABE algorithm 0.78

Table No. 2: Accuracy Table

Algorithm Accuracy
Neural Network 95.79
ABE algorithm 97.68

Table No. 3: Loss comparison Table

Algorithm Loss
Neural Network 4.21
ABE algorithm 2.32

Finally, the MRE and MMRE values are computed for
each project

g) Dataset Description
Software to detect network intrusions protects a

computer network from unauthorized users, including
perhaps insiders. The intrusion detector learning task is
to build a predictive model (i.e. a classifier) capable of
distinguishing between “bad'' connections, called
intrusions or attacks, and “good'' normal connections.

The 1998 DARPA Intrusion Detection Evaluation
Program was prepared and managed by MIT Lincoln
Labs. The objective was to survey and evaluate research
in intrusion detection. A standard set of data to be
audited, which includes a wide variety of intrusions
simulated in a military network environment, was
provided. The 1999 KDD intrusion detection contest
uses a version of this dataset.

Lincoln Labs set up an environment to acquire
nine weeks of raw TCP dump data for a local-area
network (LAN) simulating a typical U.S. Air Force LAN.
They operated the LAN as if it were a true Air Force
environment, but peppered it with multiple attacks.

The raw training data was about four gigabytes
of compressed binary TCP dump data from seven
weeks of network traffic. This was processed into about
five million connection records. Similarly, the two weeks
of test data yielded around two million connection
records.

A connection is a sequence of TCP packets
starting and ending at some well- defined times,
between which data flows to and from a source IP
address to a target IP address under some well-defined
protocol. Each connection is labelled as either normal,
or as an attack, with exactly one specific attack type.
Each connection record consists of about 100 bytes.
Attacks fall into four main categories:

• DOS: denial-of-service, e.g. sync flood;
• R2L: unauthorized access from a remote machine,

e.g. guessing password;
• U2R: unauthorized access to local super user (root)

privileges, e.g., various “buffer overflow'' attacks;
• Probing: surveillance and other probing, e.g., port

scanning.

It is important to note that the test data is not
from the same probability distribution as the training
data, and it includes specific attack types not in the
training data. This makes the task more realistic. Some
intrusion experts believe that most novel attacks are
variants of known attacks and the "signature" of known
attacks can be sufficient to catch novel variants. The
datasets contain a total of 24 training attack types, with
an additional 14 types in the test data only.

h) Numerical Results
In this paper, for training stage two clusters are

considered. When Applying the PSO and k-means
clustering to the intrusion detector learning dataset, the
best situation is with two clusters. When it is more than
two some clusters with one or two projects appeared
not perfect for estimation. On the other hand, splitting
projects in clusters size less than two decreases the
performance of NN training.

Fig. 1: Time Estimation of NN and ABE algorithm

Fig.2: Accuracy comparison of NN and ABE algorithm

Automated Lead Time Estimation for Anomaly Detection using a Machine Learning Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

6

© 2024 Global Journals

Results on all Data. Initially, the selected
features from PSO is 19 are grouped into five clusters by
k-Means clustering algorithm. Based on the number of
projects in a cluster either ABE or NN is identified
displayed the clusters formed from PSO and K-Means
clustering algorithm. The identified method for cluster.
Identifying a cluster for a project is done according to
the maximum degree of membership function. First
clusters are NN and second cluster are marked as ABE.

VII. Result

Finally, from the Fig-1 and Fig-2, by comparing
the Neural Network and Analogy Based Estimation, the
accuracy of NN: 95.79% and time taken for Neural
Network: 34.34 seconds. Accuracy of ABE: 97.68% and
time taken by Analogue Based Estimation: 2.66921
seconds.

The performance of ABE is better than NN, with
less time taken and improved accuracy.

VIII. Conclusion

This paper proposes a hybrid scheme for
clustering based on PSO and K-means algorithm. K-
means algorithm paves way to predetermine the number
of clusters by the end users which results in an improper
clustering. Hence PSO algorithm is integrated with K-
means algorithm to improve the better clustering result.
This result is more efficient when applied to neural
networks and ABE.

IX. Future Work

To perform the model compiling for the
minimum accuracy. Time taken to done for the pre-
processing the dataset is very low, when compared with
the other techniques. Our future work is to implement
other techniques for effort estimation for this method.

References Références Referencias

1. A. Sinha, P. Malo, and K. Deb, ‘‘A review on bilevel
optimization: From classical to evolutionary
approaches and applications,’’ IEEE Trans. Evol.
Comput., vol. 22, no. 2, pp. 276–295, Apr. 2018.

2. Ahmad Setiadi; Wahyutama Fitri Hidayat; Ahmad
Sinnun; AdeSetiawan; Muhammad Faisal, ”Analyse
the Datasets of Software Effort Estimation With
Particle Swarm Optimization”.

3. Alvin Jian Jia Tan; Chun Yong Chong; Aldeida Aleti,
“Closing the Loop for Software Remodularisation -
REARRANGE: An Effort Estimation Approach for
Software Clustering-based Remodularisation”, 12
July 2023.

4. B. Colson, P. Marcotte, and G. Savard, ‘‘An
overview of bilevel optimization,’’ Ann. Oper. Res.,
vol. 153, no. 1, pp. 235–256, Jun. 2007.

5. D. Vesset, C. Gopal, C. W. Olofson, D. Schubmehl,
S. Bond, and M. Fleming, ‘‘Worldwide big data and
analytics software forecast”, 2018.

6. D. Aussel and C. S. Lalitha, ‘‘Generalized Nash
equilibrium problems,’’ in Bilevel Programming and
MPEC. Singapore: Springer, 2018.

7. Elvan Kula; Eric Greuter; Arie van
Deursen; Georgios Gousios, ”Factors Affecting On-
Time Delivery in Large-Scale Agile Software
Development”. 2021.

8. F. Vandenbergh and A. Engelbrecht, ‘‘A study of
particle swarm optimization particle trajectories,’’ Inf.
Sci., vol. 176, no. 8, pp. 937–971, Apr. 2006.

9. G. M. Wang, Z. P. Wan, and X. J. Wan,
‘‘Bibliography on bilevel programming,’’ (in
Chinese), Adv. Math., vol. 36, no. 5, pp. 513–529,
2007.

11. H. Liu, L. Gao, and Q. Pan, ‘‘A hybrid particle swarm

optimization with estimation of distribution algorithm
for solving permutation flowshop scheduling
problem,’’ Expert Syst. Appl., vol. 38, no. 4, pp.
4348–4360, Apr-2011.

12. H. L. T. K. Nhung, V. Van Hai, R. Silhavy, Z.
Prokopova, and P. Silhavy, ‘‘Parametric software
effort estimation based on optimizing correction
factors and multiple linear regression,’’ 2022.

13. H. Mühlenbein and G. Paaß, ‘‘From recombination
of genes to the estimation of distributions I. Binary
parameters,’’ in Proc. 4th Int. Conf. Parallel Problem
Solving Nature, Berlin, Germany, Sep. 1996, pp.
178–187.

14. J. Agor and O. Y. Özaltın, ‘‘Feature selection for
classification models via bilevel optimization,’’
Comput. Oper. Res., vol. 106, pp. 156–168, Jun.
2019.

15. J. Wang, ‘‘A novel discrete particle swarm
optimization based on estimation of distribution,’’ in
Proc. ICIC LNAI, vol. 4682, 2007, pp. 791–802

16. Koszty´ an, Z. T., Jakab, R., Nov´ ak, G., &
Hegedus, ˝c “Survive IT! survival analysis of IT
project planning approaches. Operations Research
Perspectives”.

17. Mona Najafi Sarpiri; Mohammadreza Soltan
Aghaei; Taghi Javdani Gandomani,” Towards Better
Software Development Effort Estimation with
Analogy-based Approach and Nature-based
Algorithms”. 2021.

18. M. Iqbal and M. Montes de Oca, ‘‘An estimation of
distribution particle swarm optimization algorithm,’’
in Proc. ANTS, in Lecture Notes in Computer
Science, vol. 4150, 2006, pp. 72–83.

19. P. Phannachitta, “On an optimal analogy-based
software effort estimation”, Sep 2020.

20. P.-L. Poirion, S. Toubaline, C. D’Ambrosio, and L.
Liberti, ‘‘Algorithms and applications for a class of
bilevel MILPs,’’ Discrete Appl. Math., vol. 272, pp.
75–89, Jan. 2020.

21. R. V. Kulkarni and G. K. Venayagamoorthy, ‘‘An
estimation of distribution improved particle swarm
optimization algorithm,’’ in Proc. 3rd Int. Conf. Intell.
Sensors, Sensor Netw. Inf., Melbourne, VIC,
Australia, 2007, pp. 539–544.

Automated Lead Time Estimation for Anomaly Detection using a Machine Learning Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

7

© 2024 Global Journals

10. Gregor Molan; Gregor Dolinar; Jovan Bojkovski;
Radu Prodan; Andrea Borghesi, “Model for
Quantitative Estimation of Functionality Influence on
the Final Value of a Software Product” 2021.

22. Shivakumar Nagarajan; Balaji Narayanan, ”K-Means
Clustering algorithm to compute Software Effort
Esatimation”, October-2011.

23. T. Zhang and X. Li, ‘‘The backpropagation artificial
neural network based on elite particle swam
optimization algorithm for stochastic linear bilevel
programming problem,’’ Math. Problems Eng., vol.
2018, pp. 1–9, Oct. 2018.

24. Taghi Javdani Gandomani; Maedeh Dashti; Mina
Zaiei Nafchi,” Hybrid Genetic-Environmental
Adaptation Algorithm to Improve Parameters of
COCOMO for Software Cost Estimation, 14 March
2022.

25. U. Farooq, M. Ahmed, S. Hussain, F. Hussain, A.
Naseem, and K. Aslam, ‘‘Block chain-based
software process improvement (BBSPI): An
approach for SMEs to perform process
improvement,’’ 2022.

26. V. V. Hai, H. L. T. K. Nhung, Z. Prokopova, R.
Silhavy, and P. Silhavy, ‘‘A new approach to
calibrating functional complexity weight in software
development effort estimation,’’ Jan. 2022.

27. X. Deng, ‘‘Complexity issues in bilevel linear
programming,’’ in Multilevel Optimization:
Algorithms and Applications, A. Migdalas, P. M.
Pardalos, and P. Varbrand, Eds. Norwell, MA, USA:
Kluwer, 1998, pp. 149–164.

28. Y. Jiang, X. Li, C. Huang, and X. Wu, ‘‘Application of
particle swarm optimization based on CHKS
smoothing function for solving nonlinear bilevel
programming problem,’’ Appl. Math. Comput., vol.
219, no. 9, pp. 4332–4339, Jan. 2013.

Automated Lead Time Estimation for Anomaly Detection using a Machine Learning Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

8

© 2024 Global Journals

	Automated Lead Time Estimation for Anomaly Detection usinga Machine Learning Algorithm
	Author
	Keywords
	I. Introduction
	II. Related Works
	III. Proposed Methodology
	a) Particle Swam Optimization (PSO)
	b) K-Means Clustering Algorithm (KMC)

	IV. Analogy Based Method
	V. Neural Network
	VI. Exprimental Design
	a) Evaluation Criteria
	b) Magnitude of Relative Error
	c) Mean Magnitude of Relative Error
	d) Percentage of Prediction
	e) Lead Time Estimation
	f) Leave-One-Out
	g) Dataset Description
	h) Numerical Results

	VII. Result
	VIII. Conclusion
	IX. Future Work
	References Références Referencias

