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Abstract- The increasing complexity of modern business operations demands efficient and 
accurate lead time estimation to enhance decision-making processes. This study proposes a 
novel approach to automate lead time estimation using machine learning algorithms. Traditional 
lead time estimation methods often rely on manual calculations and historical averages, leading 
to inaccuracies and inefficiencies. In contrast, machine learning algorithms leverage historical 
data, contextual factors, and patterns to predict lead times dynamically. The automation of lead 
time estimation not only improves accuracy but also facilitates real-time decision-making. The 
system continuously learns from new data, adapting its predictions to changing business 
environments. A user-friendly interface is developed to allow easy input of relevant data and to 
visualize the lead time prediction.  
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Abstract- The increasing complexity of modern business 
operations demands efficient and accurate lead time 
estimation to enhance decision-making processes. This study 
proposes a novel approach to automate lead time estimation 
using machine learning algorithms. Traditional lead time 
estimation methods often rely on manual calculations and 
historical averages, leading to inaccuracies and inefficiencies. 
In contrast, machine learning algorithms leverage historical 
data, contextual factors, and patterns to predict lead times 
dynamically. The automation of lead time estimation not only 
improves accuracy but also facilitates real-time decision-
making. The system continuously learns from new data, 
adapting its predictions to changing business environments. A 
user-friendly interface is developed to allow easy input of 
relevant data and to visualize the lead time prediction. In this 
project design an automated time estimation is calculated for 
the usage of two

 

algorithms and to get the accuracy for the 
maximum amount of iterations to be fitted by the PSO 
algorithm and then use the K-means clustering for the 
grouping the classes. From the PSO algorithm get the best 
features and then apply the Neural Network and Analogy 
Based Estimation for encrypt the data and then apply model to 
get the accuracy and time estimation from initialization to the 
end of the prediction and compare the two model for the 
accuracy and time comparison and also get the best features.

 

Keywords:

 

particle swam optimization, k-means 
clustering algorithm, neural network, analogy-based 
estimation.

 
I.

 

Introduction

 
n the fast-paced world of software engineering, 
accurate estimation of lead time is a critical factor that 
can significantly impact project planning, resource 

allocation, and overall project success. Lead time refers 
to the time taken from the inception of a software 
development task to its completion, encompassing 
various stages such as design, coding, testing, and 
deployment. Traditional methods of lead time estimation 
often suffer from subjectivity, imprecision, and a lack of 
adaptability to changing project dynamics. However, the 
rise of data-driven approaches and machine learning 
techniques has opened new possibilities for automating 
and improving lead time estimation.

 
The dynamic field of software engineering 

encompasses the methodical design, development, 
testing, and maintenance of software systems. It 
involves using a methodical approach to software 
development, which includes defining requirements, 

coming up with solutions, writing code, and subjecting 
the finished result to rigorous testing. Together, software 
developers use a range of methodologies, including as 
Agile and DevOps, to continuously build and enhance 
software while reacting to shifting input and 
requirements. The methodology includes selecting 
appropriate programming languages and design 
patterns as well as managing version control, assuring 
security, and maintaining documentation. A combination 
of technical know-how, teamwork, project management, 
and a commitment to ethical considerations are required 
to produce reliable and efficient software solutions that 
address real-world problems the software industry 

The K-Means clustering algorithm is one such 
powerful technique that is gaining prominence in the 
software engineering domain. K-Means is an 
unsupervised machine learning approach that uses 
similarity to divide data into separate clusters. Its 
capacity to detect hidden patterns and structures in 
datasets makes it a great candidate for lead time 
estimating automation. K-Means can accurately forecast 
lead times for new activities by exploiting prior project 
data to find intrinsic correlations between development 
tasks and their related lead times. 

This paper presents an in-depth exploration of 
the K-Means clustering algorithm and its application to 
automate lead time estimation in software engineering 
projects. We will delve into the underlying principles of 
K-Means, its strengths, limitations, and how it can be 
fine-tuned to suit the unique characteristics of software 
development processes. Furthermore, we will discuss 
the challenges associated with implementing K-Means 
for lead time estimation and propose strategies to 
overcome them. 

The objective of this research is to equip 
software development teams, project managers, and 
stakeholders with a data-driven, efficient, and reliable 
lead time estimation tool that can facilitate better 
decision-making, resource allocation, and project 
planning. By harnessing the power of K-Means 
clustering, we aim to enhance the accuracy and 
efficiency of lead time estimation, ultimately leading to 
improved project management and successful software 
development endeavours. 

Software lead time estimation, a critical aspect 
of project management, employs various techniques to 
predict the time needed for software development 
projects. Among these techniques, analogy-based 
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methods, neural networks, and Particle Swarm 
Optimization (PSO) play distinctive roles. 

Analogy-based methods leverage historical 
data from similar projects to estimate lead times. By 
comparing known project outcomes and characteristics 
to those of the current project, these methods 
extrapolate estimates. While intuitive and easily 
accessible, their accuracy relies heavily on the quality 
and relevance of historical data. 

Neural networks, a machine learning approach, 
demonstrate their strength in lead time estimation by 
learning complex patterns from historical data. These 
interconnected layers of nodes process input 
parameters to generate accurate predictions. Their 
ability to capture nonlinear relationships and adapt to 
diverse project variables makes them robust tools, 
particularly when adequate data is available for training. 
Particle Swarm Optimization, inspired by the social 
behaviour of birds flocking or fish schooling, employs 
optimization to estimate lead times. It simulates a 
population of particles traversing a solution space to 
find optimal estimates. Through iterative refinement, 
PSO converges towards accurate predictions by 
adjusting particle positions based on local and global 
information. 

II. Related Works 

In 2008, Kim1 et al. published the first study on 
JIT-SDP, where they described a set of input features for 
JIT-SDP models. Other research looked into input 
features that could be useful for JIT-SDP, like the day of 
the week or the time of day a software change was 
produced, and input features to make it possible to 
identify software changes that are difficult to fix. 
According to Shihab2et al., the amount of lines of code 
contributed, the proportion of bug fixes to total file 
changes, the number of bug reports associated with a 
commit, and the developer experience are all reliable 
indications of software modifications that cause defects. 
Kamei3 et al. carried out a substantial empirical 
investigation to look into a variety of factors extracted 
from commits and bug reports as input features for JIT-
SDP models. They considered 14 features grouped into 
five dimensions of diffusion, size, purpose, history and 
experience, and showed such features to be good 
indicators of defect-inducing software changes for 
yielding high predictive performance on both open 
source and commercial projects. Many subsequent 
studies have adopted these features. 

In 2022, Elvan Kula4; Eric Greuter5; Arie van 
Deursen6; Georgios Gousios7 wrote late delivery of 
software projects and cost overruns have been common 
problems in the software industry for decades. Both 
problems are manifestations of deficiencies in effort 
estimation during project planning. With software 
projects being complex socio-technical systems, a large 

pool of factors can affect effort estimation and on-time 
delivery. To identify the most relevant factors and their 
interactions affecting schedule deviations in large-scale 
agile software development, we conducted a mixed-
methods case study at ING: two rounds of surveys 
revealed a multitude of organizational, people, process, 
project and technical factors which were then quantified 
and statistically modelled using software repository data 
from 185 teams. We find that factors such as 
requirements refinement, task dependencies, organi-
zational alignment and organizational politics are 
perceived to have the greatest impact on on-time 
delivery, whereas proxy measures such as project size, 
number of dependencies, historical delivery perfor-
mance and team familiarity can help explain a large 
degree of schedule deviations. We also discover 
hierarchical interactions among factors: organizational 
factors are perceived to interact with people factors, 
which in turn impact technical factors. We compose our 
findings in the form of a conceptual framework 
representing influential factors and their relationships to 
on-time delivery. Our results can help practitioners 
identify and manage delay risks in agile settings, can 
inform the design of automated tools to predict 
schedule overruns and can contribute towards the 
development of a relational theory of software project 
management. 

In 2021, Lei Zou8, Zidong Wang9, Qing-Long 
Han10, Donghua Zhou11 wrote the full information 
estimation (FIE) problem is addressed for discrete time-
varying systems (TVSs) subject to the effects of a 
Round-Robin (RR) protocol. A shared communication 
network is adopted for data transmissions between 
sensor nodes and the state estimator. In order to avoid 
data collisions in signal transmission, only one sensor 
node could have access to the network and 
communicate with the state estimator per time instant. 
The so-called RR protocol, which is also known as the 
token ring protocol, is employed to orchestrate the 
access sequence of sensor nodes, under which the 
chosen sensor node communicating with the state 
estimator could be modelled by a periodic function. A 
novel recursive FIE scheme is developed by defining a 
modified cost function and using a so-called “backward-
propagation-constraints.” The modified cost function 
represents a special global estimation performance. The 
solution of the proposed FIE scheme is achieved by 
solving a minimization problem. Then, the recursive 
manner of such a solution is studied for the purpose of 
online applications. For the purpose of ensuring the 
estimation performance, sufficient conditions are 
obtained to derive the upper bound of the norm of the 
state estimation error (SEE). Finally, two illustrative 
examples are proposed to demonstrate the 
effectiveness of the developed estimation algorithm. 
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III. Proposed Methodology 

a)  Particle Swam Optimization  (PSO)  
PSO was developed by Eberhart4 and Kennedy5 

in 1995. It is swarm intelligence meta-Heuristic inspired 
by the group behaviour of birds flocks or fish schools. It 
is simple, fast and easy to understand. Similarly, to 
Genetic Algorithm (GAs), it is a population-based 
method, that is, it represents the state of the algorithm 
by a population, which is iteratively modified until a 
termination criterion is satisfied. In PSO, the potential 
solution called particle which searches the whole space 
by previous best position (pbest) and best position of 
the swarm (gbest). The fitness function can be 
evaluated by the following equation. 

𝑓𝑓𝑛𝑛 =∑ ∑ ||𝑛𝑛
𝑖𝑖=1

𝑘𝑘
𝑗𝑗=1 𝑥𝑥𝑖𝑖

𝑗𝑗 -𝑐𝑐𝑗𝑗 || 2                       (1) 

Initially, position and velocity of the particles are 
expressed as follows 

𝑋𝑋𝑖𝑖=LB+rand (UB-LB)                             (2) 

𝑉𝑉𝑖𝑖=
𝐿𝐿𝐿𝐿+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿)

∆𝑡𝑡
                                   (3) 

The velocity and positions values are updated 
during each iteration. Velocity update equation is given 
below 

𝑉𝑉𝑖𝑖+1 =𝑤𝑤𝑉𝑉𝑖𝑖 +c1 rand
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖  −𝑋𝑋𝑖𝑖

∆𝑡𝑡
+c2  rand

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 −𝑋𝑋 𝑖𝑖
∆𝑡𝑡

       (4) 

Where, Xi is current position, Vi+1 is the velocity 
of next iteration, Vi is current velocity, ∆t is the time 
interval, rand is a uniformly distributed random variable 
that can take any value between 0 and 1. Pbesti is the 
location of the particle that experiences the best fitness, 
gbesti is the location of the particle that experiences a 
global best fitness value, c1 and c2 are two positive 
acceleration constants responsible for degree of 
information, w represents inertia weight which is usually 
linearly decreasing during the iterations.  

Updating position is the last step in each 
iteration, it is updated using velocity vector. Position 
update equation is given below 

𝑋𝑋𝑖𝑖+1
 = 𝑋𝑋𝑖𝑖 +𝑉𝑉𝑖𝑖+1∆𝑡𝑡                             (5) 

Where, 𝑋𝑋𝑖𝑖+1
 is the next position, 𝑋𝑋𝑖𝑖

 is the current 
position, 𝑉𝑉𝑖𝑖+1

 is the next velocity, ∆t is the time interval.  

Update the best fitness values at each generation, 
based on below equation 

𝑃𝑃𝑖𝑖(t+1)=� 𝑃𝑃𝑖𝑖(𝑡𝑡)
𝑋𝑋𝑖𝑖(𝑡𝑡 + 1)

� 𝑓𝑓(𝑋𝑋𝑖𝑖(t+1))≤ 𝑓𝑓(𝑋𝑋𝑖𝑖
 
(t))

 

  𝑓𝑓 (𝑋𝑋𝑖𝑖(t+1))> 𝑓𝑓(𝑋𝑋𝑖𝑖
 
(t))

 
(6)

 

Where, f denotes the fitness function Eq. (1), Pi
 

(t)
 
stands for best fitness value and the coordination 

where the values are computed, Xi(t) is the current 
position, t denotes the generation step.  

Update the velocity, position and fitness 
computations are repeated until the termination criteria 
is met. 

b) K-Means Clustering Algorithm(KMC) 
This K-means clustering is the best 

unsupervised learning algorithm. Using a certain 
number of clusters, it is simple and easy to classify a 
given data set. Initially, select the k centroids, then 
calculate the distance between each cluster centre and 
each object. Repeat the steps until no more changes 
are done. The objective function of k-means clustering is 
given as 

 𝑓𝑓𝑛𝑛 =  ∑ ∑ ||𝑛𝑛
𝑖𝑖=1

𝑘𝑘
𝑗𝑗=1 𝑥𝑥𝑖𝑖

𝑗𝑗 -𝑐𝑐𝑗𝑗 ||2                          (7) 

Where, n is the number of data points, k is the 
number of clusters, ||𝑥𝑥𝑖𝑖

𝑗𝑗 -𝑐𝑐𝑗𝑗 ||2 is the distance between 
each cluster centre and each object. The steps of k-
means clustering is shown below  
1. Place K points into the space which denotes initial 

group centroids.  
2. The group closer to the centroid is assigned with a 

cluster. 
3. When all the objects are assigned to the groups, the 

positions of K centroids are reallocated.  
4. Repeat Steps 2 and 3 until the centroids no longer 

move. 

In this paper, combination of PSO and k-means 
clustering is used. PSO works efficiently for global 
search but its local search ability is poor. K-means 
clustering which produces local optimal solution due to 
initial partition but it does not work well for global search 
ability. Hence the proposed method overcome the 
limitation of K-means clustering, PSO offers global 
search methodology. Initially PSO is performed to find 
the location of cluster centroids. These locations of 
cluster centroids are given as input for the k-means 
clustering and provide optimal clustering solution. The 
steps for the proposed method is given below  

Step 1: Randomly generate particles and particles are 
grouped which creates population.  

Step 2:
 
Position and velocity of particles are initialized 

using Equation (2) and (3). 
 

Step 3:
 
Compute the fitness value using Eq. (6) 

 

Step 4:
 
Position, velocity, gbest and pbest values of the 

particles are updated using Equation (4) and (5). 
 

Step 5:

 

Repeat step (3) and (4) until one of following 
termination conditions is satisfied. 5(a). The maximum 
number of iterations is exceeded. 5(b). The average 
change in centroid vectors is less than a predefined 
value. 
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Step 6: Input the number of clusters which is to be 
generated. 

Step 7: Compute the cluster centroids using the best 
positions of k of PSO. 

 Step 8: Compute the distance between the particles 
and centroids.  
Step 9: Cluster centroids of k-means clustering can be 
recomputed using Eq. (7).  
Step 10: Repeat the steps (8) and (9) until the centroids 
no longer move. 

The combination of PSO and k-means provides 
better clustering result compared to result of each 
individual technique. PSO is used to find the optimal 
solution, the output of PSO is given as input to the k-
means to obtain the clustering result. Check if the 
number of projects in clusters is greater than or equal to 
15. For analogy method the number of projects present 
in a cluster should be less than fifteen. There are two 
reasons for choosing based on 15 projects. First, each 
project in the dataset usually has at least 10 features to 
train the neural network properly. Second, when using 
combination of PSO and K-means clustering the 
minimum requirement is 15. Anything less than 15 will 
become useless for training Neural Network. Testing 
stage consists of following steps. The Euclidean 
distance between a particular project and cluster centre 
is measured. The it is done for all the projects, the one 
with minimum is chosen. If it is marked in the training 
stage as ABE, then ABE is used to estimate the lead 

time. Otherwise NN is applied to predict the lead time. 
Repeat the steps until all test projects are applied to the 
hybrid model. For each test project the MRE is 
calculated and the final result is computed based on 
MMRE and PRED. 

IV. Analogy based Method 

The most common example of analogy-based 
project estimation is case-based reasoning, where 
identical projects from the lesson learned are identified 
and used for estimation. They can be used in 
combination with collective expert opinion and formal 
models, Software lead time estimation by using an 
analogy-based tech commonly involves the following 
steps.  
1. Measuring the values of identified metrics of the 

software project for which estimation is being 
performed (target project). 

2. Finding a similar project from the repository.  
3. Using the estimated effort values of the selected 

projects to use as an initial estimate for the target 
project.  

4. Comparison of metric’s value for the target project 
and selected project.  

5. Adjustment of lead time estimates in view of the 
comparison performed in the previous step. 

V. Neural Network 

Neural networks are a type of machine learning 
model inspired by the structure and function of the 

COLLECT AND TEST 
DATASET

 

SELECT PROJECT
 

FIND THE CLUSTER 
PROJECTS BELONGS TO

 

TEST WITH NEURAL 
NETWORK

 

TEST WITH ANALOGY 
BASED ESTIMATION 

 

FINAL RESULTS OF LEAD 
TIME ESTIMATION
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human brain. They are mathematical models composed 
of interconnected nodes, or neurons, that process 
information through a series of weighted connections. 
These connections allow neural networks to learn 
patterns and make predictions based on the input data.  
The artificial neural network is a powerful tool in the field 
of machine learning, as it can adapt and learn from data 
in a way that resembles human brain processing (Singh 
& Shrimali, 2019). It is important to understand the 
structure and functionality of neural networks in order to 
effectively utilize them for various applications in 
machine learning. Additionally, neural networks have 
layers, including an input layer, hidden layer(s), and an 
output layer. These layers help to organize and process 
the data, allowing for more accurate predictions or 
estimations. Furthermore, neural networks have been 
successfully applied in various fields including image 
recognition, natural language processing, and financial 
forecasting. By understanding the structure and 
functionality of neural networks, researchers and 
practitioners can effectively utilize these powerful 
machine learning models for various applications. In 
today's rapidly changing world, the significance of 
accurate weather forecasts cannot be overstated. In the 
context of neural networks, understanding their structure 
and functionality is crucial for effectively utilizing them in 
machine learning applications. Additionally, the 
widespread applications of neural networks in the 
control field, such as system identification and controller 
design, highlight their versatility and potential for solving 
complex problems. Overall, understanding the structure 
and functionality of neural networks is essential for 
harnessing their potential in machine learning 
applications and solving a variety of complex problems. 
In today's rapidly changing world, the significance of 
accurate weather forecasts cannot be overstated. 
Neural networks, with their ability to learn from data and 
make predictions, have wide-ranging applications in 
machine learning. 

VI. Exprimental Design 

a) Evaluation Criteria 
The research community realizes that MMRE, 

Pred(x) can be influenced by the presence of outliers, 
therefore, we used the following performance metrics to 
assess and compare the accuracy. 

b) Magnitude of Relative Error 
The error ratio between actual and predicted 

effort for each project instance in the dataset is 
computed using MRE. To calculate the fitness function, 
first the MRE is calculated for every project i. 

 

MRE= | 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
| (8) 

 

c) Mean Magnitude of Relative Error 
MMRE measure is used for assessing software 

estimation technique performance. The values of MRE is 
calculated for each software project instance. MMRE 
computes the average over N number of project 
instances in the data-set.  

MMRE =1
𝑁𝑁
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁
𝑖𝑖=1                (9) 

d) Percentage of Prediction 
PRED(x) represents the percentage of MRE that 

is less than or equal to the value x/100 among all 
projects. 

PRED(X)=100
𝑁𝑁
� 1    𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 𝑋𝑋

100
0              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�  (10) 

where A is the number of projects with MRE less than or 
equal to X. N is the number of projects in test set. 
Usually the ideal value of X is 25% in software 
development effort estimation and compared with 
various methods. 

  
  
  

  

  
  
  

  

  
  
  

  

e) Lead Time Estimation 
Lead time estimation is the process of 

predicting the amount of time it will take to complete a 
specific task, project, or deliver a product or service. It is 
a critical aspect of project management and supply 
chain management and is used in various industries, 
including manufacturing, logistics, and software 
development. Accurate lead time estimation helps 
organizations plan and allocate resources effectively, 
manage customer expectations, and avoid delays and 
disruptions in their operations. 

f) Leave-One-Out 
In this method a project is selected from the 

dataset as the target project. The ABE method is 
applied to estimate the effort of the target project by 
using all the remaining projects in dataset. Then the 
target project combined with the dataset and another 
project is selected as a target project. This procedure 
repeated until all the projects in dataset are estimated. 
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Table No. 1: Time Estimation Table

Algorithm Time Estimation
Neural Network 3.73
ABE algorithm 0.78

Table No. 2: Accuracy Table

Algorithm Accuracy
Neural Network 95.79
ABE algorithm 97.68

Table No. 3: Loss comparison Table

Algorithm Loss
Neural Network 4.21
ABE algorithm 2.32



Finally, the MRE and MMRE values are computed for 
each project 

g) Dataset Description 
Software to detect network intrusions protects a 

computer network from unauthorized users, including 
perhaps insiders.  The intrusion detector learning task is 
to build a predictive model (i.e. a classifier) capable of 
distinguishing between “bad'' connections, called 
intrusions or attacks, and “good'' normal connections. 

The 1998 DARPA Intrusion Detection Evaluation 
Program was prepared and managed by MIT Lincoln 
Labs. The objective was to survey and evaluate research 
in intrusion detection.  A standard set of data to be 
audited, which includes a wide variety of intrusions 
simulated in a military network environment, was 
provided.  The 1999 KDD intrusion detection contest 
uses a version of this dataset. 

Lincoln Labs set up an environment to acquire 
nine weeks of raw TCP dump data for a local-area 
network (LAN) simulating a typical U.S. Air Force LAN.  
They operated the LAN as if it were a true Air Force 
environment, but peppered it with multiple attacks. 

The raw training data was about four gigabytes 
of compressed binary TCP dump data from seven 
weeks of network traffic.  This was processed into about 
five million connection records.  Similarly, the two weeks 
of test data yielded around two million connection 
records. 

A connection is a sequence of TCP packets 
starting and ending at some well- defined times, 
between which data flows to and from a source IP 
address to a target IP address under some well-defined 
protocol.  Each connection is labelled as either normal, 
or as an attack, with exactly one specific attack type.  
Each connection record consists of about 100 bytes. 
Attacks fall into four main categories: 

• DOS: denial-of-service, e.g. sync flood; 
• R2L: unauthorized access from a remote machine, 

e.g. guessing password; 
• U2R:  unauthorized access to local super user (root) 

privileges, e.g., various “buffer overflow'' attacks; 
• Probing: surveillance and other probing, e.g., port 

scanning. 

It is important to note that the test data is not 
from the same probability distribution as the training 
data, and it includes specific attack types not in the 
training data.  This makes the task more realistic.  Some 
intrusion experts believe that most novel attacks are 
variants of known attacks and the "signature" of known 
attacks can be sufficient to catch novel variants.  The 
datasets contain a total of 24 training attack types, with 
an additional 14 types in the test data only. 

 

 
 

h) Numerical Results 
In this paper, for training stage two clusters are 

considered. When Applying the PSO and k-means 
clustering to the intrusion detector learning dataset, the 
best situation is with two clusters. When it is more than 
two some clusters with one or two projects appeared 
not perfect for estimation. On the other hand, splitting 
projects in clusters size less than two decreases the 
performance of NN training. 

 

Fig. 1: Time Estimation of NN and ABE algorithm 

 

 

Fig.2: Accuracy comparison of NN and ABE algorithm  
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Results on all Data. Initially, the selected 
features from PSO is 19 are grouped into five clusters by 
k-Means clustering algorithm. Based on the number of 
projects in a cluster either ABE or NN is identified 
displayed the clusters formed from PSO and K-Means 
clustering algorithm. The identified method for cluster. 
Identifying a cluster for a project is done according to 
the maximum degree of membership function. First 
clusters are NN and second cluster are marked as ABE.



VII. Result 

Finally, from the Fig-1 and Fig-2, by comparing 
the Neural Network and Analogy Based Estimation, the 
accuracy of NN: 95.79% and time taken for Neural 
Network: 34.34 seconds. Accuracy of ABE: 97.68% and 
time taken by Analogue Based Estimation: 2.66921 
seconds.  

The performance of ABE is better than NN, with 
less time taken and improved accuracy. 

VIII. Conclusion 

This paper proposes a hybrid scheme for 
clustering based on PSO and K-means algorithm. K-
means algorithm paves way to predetermine the number 
of clusters by the end users which results in an improper 
clustering. Hence PSO algorithm is integrated with K-
means algorithm to improve the better clustering result. 
This result is more efficient when applied to neural 
networks and ABE. 

IX. Future Work 

To perform the model compiling for the 
minimum accuracy. Time taken to done for the pre-
processing the dataset is very low, when compared with 
the other techniques.  Our future work is to implement 
other techniques for effort estimation for this method. 
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