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INTRODUCTION

 his

 

paper

 

discusses a trigger

 

search

 

algorithm

 

that

 
is

 

based

 

on

 

one

 

of

 

the

 

algorithms

 

for

 

the

 

formal

 
verification

 

of

 

neural

 

networks,

 

which

 

is

 

an

 

urgent

 
task,

 

since

 

many

 

technology

 

companies

 

are

 

faced

 

with

 
the

 

problem

 

of

 

attacks

 

using

 

trigger

 

overlays

 

on

 

images

 
when

 

training

 

neural

 

networks,

 

as

 

well

 

as

 

with

 

the

 

need

 
to

 

check

 

the

 

robustness

 

of

 

neural

 

networks,

 

which

 

can

 
be

 

done

 

mainly

 

using

 

formal

 

verification

 

algorithms.

 
In turn,

 

one

 

of

 

the

 

main

 

problems

 

of

 

formal

 
verification

 

algorithms

 

is

 

the

 

long

 

operating

 

time.

 

This

 
article

 

proposes

 

some

 

methods

 

to

 

reduce

 

the

 

running

 
time

 

of

 

the

 

algorithm

 

[1],

 

which

 

is

 

used

 

to

 

detect

 

the

 
presence

 

of a trigger

 

in

 

images

 

from

 

the

 

MNIST

 

dataset

 
[2].

 

Fig.1:

 

Example

 

of a trigger

 

and

 

its

 

location

 Basic

 

Definitions and

 

Notations:

 
𝑁𝑁

 

—neural

 

network;  

𝐼𝐼— an

 

image

 

that

 

is

 

analyzed

 

in

 

terms

 

of

 

the

 

presence

 
of

 

a trigger;

 
𝑋𝑋

 

— set

 

of

 

images

 

𝐼𝐼,

 

which

 

is

 

checked

 

by

 

the

 

algorithm;

 

𝑛𝑛 — number of pixels in the image; 

𝑥𝑥𝑖𝑖  — the value of the neuron before the one that is 
currently being analyzed; 
𝑥𝑥𝑗𝑗  — calculated current value of the neuron; 

𝑥𝑥𝑖𝑖 ∈ [𝑙𝑙𝑖𝑖 ,𝑢𝑢𝑖𝑖] — range of values for each neuron; 
𝜙𝜙𝑝𝑝𝑝𝑝𝑝𝑝 = [ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝 ] ≤ 𝑗𝑗 ≤ [ℎ𝑝𝑝 + ℎ𝑠𝑠 ,𝑤𝑤𝑝𝑝 + 𝑤𝑤𝑠𝑠] ∧ 0 ≤ 𝑥𝑥[𝑗𝑗] ≤
1— preconditions for pixels that may contain trigger; 

(𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠) — trigger parameters: number of channels, 
height and width, respectively; 
(ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝) — upper left coordinate of the trigger; 

𝑡𝑡𝑠𝑠 — output value of the neural network for the image 
with a trigger superimposed on it; 

𝜃𝜃 — specified success probability value; 
𝐾𝐾— the number of images in the sample checked for 
the absence of a trigger, or the number of elements in 
the set 𝑋𝑋.  

A trigger is a rectangular sticker on an image 
that has the same number of channels and changes the 
classification (it is assumed that the trigger is the same 
for all images of a certain set and is located in the same 
place), for example, a3 × 3 square with pixels of 
different colors in Fig.1. 

Formal definition: for a neural network solving 
the problem of classifying images of size (𝑐𝑐, ℎ,𝑤𝑤), the 
trigger is some image 𝑆𝑆of size(𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠) such that 
𝑐𝑐𝑠𝑠 = 𝑐𝑐, ℎ𝑠𝑠 ≤ ℎ,𝑤𝑤𝑠𝑠 ≤ 𝑤𝑤. 

We can say that in the picture 𝐼𝐼 there is a trigger 
of size(𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠), the upper left corner of which is 
located at the place (ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝)(subject to the obvious 
conditions ℎ𝑝𝑝 + ℎ𝑠𝑠 ≤ ℎ,𝑤𝑤𝑝𝑝 + 𝑤𝑤𝑠𝑠 ≤ 𝑤𝑤), if 

𝐼𝐼𝑠𝑠[𝑐𝑐𝑖𝑖 ,ℎ𝑖𝑖 ,𝑤𝑤𝑖𝑖] = {

𝑆𝑆[𝑐𝑐𝑖𝑖 ,ℎ𝑖𝑖 − ℎ𝑝𝑝 ,𝑤𝑤𝑖𝑖 − 𝑤𝑤𝑝𝑝],if
(ℎ𝑝𝑝 ≤ ℎ𝑖𝑖 < ℎ𝑝𝑝 + ℎ𝑠𝑠) ∧
∧ (𝑤𝑤𝑝𝑝 ≤ 𝑤𝑤𝑖𝑖 < 𝑤𝑤𝑝𝑝 + 𝑤𝑤𝑠𝑠);
𝐼𝐼[𝑐𝑐𝑖𝑖 ,ℎ𝑖𝑖 ,𝑤𝑤𝑖𝑖],otherwise.

 

In other words, the trigger changes certain 
pixels of the image to given ones. 

Formal Statement of the Problem 
There is no patch (trigger) 𝑆𝑆 such that when 

applied to a certain set of images 𝐼𝐼 ∈ 𝑋𝑋, the neural 

T 
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network 𝑁𝑁changes the output class to the target class 
𝑡𝑡𝑠𝑠, on images𝐼𝐼𝑠𝑠 with the trigger 𝑆𝑆: 

/∃𝑆𝑆(𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠):∀𝐼𝐼𝑠𝑠 ∈ 𝑋𝑋:𝑁𝑁(𝐼𝐼𝑠𝑠) = 𝑡𝑡𝑠𝑠 . 

Initial conditions: 

Fig. 2: Flowchart of the algorithm for searching for a 
trigger 

1. Dataset: MNIST — 10,000 images in 1 × 28 ×
28 format; neural networks: fully connected and 
convolutional with activation functions ReLU, 
Sigmoid, Tanh with the number of parameters up to 
100,000;  

2. Trigger Parameters: 1 × 3 × 3, any pixel values in 
the area;  

3. Security Property: no trigger;  
4. Verification Algorithm: DeepPoly. 

II.  ALGORITHM FOR SEARCHING FOR A 

TRIGGER IN AN IMAGE 

The algorithm [1] is based on the DeepPoly 
verifier [3]. Its main goal is to search for a trigger that 
consistently fools the classifier for a certain number of 
images. The output value of the artificial neural network 
changes to a predetermined value. The search is 
performed over the entire image and for all possible 
values of each trigger pixel (a 3 × 3 trigger is considered 
and tested, although other values are possible). The
Wald Criterion [4] is also used to evaluate hypotheses 
about the occurrence of a trigger. 
Step by step, the entire algorithm works as follows: 
1. Fix the position of the trigger. In the future, it is in 

this fixed area that there will bechecking for the 
presence of a trigger; 

2. We go through the set of images and build 
variations of images: 

a) Calculate for an artificial neural network and a 
given image a set of constraints. Constraints 
are calculated in the body of the attack 
Condition function; 

b) We pass these restrictions to the SAT solver, 
and look at the answer: if the formula is 
degenerate, then there is no trigger for the 

image, therefore, the neural network is resistant 
to triggers; 

c) Otherwise we add these restrictions to the 
previous ones; 

3. If the SAT solver finds a counterexample, then, 
consequently, there is a trigger. We find it by 
gradually parsing the solution to a Boolean function, 
which is performed in the opTrigger function; 

4. If the SAT solver confirmed that the set of 
constraints does not have a solution, then the neural 
network works correctly; 

5. If the SAT solver could not confirm the degeneracy 
of the constraints, and a trigger was not found, then 
more research needs to be done. 

The relationships between the Attack Condition, 
opTrigger functions and all of the listed methods are 
presented in the block diagram in Fig. 2. 

a) Description of how the Verify Pr Function Works 
The algorithm is represented by the function 

verify Pr, which takes as input data the neural network 
𝑁𝑁, the number of pictures 𝐾𝐾 in the sample being tested, 
all trigger indicators (𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠), 𝑡𝑡𝑠𝑠probabilistic 
parameters 𝛼𝛼,𝛽𝛽, 𝛿𝛿 of Wald criterion (SPRT) [4] and 
provides information about the presence or absence of 
a trigger with a given probability (Fig. 3). 

Fig. 3: Pseudocode for the verify Prfunction [1] 

[lines 1-2] Two variables are introduced: 𝑛𝑛— the number 
of calls to the verify X function, 𝑧𝑧— the number of SAFE 
responses returned by the verify X function. 

[line 3] Set the probabilities 𝑝𝑝0,𝑝𝑝1for using SPRT. 
[line 4] A loop is started that runs until the SPRT 
conditions are met, as soon as the test monitors the 
fulfillment of one of the conditions, the result is given 
which hypothesis should be accepted [lines 12-15]. 

[line 5] A counter is started for the number of calls to the 
verify X function. 

Optimizing the Running Time of a Trigger Search Algorithm based on the Principles of Formal Verification
of Artificial Neural Networks
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[line 6] Selecting 𝐾𝐾 images randomly and composing 
them into a verifiable set 𝑋𝑋, which is fed to the input of 
the verifyX function. 
[lines 7-11] Application of the verifyX function, which will 
be described in the following pseudocode (Fig. 4). The 
SAFE output means that you need to increase the 𝑧𝑧 
variable by 1 and go to a new iteration of SPRT, the 
UNSAFE output checks that the flip-flop does not satisfy 
all the specified statistical parameters and moves on to 
SPRT. 

b) Description of how the Verify X Function Works 
The verify X function takes as input the neural 

network 𝑁𝑁, the tested set of images 𝑋𝑋, the dimensions 
(𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠) and position �ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝� of the trigger, the target 
label for the trigger 𝑡𝑡𝑠𝑠. 

Fig. 4: Pseudo code for the verify X function [1] 

At the output, the verify X function produces the 
response SAFE if there is no trigger in the selected set 𝑋𝑋 
or UNSAFE if there is a trigger (Fig. 2). 

[line 1] The has Unknown variable is created, which is 
responsible for the case of uncertainty (it is impossible 
to get an answer about the presence or absence of a 
trigger), by default its value is set to False. 

[line 2] The cycle is started to cycle through all possible 
trigger locations on the image being checked. 

[line 3] The neural network is specified by a set of 
conjunctions 𝜙𝜙, that is, in a form accessible to the SAT 
solver. During initialization, a set of initial constraints 
𝜙𝜙𝑝𝑝𝑝𝑝𝑝𝑝 =∧𝑗𝑗∈𝑃𝑃(𝑤𝑤𝑝𝑝 ,ℎ𝑝𝑝 ) 𝑙𝑙𝑤𝑤𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑢𝑢𝑝𝑝𝑗𝑗  for the value ofpixels 𝑥𝑥𝑗𝑗  
located at positions 𝑗𝑗 ∈ 𝑃𝑃(𝑤𝑤𝑝𝑝 , ℎ𝑝𝑝) in which thelocation is 
assumed at this step is entered into this variable trigger. 
Here𝑙𝑙𝑤𝑤𝑗𝑗and 𝑢𝑢𝑝𝑝𝑗𝑗are normalized boundaries for the 
trigger value, lying in the interval [0; 1]. 
[line 4] For each image 𝐼𝐼 ∈ 𝑋𝑋, a cycle is started to check 
each image for the presence of a trigger. 

[line 5] The main function for checking the presence of a 
trigger attack Condition uses the DeepPoly formal 
verification algorithm for neural networks, which checks 
the property “there is a trigger on the image”, returns an 
image represented in the form of conjunctions 𝜙𝜙𝐼𝐼 , and a 

SAT response if the property is satisfied (trigger found), 
UNSAT - property not satisfied (trigger not found). 

[lines 6-10] If the attack Condition function returned 
UNSAT in the previous step, then the neural network is 
not executable, the variable 𝜙𝜙 is assigned the value 
False, exiting the loop. If a trigger is found, then its 
representation 𝜙𝜙𝐼𝐼 is added to the neural network 
function. 

[lines 11-15] The resulting representation of the neural 
network 𝜙𝜙 is fed into the SAT solver, and if the output is 
SAT or UNKNOWN, then the opTrigger function is run. 

i. The function opTigger 
First checks whether the resulting rectangle 𝑆𝑆 of 

size (𝑐𝑐𝑠𝑠 ,ℎ𝑠𝑠 ,𝑤𝑤𝑠𝑠) at position (ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝)is a trigger that 
successfully attacks every image 𝐼𝐼 in the test set 𝑋𝑋. 
Because If the accumulated error of abstract 
interpretation resulting from the application of the 
DeepPoly algorithm is too large, the resulting model 
may be a false trigger. If it is a real trigger, then it returns 
model 𝑆𝑆 and the output is UNSAFE. 

The opTrigger function creates a trigger based 
on the available data, using an approach based on 
optimizing the loss function: 

𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠(𝑁𝑁, 𝐼𝐼,𝑆𝑆, (ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝), 𝑡𝑡𝑠𝑠) = { 0, 𝑖𝑖𝑖𝑖𝑛𝑛𝑠𝑠 > 𝑛𝑛0;
𝑛𝑛0 − 𝑛𝑛𝑠𝑠 − 𝜖𝜖, otherwise. 

𝑛𝑛𝑠𝑠 = 𝑁𝑁(𝐼𝐼𝑠𝑠)[𝑡𝑡𝑠𝑠] — outputfor target label 𝑡𝑡𝑠𝑠; 𝑛𝑛0 =
𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗≠𝑡𝑡𝑠𝑠𝑁𝑁(𝐼𝐼𝑠𝑠)[𝑗𝑗] — next after the largest value of the 
output vector; 𝜖𝜖 is a small constant, about 10−9. 

The loss function returns 0 if the attack on 𝐼𝐼 by 
the trigger is successful. Otherwise, it returns a 
quantitative measure of how far the simulated attack is 
from being successful. 

For the entire tested set 𝑋𝑋 we obtain a joint loss 
function 

𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠(𝑁𝑁,𝑋𝑋,𝑆𝑆, (ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝), 𝑡𝑡𝑠𝑠) = ∑
𝐼𝐼∈𝑋𝑋
𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠(𝑁𝑁, 𝐼𝐼,𝑆𝑆, (ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝), 𝑡𝑡𝑠𝑠) 

An optimization problem is then solved to find 
an attack that successfully changes the classification of 
all images in 𝑋𝑋:𝑚𝑚𝑝𝑝𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠(𝑁𝑁,𝑋𝑋, 𝑆𝑆, (ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝), 𝑡𝑡𝑠𝑠). 
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ii. The Attack Condition Function 

         
 

 Fig.  5:  Pseudocode  for  the  Attack  Condition  
function  

there is a trigger or not a trigger (Fig. 5). Inserts 
restrictions on the trigger in the form of conjunctions and 
adds 𝜙𝜙 to the network structure. 

The main idea of checking for a trigger: the area 
of pixels in which the trigger will be placed is selected, 
each such pixel is assigned a symbolic value included in 
the interval [0; 1] [lines 1-8]. Next, using the 
DeepPolyReLU function, we track the moment at which 
the checked pixel value from the segment [0; 1] will 
change the output vector of values, that is, the 
classification will change, we obtain the pixel value at 
which the trigger will be located on this pixel [lines 9-21]. 

If for all values of the checked pixel from the 
segment [0; 1]there is no change in the value of the 
target label (the output segment for the target label at all 
points is greater than the output segments for all other 
values) [line 25], then there will be no trigger, we return 
UNSAT [line 26], if it is not clear whether the target label 
has changed or not (the output segment for the target 
label intersects with some output segment for some of 
the other values), then the situation requires moredeep 
analysis, UNKNOWN is returned [lines 29 and 37]. If the 
output label has definitely changed, then the trigger is 
found, SAT is returned [line 35].  

The DeepPoly algorithm [3], like all formal 
verification algorithms [5], checks properties (Fig. 6). In 
the context of the verifyX function, the "no trigger" 
property is checked. 

 
 
 
 
 

Fig. 6: General scheme of operation of algorithms for 
formal verification of neural networks 

c) Deep Poly ReLU function 
Analyzes approximate values for the output of 

the ReLU activation function (Fig. 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Pseudo code for the Deep Poly ReLU function 

d) Basic Moments 

• Linear constraints on each neuron are represented 
as a linear combination of only input data 𝑥𝑥1,𝑥𝑥2(and 
not through the constraints of previous neurons), 
then the constraints for each neuron at each step 
will be better, the segment will expand less. 

• If the ReLU input receives a segment with a half-
living ends, then it turns into itself, without changes. 
If the segment contains a point zero, then as 
constraints we use 0 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝜆𝜆𝑥𝑥𝑖𝑖 + 𝜇𝜇 (the equation of 

Takes all parameters as input and outputs the result

Optimizing the Running Time of a Trigger Search Algorithm based on the Principles of Formal Verification
of Artificial Neural Networks
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the straight line defining the upper boundary of the 
triangle passing through the points (𝑙𝑙𝑖𝑖 ; 0), (𝑢𝑢𝑖𝑖 ;𝑢𝑢𝑖𝑖), 
𝑙𝑙𝑖𝑖and 𝑢𝑢𝑖𝑖  — boundaries of the interval in the previous 
step). If the entire segment is negative, then it 
simply goes to zero. 

• The main difference from other algorithms is exactly 
one lower constraint. This makes it possible to 
narrow the boundaries of the intervals and facilitate 
computing power (Fig. 8). It is also argued that 
approximation by such triangles is better than 
zonotopes — they are easier to calculate, and also 
often have a smaller area. With a similar formulation 
of the problem, the zonotope in this case will be a 
parallelogram, the lower side of which contains the 
point (0; 0). 

Fig. 8: Approximation of the ReLU function in the 
DeepPoly algorithm [3] 

The AttackCondition function takes all 
parameters as input and outputs the result — there is a 
trigger or there is no trigger. Inserts restrictions on the 
trigger in the form of conjunctions and adds 𝜙𝜙 to the 
network structure. 

These results are then used in the VerifyPr 
function, which gives a probabilistic assessment of the 
presence of a trigger. 

e) The Affine Compute Function 
Takes as input values from the previous layer, 

performs standard affine transformations — multiplying 
by weights and adding a bias vector, and at the output 
produces an interval within which all possible values 
supplied to the input of the ReLU function lie (Fig. 9). 

 
 
 
 
 
 
 
 

Fig. 9: Pseudocode for the AffineCompute function 

f) SPRT (Sequential Probability Ratio Test) or Wald 

Criterion 

Designations: 

𝜃𝜃 is the probability of a trigger appearing, 

common to all K pictures: for a given neural network 𝑁𝑁, 

trigger 𝑆𝑆, target label 𝑡𝑡𝑠𝑠, it is postulated that 𝑆𝑆 has a 

probability of success 𝜃𝜃 if and only if there is a position 
(ℎ𝑝𝑝 ,𝑤𝑤𝑝𝑝)such that the probability of occurrence 
𝐿𝐿(𝑁𝑁(𝐼𝐼𝑠𝑠)) = 𝑚𝑚𝑝𝑝𝑎𝑎𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝑦𝑦𝑙𝑙𝑢𝑢𝑡𝑡𝑝𝑝𝑢𝑢𝑡𝑡 ) = 𝑡𝑡𝑠𝑠 for any 𝐼𝐼 in the 
chosen test set is 𝜃𝜃. 

No trigger: 

∀𝐼𝐼 ∈ 𝑋𝑋∃𝑠𝑠, 𝐼𝐼𝑠𝑠 = 𝐼𝐼(𝑠𝑠):𝐿𝐿(𝑁𝑁(𝐼𝐼𝑠𝑠)) > 𝑡𝑡𝑠𝑠 , 

where 𝛼𝛼,𝛽𝛽,𝛿𝛿 are confidence levels. 

Testable hypotheses: 
𝐻𝐻0: The probability of no attack on a set of 
𝐾𝐾randomlyselected images is greater than1 − 𝜃𝜃𝐾𝐾. 
𝐻𝐻1: The probability of no attack on a set 𝐾𝐾of randomly 
selected images is no greater than 1− 𝜃𝜃𝐾𝐾. 

Next, the researcher sets the values of the 
parameters 𝛼𝛼 and 𝛽𝛽, this is the probability of an error of 
the first and second kind, respectively (Fig. 10). 

Fig.10: Errors of type 1 and 2 

Parameter 𝛿𝛿 is the “gap” between the null and 
alternative hypothesis. If the value falls in a region where 
the estimated probability of not having the attack will be 
greater than 𝑝𝑝0 = (1 − 𝜃𝜃𝐾𝐾) + 𝛿𝛿, then we accept the null 
hypothesis, if less than 𝑝𝑝1 = (1 − 𝜃𝜃𝐾𝐾)− 𝛿𝛿, then we 
reject the null hypothesis , if between them, then we 
move on to a new iteration of the algorithm. This is 
precisely the procedure of sequential analysis, which 
consists in sequential testing of the indicated 
inequalities for probabilities, and in this way it differs 
from simple testing of hypotheses. 

The article [1] sets the following parameter 
values 𝐾𝐾 = 5,10,100,𝜃𝜃 = 0.8,0.9,1,𝛼𝛼 = 𝛽𝛽 = 𝛿𝛿 = 0.01. 

III. EXPERIMENTAL
 PART

 

a) Scalability Study 

A scalability study showed that for neural 

networks with about 10,000 parameters, searching for 

triggers for all 10 labels takes about several minutes. In 

article [1] and the implementation, a search for triggers 

for the conv_small_relu neural network was proposed 

(the architecture is shown in Fig. 11). Such a neural 

network contains 89,000 parameters. Finding triggers 

for all 10 tags takes about 10 hours.  
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Fig.  11:  Neural  networkconv_small_relu  architecture  

Similar architectures with fewer and more 
parameters were tested. For neural networks with about 
105,000 parameters, verification for one target label 
takes about 20 hours (for 10 labels it takes 
approximately 200 hours). From this we conclude that 
the duration of verification increases exponentially with 
increasing number of parameters. 

b) Improved Work Speed 
During the analysis of the repository, the 

bottleneck was identified — the back_substitute function 
of the utils.py module, which is responsible for the 
integration of interval arithmetic. Profiling of this program 
shows that about70%of the execution time is occupied 
by this function (Fig. 12). The calculation graph shows 
similar results (Fig. 13). 

Fig.12:

 

Table

 

of

 

execution

 

times

 

of

 

all

 

algorithm

 

functions

 

To

 

optimize

 

the

 

selected

 

bottleneck,

 

various

 

approaches

 

to

 

code

 

optimization

 

and

 

library

 

replacement were

 

tested,

 

as

 

well

 

as

 

deployment

 

on  
GPUs

 

using

 

the

 

PyTorch

 

library.

 
 
 
 
 
 
 
 
 
 

 Fig.13.
 

Calculation
 

graph
 

of
 

all
 

algorithm
 

functions
 

It was not possible to obtain a significant 
increase in performance using the GPU, since the 
method uses a large number of not very complex 
calculations. As a result, calculations slowed down 10 
times. This happened because GPUs are adapted for 
calculating large matrices, while the CPU copes better 
with the proposed task. The use of other libraries and 
code optimization led to a 20 percent improvement in 
the execution speed of the back_substitute function. The 
overall running time of the algorithm was also improved 
by approximately 10% (Fig. 14). 

Fig.14: Comparison of algorithm running time before 

and after optimization improvements 

Parallelization
 

of
 

the
 

selected
 

problem
 

is
 

impossible,
 
since

 
the

 
newly

 
calculated

 
data

 
must

 
again

 

be
 

fed
 

into
 

the
 

input.
 

Nevertheless,
 

you
 

can
 

try
 

to
 

parallelize
 
the

 
search

 
for a trigger

 
in

 
different

 
places,

 
but

 

this
 
issue

 
is

 
subject

 
to

 
deeper

 
study.

 

IV.
 

PRACTICAL
 
IMPLEMENTATION

 

a)
 

Software
 
and

 
Hardware

 

The
 
main

 
part

 
of

 
the

 
described

 
experiments

 
was

 

carried
 

out
 

on a computer
 

complex
 

using a central
 

processor
 
and

 
having

 
the

 
following

 
characteristics:

 

Table
 
I:
 
Hardware

 

CPU
 

Apple
 
M1

 
Max

 
processor

 

RAM
 

32
 
GB
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Experiments on the GPU were carried out using 
a computing cluster with the characteristics indicated in 
Table II. 

Table II:  Hardware, GPU cluster 

Video card NVIDIA RTX A6000 

Processor AMD EPYC 7532 32-Core 

RAM 252 GB 

Software with the characteristics shown in Table 
III was used. 

Table III:  Software 

OS (CPU) MacOS Ventura 13.3.1 

OS (GPU) Ubuntu 20.04.4 LTS 

Python 3.10.0 

numpy 1.23.5 

scipy 1.8.0 

autograd 1.4 

 9.5.1 

torchsummary 1.5.1 

nvidia cuda 11.7 

pytorch 1.13.1 

b) Datasets and Neural Networks 
Neural networks trained on the following data 

sets were used: 

• MNIST – a set of single-channel images of28 ×
28pixels. Images are divided into 10 classes — 
numbers from 0 to 9 (Fig. 15); 

• CIFAR-10 – a set of three-channel images of 
32 × 32pixels. Images are divided into 10 classes 
— airplane, car, bird, cat, deer, dog, frog, horse, 
ship, truck (Fig. 16). 

In addition to the experiments proposed in the 
article, other neural networks were trained. They were 
analyzed using a trigger search algorithm and used to 
compare the original implementation and the optimized 
version. Neural networks that showed high accuracy on 
the test set, as a rule, did not have a trigger. An example 
of a tested neural network is shown in Fig. 11. 
 
 
 
 

 

 

 

 

 

 
Fig.15: MNIST

 
DataSet

 

Fig.16: CIFAR-10 DataSet 

c) Disadvantages of the Current Implementation 
Formal verification, as a young field of science, 

has many difficulties with uniform standards of use. The 
proposed implementation of the trigger search problem 
has a number of significant problems that arise for the 
user who decides to use this algorithm. It was decided 
to correct the identified deficiencies as part of this work. 

1. The proposed implementation works only with 
neural networks stored in a special format, where all 
weights and biases are stored in separate txt files, 
and the architecture itself is written in a separate 
spec.json file. To read neural networks in this 
format, a separate json_parser module is used, 
which extracts the weights of the neural network and 
prepares them for work. The inability to conduct an 
experiment on a neural network not described by 
the authors is a significant drawback; 

2. The proposed algorithm works quite slowly even on 
small neural networks, which is natural, since formal  
verification very carefully analyzes the entire neural 
network layer by layer, neuron by neuron. Since 
when testing more complex neural networks with a 
large number of parameters, the key limitation is the 
running time of the algorithm, optimizing it will 
increase its applicability. Also, the existing 
implementation does not use parallelization and it 
was decided to fix this too; 

1. The existing implementation is only suitable for 
testing neural networks trained on the MNIST 
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dataset, and has not been adapted or tested for the 
CIFAR-10 dataset; 

1. Support for only a limited set of layers, such as two-
dimensional convolutional and fully connected 
layers. 

In connection with the identified shortcomings, 
requirements were drawn up for an optimized version of 
the existing implementation: 

1. The ability to search for triggers for ANN written in 
PyTorch; 

2. Adding parallelization at various levels; 
3. Adding support for neural networks, trained on the 

CIFAR-10 data set; 
4. Adding support for MaxPool1D, MaxPool3D, 

Conv1D, Conv3D layers. 

d) GPU Usage 
As part of solving the optimization problem and 

using parallel computing, using profiling methods, a 
bottleneck was identified — the back_substitute function 
of the utils module (Fig. 13). Implementation of this 
function using the PyTorch library and graphics 
processing unit (GPU) did not give the expected 
acceleration. 

This happened because the formal verification 
problem is poorly adaptable to GPU computing. During 
the calculation, there are quite a few operations that are 
similar to each other, and most of them depend on the 
previous step, which makes the use of the GPU 
ineffective. 

It was decided to replace the used autograd 
library with numpy. Since the numpy library is written in 
C and Fortran programming languages, it is highly 
optimized. The autograd library is a “wrapper” of already 
optimized algorithms, which gives a series of small 
delays that accumulate and give a significant slowdown 
with a large number of calls. Replacing the autograd 
library with the numpy library increased the speed of the 
back_substitute function by 20 percent, and the speed 
of the entire algorithm by an average of 10 percent. 

The table below shows the running time of the 
back_substitute function using various libraries. For 
each library, 10,000 calculations were carried out and 
the average value was calculated: 

Table IV: Running time of the back_substitute function 
for different libraries 

Library Back_substitute running time (s) 

autograd 0.00023 

PyTorch (GPU) 0.00225 

numpy 0.00018 

 
 

e) Using Parallel Computing 
During the study of the existing implementation 

of the trigger search algorithm, places were identified 
that could be optimized using parallelization; the 
pseudocode is presented in Fig. 17. 

Fig. 17: Pseudocode of the VerifyX function indicating 
places of parallelization 

It was decided to test parallelization in two 
selected areas: at the stage of selecting a target label 
and at the stage of enumerating trigger locations. This is 
possible thanks to the following process. For each 
trigger location, a chain of conjunctions of admissible 
intervals of all neurons in the neural network is 
calculated. Since the sequence of conjunctions does 
not change its meaning depending on the location of 
the conjunction in the chain, the result when applying 
parallelization remains unchanged. The proposed 
parallelization in both cases was implemented using the 
standard multiprocessing library and in total gave a 
significant increase in speed in various experiments. On 
average, on the tested neural networks, an acceleration 
of 4 times was obtained relative to the original 
implementation. The results of the experiments are 
shown in Table V. The first half shows the results for fully 
connected neural networks, and the second half for 
convolutional ones. 

Other optimizations implemented according to 
the formulated requirements are listed below: 
1. As part of the work, a sequence of actions was 

implemented to convert any neural network written 
in PyTorch into a specialized format used by the 
trigger search algorithm. This pipeline has been 
tested for all possible types of layers and 
architectures, including those that were not studied 
in the original article; 

2. To support layers of new types, the corresponding 
classes were implemented with processing built 
according to the DeepPoly formal verification 
method; 
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3. To support the CIFAR-10 data set, the images in it 
were normalized from 0 to 1 and converted into the 
appropriate specialized format. The existing 
implementation was adapted to use a 3 × 3 × 3 
trigger, and support for multi-channel triggers was 
added wherever this was lacking. 

Table V: Algorithm running time before and after 
optimization 

Neural 
network 

Number of 
parameters Original time Optimized 

time 

mnist_ 
model_0 79 510 1 223 s 341 s 

mnist_ 
model_1 159 010 2 352 s 659 s 

mnist_ 
model_2 199 310 6 873 s 1 704 s 

mnist_ 
model_3 119 810 5 394 s 1 328 s 

mnist_ 
conv_small 89 606 22 452 s 4 548 s 

mnist_ 
model_5 159 387 258 854 s 74 855 s 

mnist_conv_
maxpool 34 622 17 880 s 3 632 s 

cifar_ 
conv_relu 62 006 — 197 426 s 

f) Assessing the complexity of the trigger search 
algorithm in neural networks of various architectures 

The time it takes to search for a trigger in a 
neural network depends on its architecture. The 
complexity of testing a neural network can be 
determined both empirically and theoretically. It will 
correlate with the number of parameters and depend 
on: the number of layers in the neural network, the size 
of these layers, the type of these layers. Empirically, it 
was found that fully connected layers are faster to check 
than convolutional layers. The verification time depends 
to a greater extent on the number of layers and to a 
lesser extent on their size. 

The number of parameters for verifying fully 
connected layers can be expressed as 𝑂𝑂(𝑚𝑚 ∗ 𝑛𝑛), where 
m and n are the number of inputs and outputs of the 
layer. The number of parameters for verifying 2D layers 
can be expressed as𝑂𝑂(𝑐𝑐 ∗ ℎ ∗ 𝑤𝑤) for Conv2D and 
𝑂𝑂(𝑐𝑐 ∗ ℎ2 ∗ 𝑤𝑤2) for MaxPool2D, where𝑐𝑐,ℎand 𝑤𝑤 are the 
number of channels, the height and width of the kernel. 
Thus, it is easy to see that the more parameters the 2D 

layers have, the longer the neural network will take to 
verify. 

Table VI: Estimation of the complexity of searching for a 
trigger for different types of layers 

Layer type Complexity 

Linear 𝑂𝑂(𝑚𝑚 ∗ 𝑛𝑛) 

Conv2D 𝑂𝑂(𝑐𝑐 ∗ ℎ ∗ 𝑤𝑤) 

MaxPool2D 𝑂𝑂(𝑐𝑐 ∗ ℎ2 ∗ 𝑤𝑤2) 

  

Formal verification algorithms are generally 
applicable to checking neural networks for the absence 
of attacks. Using the DeepPoly algorithm, you can not 
only check for the presence of a trigger in an image, but 
also generate triggers. Verification problems arise on 
networks containing Sigmoid and Tanh activation 
functions. 

Probabilistic models provide a numerical 
assessment of testing the operation of neural networks; 
they can be combined with formal verification 
algorithms. As a continuation of the work, you can try to 
use other verification algorithms for these experiments, 
based on the analysis by zonotopes [5] of the Sigmoid 
and Tanh activation functions. 
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