
© 2024.

Aleksey Tonkikh & Ekaterina Stroeva. This research/review article is distributed under the terms of the Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and reference
this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creative

commons.

org/

licenses/by-nc-nd/4.0/.

Global Journal of Computer Science and Technology: D
Neural & Artificial Intelligence
Volume 24 Issue 1 Version 1.0 Year 2024
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

 Moscow State University
Abstract- The article examines the problem of scalability of the algorithm for searching for a
trigger in images, which is based on the operating principle of the Deep Poly formal verification
algorithm. The existing implementation had a number of shortcomings. According to them, the
requirements for the optimized version of the algorithm were formulated, which were brought to
practical implementation. Achieved 4 times acceleration compared to the original
implementation.

Keywords: formal verification, machine learning, trigger injection attacks, backdoor attacks your.

GJCST-D Classification: LCC Code: QA76.87

OptimizingtheRunningTimeofaTriggerSearchAlgorithmbasedonthePrinciplesofFormalVerificationofArtificialNeuralNetworks

Strictly as per the compliance and regulations of:

Optimizing the Running Time of a Trigger Search Algorithm
based on the Principles of Formal Verification of Artificial
Neural Networks

By Aleksey Tonkikh & Ekaterina Stroeva

Aleksey Tonkikh α & Ekaterina Stroeva σ

Keywords: formal

verification,

machine

learning,

trigger

injection

attacks,

backdoor

attacks

your.

 I.

INTRODUCTION

 his

paper

discusses a trigger

search

algorithm

that

is

based

on

one

of

the

algorithms

for

the

formal

verification

of

neural

networks,

which

is

an

urgent

task,

since

many

technology

companies

are

faced

with

the

problem

of

attacks

using

trigger

overlays

on

images

when

training

neural

networks,

as

well

as

with

the

need

to

check

the

robustness

of

neural

networks,

which

can

be

done

mainly

using

formal

verification

algorithms.

In turn,

one

of

the

main

problems

of

formal

verification

algorithms

is

the

long

operating

time.

This

article

proposes

some

methods

to

reduce

the

running

time

of

the

algorithm

[1],

which

is

used

to

detect

the

presence

of a trigger

in

images

from

the

MNIST

dataset

[2].

Fig.1:

Example

of a trigger

and

its

location

 Basic

Definitions and

Notations:

𝑁𝑁

—neural

network;

𝐼𝐼— an

image

that

is

analyzed

in

terms

of

the

presence

of

a trigger;

𝑋𝑋

— set

of

images

𝐼𝐼,

which

is

checked

by

the

algorithm;

𝑛𝑛 — number of pixels in the image;

𝑥𝑥𝑖𝑖 — the value of the neuron before the one that is
currently being analyzed;
𝑥𝑥𝑗𝑗 — calculated current value of the neuron;

𝑥𝑥𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖 ,𝑢𝑢𝑖𝑖] — range of values for each neuron;
𝜙𝜙𝑝𝑝𝑝𝑝𝑝𝑝 = [ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝] ≤ 𝑗𝑗 ≤ [ℎ𝑝𝑝 + ℎ𝑠𝑠 ,𝑤𝑤𝑝𝑝 + 𝑤𝑤𝑠𝑠] ∧ 0 ≤ 𝑥𝑥[𝑗𝑗] ≤
1— preconditions for pixels that may contain trigger;

(𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠) — trigger parameters: number of channels,
height and width, respectively;
(ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝) — upper left coordinate of the trigger;

𝑡𝑡𝑠𝑠 — output value of the neural network for the image
with a trigger superimposed on it;

𝜃𝜃 — specified success probability value;
𝐾𝐾— the number of images in the sample checked for
the absence of a trigger, or the number of elements in
the set 𝑋𝑋.

A trigger is a rectangular sticker on an image
that has the same number of channels and changes the
classification (it is assumed that the trigger is the same
for all images of a certain set and is located in the same
place), for example, a3 × 3 square with pixels of
different colors in Fig.1.

Formal definition: for a neural network solving
the problem of classifying images of size (𝑐𝑐, ℎ,𝑤𝑤), the
trigger is some image 𝑆𝑆of size(𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠) such that
𝑐𝑐𝑠𝑠 = 𝑐𝑐, ℎ𝑠𝑠 ≤ ℎ,𝑤𝑤𝑠𝑠 ≤ 𝑤𝑤.

We can say that in the picture 𝐼𝐼 there is a trigger
of size(𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠), the upper left corner of which is
located at the place (ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝)(subject to the obvious
conditions ℎ𝑝𝑝 + ℎ𝑠𝑠 ≤ ℎ,𝑤𝑤𝑝𝑝 + 𝑤𝑤𝑠𝑠 ≤ 𝑤𝑤), if

𝐼𝐼𝑠𝑠[𝑐𝑐𝑖𝑖 ,ℎ𝑖𝑖 ,𝑤𝑤𝑖𝑖] = {

𝑆𝑆[𝑐𝑐𝑖𝑖 ,ℎ𝑖𝑖 − ℎ𝑝𝑝 ,𝑤𝑤𝑖𝑖 − 𝑤𝑤𝑝𝑝],if
(ℎ𝑝𝑝 ≤ ℎ𝑖𝑖 < ℎ𝑝𝑝 + ℎ𝑠𝑠) ∧
∧ (𝑤𝑤𝑝𝑝 ≤ 𝑤𝑤𝑖𝑖 < 𝑤𝑤𝑝𝑝 + 𝑤𝑤𝑠𝑠);
𝐼𝐼[𝑐𝑐𝑖𝑖 ,ℎ𝑖𝑖 ,𝑤𝑤𝑖𝑖],otherwise.

In other words, the trigger changes certain
pixels of the image to given ones.

Formal Statement of the Problem
There is no patch (trigger) 𝑆𝑆 such that when

applied to a certain set of images 𝐼𝐼 ∈ 𝑋𝑋, the neural

T

Optimizing the Running Time of a Trigger
Search Algorithm based on the Principles of

Formal Verification of Artificial Neural Networks

Author α σ : Moscow State University. e-mails: alexej-t@mail.ru,
katestroeva@gmail.com

Abstract- The article examines the problem of scalability of the
algorithm for searching for a trigger in images, which is based
on the operating principle of the Deep Poly formal verification
algorithm. The existing implementation had a number of
shortcomings. According to them, the requirements for the
optimized version of the algorithm were formulated, which
were brought to practical implementation. Achieved 4 times
acceleration compared to the original implementation.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

9

© 2024 Global Journals

network 𝑁𝑁changes the output class to the target class
𝑡𝑡𝑠𝑠, on images𝐼𝐼𝑠𝑠 with the trigger 𝑆𝑆:

/∃𝑆𝑆(𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠):∀𝐼𝐼𝑠𝑠 ∈ 𝑋𝑋:𝑁𝑁(𝐼𝐼𝑠𝑠) = 𝑡𝑡𝑠𝑠 .

Initial conditions:

Fig. 2: Flowchart of the algorithm for searching for a
trigger

1. Dataset: MNIST — 10,000 images in 1 × 28 ×
28 format; neural networks: fully connected and
convolutional with activation functions ReLU,
Sigmoid, Tanh with the number of parameters up to
100,000;

2. Trigger Parameters: 1 × 3 × 3, any pixel values in
the area;

3. Security Property: no trigger;
4. Verification Algorithm: DeepPoly.

II. ALGORITHM FOR SEARCHING FOR A

TRIGGER IN AN IMAGE

The algorithm [1] is based on the DeepPoly
verifier [3]. Its main goal is to search for a trigger that
consistently fools the classifier for a certain number of
images. The output value of the artificial neural network
changes to a predetermined value. The search is
performed over the entire image and for all possible
values of each trigger pixel (a 3 × 3 trigger is considered
and tested, although other values are possible). The
Wald Criterion [4] is also used to evaluate hypotheses
about the occurrence of a trigger.
Step by step, the entire algorithm works as follows:
1. Fix the position of the trigger. In the future, it is in

this fixed area that there will bechecking for the
presence of a trigger;

2. We go through the set of images and build
variations of images:

a) Calculate for an artificial neural network and a
given image a set of constraints. Constraints
are calculated in the body of the attack
Condition function;

b) We pass these restrictions to the SAT solver,
and look at the answer: if the formula is
degenerate, then there is no trigger for the

image, therefore, the neural network is resistant
to triggers;

c) Otherwise we add these restrictions to the
previous ones;

3. If the SAT solver finds a counterexample, then,
consequently, there is a trigger. We find it by
gradually parsing the solution to a Boolean function,
which is performed in the opTrigger function;

4. If the SAT solver confirmed that the set of
constraints does not have a solution, then the neural
network works correctly;

5. If the SAT solver could not confirm the degeneracy
of the constraints, and a trigger was not found, then
more research needs to be done.

The relationships between the Attack Condition,
opTrigger functions and all of the listed methods are
presented in the block diagram in Fig. 2.

a) Description of how the Verify Pr Function Works
The algorithm is represented by the function

verify Pr, which takes as input data the neural network
𝑁𝑁, the number of pictures 𝐾𝐾 in the sample being tested,
all trigger indicators (𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠), 𝑡𝑡𝑠𝑠probabilistic
parameters 𝛼𝛼,𝛽𝛽, 𝛿𝛿 of Wald criterion (SPRT) [4] and
provides information about the presence or absence of
a trigger with a given probability (Fig. 3).

Fig. 3: Pseudocode for the verify Prfunction [1]

[lines 1-2] Two variables are introduced: 𝑛𝑛— the number
of calls to the verify X function, 𝑧𝑧— the number of SAFE
responses returned by the verify X function.

[line 3] Set the probabilities 𝑝𝑝0,𝑝𝑝1for using SPRT.
[line 4] A loop is started that runs until the SPRT
conditions are met, as soon as the test monitors the
fulfillment of one of the conditions, the result is given
which hypothesis should be accepted [lines 12-15].

[line 5] A counter is started for the number of calls to the
verify X function.

Optimizing the Running Time of a Trigger Search Algorithm based on the Principles of Formal Verification
of Artificial Neural Networks

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

10

© 2024 Global Journals

[line 6] Selecting 𝐾𝐾 images randomly and composing
them into a verifiable set 𝑋𝑋, which is fed to the input of
the verifyX function.
[lines 7-11] Application of the verifyX function, which will
be described in the following pseudocode (Fig. 4). The
SAFE output means that you need to increase the 𝑧𝑧
variable by 1 and go to a new iteration of SPRT, the
UNSAFE output checks that the flip-flop does not satisfy
all the specified statistical parameters and moves on to
SPRT.

b) Description of how the Verify X Function Works
The verify X function takes as input the neural

network 𝑁𝑁, the tested set of images 𝑋𝑋, the dimensions
(𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠) and position �ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝� of the trigger, the target
label for the trigger 𝑡𝑡𝑠𝑠.

Fig. 4: Pseudo code for the verify X function [1]

At the output, the verify X function produces the
response SAFE if there is no trigger in the selected set 𝑋𝑋
or UNSAFE if there is a trigger (Fig. 2).

[line 1] The has Unknown variable is created, which is
responsible for the case of uncertainty (it is impossible
to get an answer about the presence or absence of a
trigger), by default its value is set to False.

[line 2] The cycle is started to cycle through all possible
trigger locations on the image being checked.

[line 3] The neural network is specified by a set of
conjunctions 𝜙𝜙, that is, in a form accessible to the SAT
solver. During initialization, a set of initial constraints
𝜙𝜙𝑝𝑝𝑝𝑝𝑝𝑝 =∧𝑗𝑗∈𝑃𝑃(𝑤𝑤𝑝𝑝 ,ℎ𝑝𝑝) 𝑙𝑙𝑤𝑤𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑢𝑢𝑝𝑝𝑗𝑗 for the value ofpixels 𝑥𝑥𝑗𝑗
located at positions 𝑗𝑗 ∈ 𝑃𝑃(𝑤𝑤𝑝𝑝 , ℎ𝑝𝑝) in which thelocation is
assumed at this step is entered into this variable trigger.
Here𝑙𝑙𝑤𝑤𝑗𝑗and 𝑢𝑢𝑝𝑝𝑗𝑗are normalized boundaries for the
trigger value, lying in the interval [0; 1].
[line 4] For each image 𝐼𝐼 ∈ 𝑋𝑋, a cycle is started to check
each image for the presence of a trigger.

[line 5] The main function for checking the presence of a
trigger attack Condition uses the DeepPoly formal
verification algorithm for neural networks, which checks
the property “there is a trigger on the image”, returns an
image represented in the form of conjunctions 𝜙𝜙𝐼𝐼 , and a

SAT response if the property is satisfied (trigger found),
UNSAT - property not satisfied (trigger not found).

[lines 6-10] If the attack Condition function returned
UNSAT in the previous step, then the neural network is
not executable, the variable 𝜙𝜙 is assigned the value
False, exiting the loop. If a trigger is found, then its
representation 𝜙𝜙𝐼𝐼 is added to the neural network
function.

[lines 11-15] The resulting representation of the neural
network 𝜙𝜙 is fed into the SAT solver, and if the output is
SAT or UNKNOWN, then the opTrigger function is run.

i. The function opTigger
First checks whether the resulting rectangle 𝑆𝑆 of

size (𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠) at position (ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝)is a trigger that
successfully attacks every image 𝐼𝐼 in the test set 𝑋𝑋.
Because If the accumulated error of abstract
interpretation resulting from the application of the
DeepPoly algorithm is too large, the resulting model
may be a false trigger. If it is a real trigger, then it returns
model 𝑆𝑆 and the output is UNSAFE.

The opTrigger function creates a trigger based
on the available data, using an approach based on
optimizing the loss function:

𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠(𝑁𝑁, 𝐼𝐼,𝑆𝑆, (ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝), 𝑡𝑡𝑠𝑠) = { 0, 𝑖𝑖𝑖𝑖𝑛𝑛𝑠𝑠 > 𝑛𝑛0;
𝑛𝑛0 − 𝑛𝑛𝑠𝑠 − 𝜖𝜖, otherwise.

𝑛𝑛𝑠𝑠 = 𝑁𝑁(𝐼𝐼𝑠𝑠)[𝑡𝑡𝑠𝑠] — outputfor target label 𝑡𝑡𝑠𝑠; 𝑛𝑛0 =
𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗≠𝑡𝑡𝑠𝑠𝑁𝑁(𝐼𝐼𝑠𝑠)[𝑗𝑗] — next after the largest value of the
output vector; 𝜖𝜖 is a small constant, about 10−9.

The loss function returns 0 if the attack on 𝐼𝐼 by
the trigger is successful. Otherwise, it returns a
quantitative measure of how far the simulated attack is
from being successful.

For the entire tested set 𝑋𝑋 we obtain a joint loss
function

𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠(𝑁𝑁,𝑋𝑋,𝑆𝑆, (ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝), 𝑡𝑡𝑠𝑠) = ∑
𝐼𝐼∈𝑋𝑋
𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠(𝑁𝑁, 𝐼𝐼,𝑆𝑆, (ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝), 𝑡𝑡𝑠𝑠)

An optimization problem is then solved to find
an attack that successfully changes the classification of
all images in 𝑋𝑋:𝑚𝑚𝑝𝑝𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠(𝑁𝑁,𝑋𝑋, 𝑆𝑆, (ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝), 𝑡𝑡𝑠𝑠).

Optimizing the Running Time of a Trigger Search Algorithm based on the Principles of Formal Verification
of Artificial Neural Networks

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

11

© 2024 Global Journals

ii. The Attack Condition Function

 Fig. 5: Pseudocode for the Attack Condition
function

there is a trigger or not a trigger (Fig. 5). Inserts
restrictions on the trigger in the form of conjunctions and
adds 𝜙𝜙 to the network structure.

The main idea of checking for a trigger: the area
of pixels in which the trigger will be placed is selected,
each such pixel is assigned a symbolic value included in
the interval [0; 1] [lines 1-8]. Next, using the
DeepPolyReLU function, we track the moment at which
the checked pixel value from the segment [0; 1] will
change the output vector of values, that is, the
classification will change, we obtain the pixel value at
which the trigger will be located on this pixel [lines 9-21].

If for all values of the checked pixel from the
segment [0; 1]there is no change in the value of the
target label (the output segment for the target label at all
points is greater than the output segments for all other
values) [line 25], then there will be no trigger, we return
UNSAT [line 26], if it is not clear whether the target label
has changed or not (the output segment for the target
label intersects with some output segment for some of
the other values), then the situation requires moredeep
analysis, UNKNOWN is returned [lines 29 and 37]. If the
output label has definitely changed, then the trigger is
found, SAT is returned [line 35].

The DeepPoly algorithm [3], like all formal
verification algorithms [5], checks properties (Fig. 6). In
the context of the verifyX function, the "no trigger"
property is checked.

Fig. 6: General scheme of operation of algorithms for
formal verification of neural networks

c) Deep Poly ReLU function
Analyzes approximate values for the output of

the ReLU activation function (Fig. 7).

Fig. 7: Pseudo code for the Deep Poly ReLU function

d) Basic Moments

• Linear constraints on each neuron are represented
as a linear combination of only input data 𝑥𝑥1,𝑥𝑥2(and
not through the constraints of previous neurons),
then the constraints for each neuron at each step
will be better, the segment will expand less.

• If the ReLU input receives a segment with a half-
living ends, then it turns into itself, without changes.
If the segment contains a point zero, then as
constraints we use 0 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝜆𝜆𝑥𝑥𝑖𝑖 + 𝜇𝜇 (the equation of

Takes all parameters as input and outputs the result

Optimizing the Running Time of a Trigger Search Algorithm based on the Principles of Formal Verification
of Artificial Neural Networks

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

12

© 2024 Global Journals

the straight line defining the upper boundary of the
triangle passing through the points (𝑙𝑙𝑖𝑖 ; 0), (𝑢𝑢𝑖𝑖 ;𝑢𝑢𝑖𝑖),
𝑙𝑙𝑖𝑖and 𝑢𝑢𝑖𝑖 — boundaries of the interval in the previous
step). If the entire segment is negative, then it
simply goes to zero.

• The main difference from other algorithms is exactly
one lower constraint. This makes it possible to
narrow the boundaries of the intervals and facilitate
computing power (Fig. 8). It is also argued that
approximation by such triangles is better than
zonotopes — they are easier to calculate, and also
often have a smaller area. With a similar formulation
of the problem, the zonotope in this case will be a
parallelogram, the lower side of which contains the
point (0; 0).

Fig. 8: Approximation of the ReLU function in the
DeepPoly algorithm [3]

The AttackCondition function takes all
parameters as input and outputs the result — there is a
trigger or there is no trigger. Inserts restrictions on the
trigger in the form of conjunctions and adds 𝜙𝜙 to the
network structure.

These results are then used in the VerifyPr
function, which gives a probabilistic assessment of the
presence of a trigger.

e) The Affine Compute Function
Takes as input values from the previous layer,

performs standard affine transformations — multiplying
by weights and adding a bias vector, and at the output
produces an interval within which all possible values
supplied to the input of the ReLU function lie (Fig. 9).

Fig. 9: Pseudocode for the AffineCompute function

f) SPRT (Sequential Probability Ratio Test) or Wald

Criterion

Designations:

𝜃𝜃 is the probability of a trigger appearing,

common to all K pictures: for a given neural network 𝑁𝑁,

trigger 𝑆𝑆, target label 𝑡𝑡𝑠𝑠, it is postulated that 𝑆𝑆 has a

probability of success 𝜃𝜃 if and only if there is a position
(ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝)such that the probability of occurrence
𝐿𝐿(𝑁𝑁(𝐼𝐼𝑠𝑠)) = 𝑚𝑚𝑝𝑝𝑎𝑎𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝑦𝑦𝑙𝑙𝑢𝑢𝑡𝑡𝑝𝑝𝑢𝑢𝑡𝑡) = 𝑡𝑡𝑠𝑠 for any 𝐼𝐼 in the
chosen test set is 𝜃𝜃.

No trigger:

∀𝐼𝐼 ∈ 𝑋𝑋∃𝑠𝑠, 𝐼𝐼𝑠𝑠 = 𝐼𝐼(𝑠𝑠):𝐿𝐿(𝑁𝑁(𝐼𝐼𝑠𝑠)) > 𝑡𝑡𝑠𝑠 ,

where 𝛼𝛼,𝛽𝛽,𝛿𝛿 are confidence levels.

Testable hypotheses:
𝐻𝐻0: The probability of no attack on a set of
𝐾𝐾randomlyselected images is greater than1 − 𝜃𝜃𝐾𝐾.
𝐻𝐻1: The probability of no attack on a set 𝐾𝐾of randomly
selected images is no greater than 1− 𝜃𝜃𝐾𝐾.

Next, the researcher sets the values of the
parameters 𝛼𝛼 and 𝛽𝛽, this is the probability of an error of
the first and second kind, respectively (Fig. 10).

Fig.10: Errors of type 1 and 2

Parameter 𝛿𝛿 is the “gap” between the null and
alternative hypothesis. If the value falls in a region where
the estimated probability of not having the attack will be
greater than 𝑝𝑝0 = (1 − 𝜃𝜃𝐾𝐾) + 𝛿𝛿, then we accept the null
hypothesis, if less than 𝑝𝑝1 = (1 − 𝜃𝜃𝐾𝐾)− 𝛿𝛿, then we
reject the null hypothesis , if between them, then we
move on to a new iteration of the algorithm. This is
precisely the procedure of sequential analysis, which
consists in sequential testing of the indicated
inequalities for probabilities, and in this way it differs
from simple testing of hypotheses.

The article [1] sets the following parameter
values 𝐾𝐾 = 5,10,100,𝜃𝜃 = 0.8,0.9,1,𝛼𝛼 = 𝛽𝛽 = 𝛿𝛿 = 0.01.

III. EXPERIMENTAL
 PART

a) Scalability Study

A scalability study showed that for neural

networks with about 10,000 parameters, searching for

triggers for all 10 labels takes about several minutes. In

article [1] and the implementation, a search for triggers

for the conv_small_relu neural network was proposed

(the architecture is shown in Fig. 11). Such a neural

network contains 89,000 parameters. Finding triggers

for all 10 tags takes about 10 hours.

Optimizing the Running Time of a Trigger Search Algorithm based on the Principles of Formal Verification
of Artificial Neural Networks

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

13

© 2024 Global Journals

Fig. 11: Neural networkconv_small_relu architecture

Similar architectures with fewer and more
parameters were tested. For neural networks with about
105,000 parameters, verification for one target label
takes about 20 hours (for 10 labels it takes
approximately 200 hours). From this we conclude that
the duration of verification increases exponentially with
increasing number of parameters.

b) Improved Work Speed
During the analysis of the repository, the

bottleneck was identified — the back_substitute function
of the utils.py module, which is responsible for the
integration of interval arithmetic. Profiling of this program
shows that about70%of the execution time is occupied
by this function (Fig. 12). The calculation graph shows
similar results (Fig. 13).

Fig.12:

Table

of

execution

times

of

all

algorithm

functions

To

optimize

the

selected

bottleneck,

various

approaches

to

code

optimization

and

library

replacement were

tested,

as

well

as

deployment

on
GPUs

using

the

PyTorch

library.

 Fig.13.

Calculation

graph

of

all

algorithm

functions

It was not possible to obtain a significant
increase in performance using the GPU, since the
method uses a large number of not very complex
calculations. As a result, calculations slowed down 10
times. This happened because GPUs are adapted for
calculating large matrices, while the CPU copes better
with the proposed task. The use of other libraries and
code optimization led to a 20 percent improvement in
the execution speed of the back_substitute function. The
overall running time of the algorithm was also improved
by approximately 10% (Fig. 14).

Fig.14: Comparison of algorithm running time before

and after optimization improvements

Parallelization

of

the

selected

problem

is

impossible,

since

the

newly

calculated

data

must

again

be

fed

into

the

input.

Nevertheless,

you

can

try

to

parallelize

the

search

for a trigger

in

different

places,

but

this

issue

is

subject

to

deeper

study.

IV.

PRACTICAL

IMPLEMENTATION

a)

Software

and

Hardware

The

main

part

of

the

described

experiments

was

carried

out

on a computer

complex

using a central

processor

and

having

the

following

characteristics:

Table

I:

Hardware

CPU

Apple

M1

Max

processor

RAM

32

GB

Optimizing the Running Time of a Trigger Search Algorithm based on the Principles of Formal Verification
of Artificial Neural Networks

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

14

© 2024 Global Journals

Experiments on the GPU were carried out using
a computing cluster with the characteristics indicated in
Table II.

Table II: Hardware, GPU cluster

Video card NVIDIA RTX A6000

Processor AMD EPYC 7532 32-Core

RAM 252 GB

Software with the characteristics shown in Table
III was used.

Table III: Software

OS (CPU) MacOS Ventura 13.3.1

OS (GPU) Ubuntu 20.04.4 LTS

Python 3.10.0

numpy 1.23.5

scipy 1.8.0

autograd 1.4

 9.5.1

torchsummary 1.5.1

nvidia cuda 11.7

pytorch 1.13.1

b) Datasets and Neural Networks
Neural networks trained on the following data

sets were used:

• MNIST – a set of single-channel images of28 ×
28pixels. Images are divided into 10 classes —
numbers from 0 to 9 (Fig. 15);

• CIFAR-10 – a set of three-channel images of
32 × 32pixels. Images are divided into 10 classes
— airplane, car, bird, cat, deer, dog, frog, horse,
ship, truck (Fig. 16).

In addition to the experiments proposed in the
article, other neural networks were trained. They were
analyzed using a trigger search algorithm and used to
compare the original implementation and the optimized
version. Neural networks that showed high accuracy on
the test set, as a rule, did not have a trigger. An example
of a tested neural network is shown in Fig. 11.

Fig.15: MNIST

DataSet

Fig.16: CIFAR-10 DataSet

c) Disadvantages of the Current Implementation
Formal verification, as a young field of science,

has many difficulties with uniform standards of use. The
proposed implementation of the trigger search problem
has a number of significant problems that arise for the
user who decides to use this algorithm. It was decided
to correct the identified deficiencies as part of this work.

1. The proposed implementation works only with
neural networks stored in a special format, where all
weights and biases are stored in separate txt files,
and the architecture itself is written in a separate
spec.json file. To read neural networks in this
format, a separate json_parser module is used,
which extracts the weights of the neural network and
prepares them for work. The inability to conduct an
experiment on a neural network not described by
the authors is a significant drawback;

2. The proposed algorithm works quite slowly even on
small neural networks, which is natural, since formal
verification very carefully analyzes the entire neural
network layer by layer, neuron by neuron. Since
when testing more complex neural networks with a
large number of parameters, the key limitation is the
running time of the algorithm, optimizing it will
increase its applicability. Also, the existing
implementation does not use parallelization and it
was decided to fix this too;

1. The existing implementation is only suitable for
testing neural networks trained on the MNIST

Optimizing the Running Time of a Trigger Search Algorithm based on the Principles of Formal Verification
of Artificial Neural Networks

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

15

© 2024 Global Journals

dataset, and has not been adapted or tested for the
CIFAR-10 dataset;

1. Support for only a limited set of layers, such as two-
dimensional convolutional and fully connected
layers.

In connection with the identified shortcomings,
requirements were drawn up for an optimized version of
the existing implementation:

1. The ability to search for triggers for ANN written in
PyTorch;

2. Adding parallelization at various levels;
3. Adding support for neural networks, trained on the

CIFAR-10 data set;
4. Adding support for MaxPool1D, MaxPool3D,

Conv1D, Conv3D layers.

d) GPU Usage
As part of solving the optimization problem and

using parallel computing, using profiling methods, a
bottleneck was identified — the back_substitute function
of the utils module (Fig. 13). Implementation of this
function using the PyTorch library and graphics
processing unit (GPU) did not give the expected
acceleration.

This happened because the formal verification
problem is poorly adaptable to GPU computing. During
the calculation, there are quite a few operations that are
similar to each other, and most of them depend on the
previous step, which makes the use of the GPU
ineffective.

It was decided to replace the used autograd
library with numpy. Since the numpy library is written in
C and Fortran programming languages, it is highly
optimized. The autograd library is a “wrapper” of already
optimized algorithms, which gives a series of small
delays that accumulate and give a significant slowdown
with a large number of calls. Replacing the autograd
library with the numpy library increased the speed of the
back_substitute function by 20 percent, and the speed
of the entire algorithm by an average of 10 percent.

The table below shows the running time of the
back_substitute function using various libraries. For
each library, 10,000 calculations were carried out and
the average value was calculated:

Table IV: Running time of the back_substitute function
for different libraries

Library Back_substitute running time (s)

autograd 0.00023

PyTorch (GPU) 0.00225

numpy 0.00018

e) Using Parallel Computing
During the study of the existing implementation

of the trigger search algorithm, places were identified
that could be optimized using parallelization; the
pseudocode is presented in Fig. 17.

Fig. 17: Pseudocode of the VerifyX function indicating
places of parallelization

It was decided to test parallelization in two
selected areas: at the stage of selecting a target label
and at the stage of enumerating trigger locations. This is
possible thanks to the following process. For each
trigger location, a chain of conjunctions of admissible
intervals of all neurons in the neural network is
calculated. Since the sequence of conjunctions does
not change its meaning depending on the location of
the conjunction in the chain, the result when applying
parallelization remains unchanged. The proposed
parallelization in both cases was implemented using the
standard multiprocessing library and in total gave a
significant increase in speed in various experiments. On
average, on the tested neural networks, an acceleration
of 4 times was obtained relative to the original
implementation. The results of the experiments are
shown in Table V. The first half shows the results for fully
connected neural networks, and the second half for
convolutional ones.

Other optimizations implemented according to
the formulated requirements are listed below:
1. As part of the work, a sequence of actions was

implemented to convert any neural network written
in PyTorch into a specialized format used by the
trigger search algorithm. This pipeline has been
tested for all possible types of layers and
architectures, including those that were not studied
in the original article;

2. To support layers of new types, the corresponding
classes were implemented with processing built
according to the DeepPoly formal verification
method;

Optimizing the Running Time of a Trigger Search Algorithm based on the Principles of Formal Verification
of Artificial Neural Networks

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

16

© 2024 Global Journals

3. To support the CIFAR-10 data set, the images in it
were normalized from 0 to 1 and converted into the
appropriate specialized format. The existing
implementation was adapted to use a 3 × 3 × 3
trigger, and support for multi-channel triggers was
added wherever this was lacking.

Table V: Algorithm running time before and after
optimization

Neural
network

Number of
parameters Original time Optimized

time

mnist_
model_0 79 510 1 223 s 341 s

mnist_
model_1 159 010 2 352 s 659 s

mnist_
model_2 199 310 6 873 s 1 704 s

mnist_
model_3 119 810 5 394 s 1 328 s

mnist_
conv_small 89 606 22 452 s 4 548 s

mnist_
model_5 159 387 258 854 s 74 855 s

mnist_conv_
maxpool 34 622 17 880 s 3 632 s

cifar_
conv_relu 62 006 — 197 426 s

f) Assessing the complexity of the trigger search
algorithm in neural networks of various architectures

The time it takes to search for a trigger in a
neural network depends on its architecture. The
complexity of testing a neural network can be
determined both empirically and theoretically. It will
correlate with the number of parameters and depend
on: the number of layers in the neural network, the size
of these layers, the type of these layers. Empirically, it
was found that fully connected layers are faster to check
than convolutional layers. The verification time depends
to a greater extent on the number of layers and to a
lesser extent on their size.

The number of parameters for verifying fully
connected layers can be expressed as 𝑂𝑂(𝑚𝑚 ∗ 𝑛𝑛), where
m and n are the number of inputs and outputs of the
layer. The number of parameters for verifying 2D layers
can be expressed as𝑂𝑂(𝑐𝑐 ∗ ℎ ∗ 𝑤𝑤) for Conv2D and
𝑂𝑂(𝑐𝑐 ∗ ℎ2 ∗ 𝑤𝑤2) for MaxPool2D, where𝑐𝑐,ℎand 𝑤𝑤 are the
number of channels, the height and width of the kernel.
Thus, it is easy to see that the more parameters the 2D

layers have, the longer the neural network will take to
verify.

Table VI: Estimation of the complexity of searching for a
trigger for different types of layers

Layer type Complexity

Linear 𝑂𝑂(𝑚𝑚 ∗ 𝑛𝑛)

Conv2D 𝑂𝑂(𝑐𝑐 ∗ ℎ ∗ 𝑤𝑤)

MaxPool2D 𝑂𝑂(𝑐𝑐 ∗ ℎ2 ∗ 𝑤𝑤2)

Formal verification algorithms are generally
applicable to checking neural networks for the absence
of attacks. Using the DeepPoly algorithm, you can not
only check for the presence of a trigger in an image, but
also generate triggers. Verification problems arise on
networks containing Sigmoid and Tanh activation
functions.

Probabilistic models provide a numerical
assessment of testing the operation of neural networks;
they can be combined with formal verification
algorithms. As a continuation of the work, you can try to
use other verification algorithms for these experiments,
based on the analysis by zonotopes [5] of the Sigmoid
and Tanh activation functions.

References Références Referencias

1. Pham Long H., Sun Jun. Verifying neural networks
against backdoor attacks // Springer International
Publishing.— 2022.— URL: https: //link.springer.
com/content/pdf/10.1007/978-3-031-13185-1.pdf.

2. Deng Li. The mnist database of handwritten digit
images for machine learning research // IEEE Signal
Processing Magazine. — 2012. — Vol. Volume: 29,
Issue: 6. — URL: https://ieeexplore.ieee.org/
document/ 6296535.

3. An abstract domain for certifying neural networks/
Gagandeep Singh, Timon Gehr, Markus Püschel,
Martin Vechev//Proc. ACM Program. Lang. — 2019.
— jan. — Vol. 3, no. POPL. — 30 p. — URL: https:
//doi.org/10.1145/3290354.

4. Wald A. Sequential tests of statistical hypotheses//
The Annals of Mathematical Statistics. — 1945. —
Vol. Vol. 16, No. 2. — URL: https://www.jstor.org/.

5. Ekaterina Stroeva Aleksey Tonkikh. Methods for
formal verification of artificial neural networks: A
review of existing approaches//Interna- tional
Journal of Open Information Technologies. — 2022.
— Vol. Vol 10, No 10. — URL: http://injoit.org/index.
php/j1/article/view/1417.

V. CONCLUSION

Optimizing the Running Time of a Trigger Search Algorithm based on the Principles of Formal Verification
of Artificial Neural Networks

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
 V

er
si
on

 I

 Y
ea

r
20

24

17

© 2024 Global Journals

	Optimizing the Running Time of a Trigger Search Algorithm based on the Principles of Formal Verification of Artificial Neural Networks
	Author
	Keywords

	I. Introduction
	II. Algorithm for Searching for A trigger in an Image

	a) Description of how the Verify Pr Function Works
	b) Description of how the Verify X Function Works
	i. The function opTigger
	ii. The Attack Condition Function

	c) Deep Poly ReLU function
	d) Basic Moments
	e) The Affine Compute Function
	f) SPRT (Sequential Probability Ratio Test) or Wald Criterion

	III. Experimental Part
	a) Scalability Study
	b) Improved Work Speed

	IV. Practical Implementation

	a) Software and Hardware
	b) Datasets and Neural Networks
	c) Disadvantages of the Current Implementation
	d) GPU Usage
	e) Using Parallel Computing
	f) Assessing the complexity of the trigger search algorithm in neural networks of various architectures

	V. Conclusion
	References Références Referencias

