

Global Journal of Computer Science and Technology: D
Neural & Artificial Intelligence
Volume 24 Issue 2 Version 1.0 Year 2024
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Vehicle Routing Optimization with ANT Colony Optimization
Algorithm Integrated with Map Analyzer API

By Mashrure Tanzim

Abstract- Ant colony optimization (ACO) algorithm can be used to solve combinatorial
optimization problems such as the traveling salesman problem. In this work, an endeavor has
been taken in finding the proper algorithm which could be used for routing problems in different
real-life situations. Taking into due cognizance of the limitations of the existing routing system,
the outcome of this work will facilitate a more convenient way of finding destinations for the users
in term of accuracy and time over the existing routing systems. The cost of the program will also
be lesser than contemporary systems. To accomplish this, a system has been built that can take
a map image with source and destinations denoted; and find an optimal path for them. The work
has been concluded with suggestions to future researchers who might look to build a system
that can solve any type of routing problems using TSP.

Keywords: swarm intelligence, vehicle routing, ant colony optimization.

GJCST-D Classification: LCC Code: QA76.9.A43

VehicleRoutingOptimizationwithANTColonyOptimizationAlgorithmIntegratedwithMapAnalyzerAPI

Strictly as per the compliance and regulations of:

© 2024. Mashrure Tanzim. This research/review article is distributed under the terms of the Attribution-Non Commercial-No
Derivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and reference this article if parts of
the article are reproduced in any manner. Applicable licensing terms are at https://creative commons.org/licenses/by-nc-nd/4.0/.

Bangladesh University of Professionals

https://creativecommons.org/licenses/by-nc-nd/4.0/.

Vehicle Routing Optimization with ANT Colony
Optimization Algorithm Integrated with Map

Analyzer API
 Mashrure Tanzim

Abstract- Ant colony optimization (ACO) algorithm can be
used to solve combinatorial optimization problems such as the
traveling salesman problem. In this work, an endeavor has
been taken in finding the proper algorithm which could be
used for routing problems in different real-life situations.
Taking into due cognizance of the limitations of the existing
routing system, the outcome of this work will facilitate a more
convenient way of finding destinations for the users in term of
accuracy and time over the existing routing systems. The cost
of the program will also be lesser than contemporary systems.
To accomplish this, a system has been built that can take a
map image with source and destinations denoted; and find an
optimal path for them. The work has been concluded with
suggestions to future researchers who might look to build a
system that can solve any type of routing problems using TSP.
Keywords: swarm intelligence, vehicle routing, ant colony
optimization.

I. Introduction

ehicle routing problems are one of the most basic
problems for any traffic control system or delivery
system; especially in an overpopulated and traffic

congested country like Bangladesh, where traffic jam is
a common phenomenon. Bangladesh has a massive
population compared to other nations of similar size.
Moreover, those populations are not evenly distributed
in all parts of the territory. As a developing nation, it is
only natural that most people gravitate towards the
cities, be it for economic or social reasons. This also
creates a demand for mass transportation, since a
modern city can’t function without it. Unfortunately in the
case of Bangladesh, this was done haphazardly and
without proper planning. This resulted in huge numbers
of private transports and a distinct lack of mass public
transit infrastructure. Thus, an application that can help
regular people plan their routes more efficiently can
mitigate the effect of traffic jam in Bangladeshi cities.
Such an application has to be easy to use since it is
meant to be used by the general populace, many of
whom lack technical literacy.

It also presents a good opportunity for the
stakeholders since there is no other alternative solution
currently popular in the local

market.

The use of the

application can cut down both time and fuel cost for the
users. It is therefore, easy to believe that people will be
willing to pay a small fee to access such a service. The
users of such an application are most likely to be
ordinary drivers and travelling salesmen or delivery
boys. Such users tend to be in a hurry when plying their
services. They don’t tend to plan their routes in any way.
They simply take a look at their map, choose the closest
destination at hand and repeat the process till they
complete their shift. Thus the application needs to be
both efficient and simple to use. For that reason, Ant
Colony Optimization algorithm has been chosen. As a
regular user is unlikely to use more than 15-20
destinations per work shift, it can solve such small sets
quickly compared to most other algorithms we tested.
Thus, the algorithm should be a great fit for the purpose
of this work. This service has been built in the context of
Bangladesh, but can be used anywhere with similar
problems. Traffic congestion is not only an annoyance. It
has economic consequences. Due to sitting in traffic
jam, the fuel cost of trips increase. It also wastes a lot of
time for every trip. The average commuter in Dhaka city
spends about 55% of his time sitting in traffic [1]. This
causes a massive loss in working hours. According to a
survey in 2018, the traffic congestion in Dhaka is
wasting around 3.2 million working hours daily [2].
According to a study conducted in 2016, the total
congestion cost for the Dhaka city is 12561.296 million
USD. Considering the country’s total population, per
capita congestion cost is 78.50 USD and if we consider
only Dhaka city’s population, the per capita congestion
cost stands 785.00 USD [3]. Previous work in this sector
includes various applications in telecommunication
network such as circuit and packet switch networks,
mobile networks, industrial scheduling problems and
assembly line balancing problems. The proposed work
aims to fill the gap that exists here regarding vehicle
routing problems in general. Preliminary testing shows
that the algorithm can achieve up to 24% efficiency in
distance cost. This work provides a framework on how
such a service can be provided and some data on how
it will help both the users and stakeholders
economically. Future researchers can use this work as a
template on building the proper digital infrastructure
needed to alleviate the congestion from roads, not only

V

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
I
V
er
si
on

 I

 Y
ea

r
20

24

67

© 2024 Global Journals

Author: Department of Information and Communication Technology,
Bangladesh University of Professionals, Dhaka, Bangladesh.
e-mail: tanzimndub@gmail.com

in Dhaka but any location that suffers from similar
problems.

II. Constructing the Application

 The algorithm needed an interface to be able to
solve real life tsp problems. We built a web application
by php language for that purpose. The application uses
laravel framework. It receives data from an API
simulated via another php library [4]. Both applications
have to be run simultaneously for the simulation to work.
We built up the input to be used for the API application.
We first took a map of Dhaka city. The API recognizes
nodes to be of a different colour from the map
background. Thus, we picked a black and white map.
We use the colour blue as the node colour. The specific
RGB code for the colour is (0,163,232). This is important
because the API has an option for specifying the colour
of the nodes. If the colour does not match up, the data
does not get properly rendered. A user can change the

colour code according to his need. Or they can simply
pick the option that says: “The colors of nodes on a
graph are different from background color”. This forces
the API to analyze the image for background colour and
any differences in the image. But this process is often
not reliable and has been noted to fail during testing.
User discretion is advised. The input image is then
analyzed by the application. It can accept anywhere
from 2 to 500 nodes. An average user is unlikely to need
that many destination points. For that and also for the
sake of simplicity, we chose 7 nodes over different parts
of the map. The image would be used as a template by
the algorithm to generate a second image. The newly
generated image will have paths denoted between the
nodes. The paths also have an approximate weight
value calculated by the algorithm. The algorithm uses
this new weighted graph format to calculate the most
optimal path of travel for the user.

Fig. 1: Nodes and Weight Value Calculation

The starting node is denoted by zero. Each
closest node is given a number of its own and denoted
in numerical order. Each node represents a destination,
with the node t-0 being an exception. It is considered to
be the starting point of the journey. Subsequent nodes
are denoted as t-1, t-2 etc. based on a rough estimation
of the distance between them. As an example, a map
with 7 nodes will have the following nodes: t-0, t-1, t-2, t-
3, t-4, t-5 and t-6. Once the nodes and weight paths are
calculated, the algorithm uses the data to internally
construct a data matrix. It uses this data to calculate the
most optimal path to travel from node t-0 to all the other
nodes and then come back to t-0. It presents us with the
result which includes the total distance covered by the
vehicle and also which path is optimal to be travelled.
The path should always start and end with the node 0.
The distance between the nodes is not calculated in any
specific unit, but a numerical value. That is because the
algorithm does not have a sense of scale and can’t find
out the distance between two nodes by simply looking
at the map. Attempts had been made to specify the

distance between the first two nodes and use it as a
scale for the rest, albeit unsuccessfully. This is one of
the major limitations of the current work. However, it still
informs a user which path is the most optimal. A user
can compare the value of distance for multiple paths
using the same map. It is not the smoothest way to
compare routes, but it gets the job done. Another gap in
the work is the inability of a user to update his path in
the middle of a trip. In real life, the situation of the road
changes with time. A road that was open moments ago
can be clogged with traffic in minutes. This isn’t even
taking into accounts events like accidents or temporary
closure of a road. In that case, the weight value of a
chosen path should also change. But the system lacks
any automatic update service that can alter the value of
the trip once it has begun. To achieve that we would
require a service that provides GPS update to the users
in real time. It would also have to be compatible with the
web application. We were unable to find such a service.
The best way a user can achieve that goal is to manually
input an image of the map after reaching every

Vehicle Routing Optimization with ANT Colony Optimization Algorithm Integrated with Map Analyzer API

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
I
V
er
si
on

 I

 Y
ea

r
20

24

68

© 2024 Global Journals

destination. This is cumbersome for an average user. It
would also slow down the trip as the web application
would have to calculate the optimal path every time a
destination is reached. So this work does not include
such a feature. It has been left for future researchers to
fill that gap. They can work in conjunction with
companies that provide Geolocation service to develop
an application that can receive data in real time. Or if
they are ambitious enough, they can even develop their
own geolocation service that has such a feature. In any
case, such an endeavor is beyond the scope of our
work. Currently services like google map calculate
routes by measuring the shortest distance between two
nodes. Any further destinations are measured only after
reaching the first destination. Then the shortest distance

to the next destination is calculated and thus it goes on
and on. This format of travelling is called greedy best
first search. And it gives suboptimal results in almost
every case, since the user is just travelling without any
consideration to future travel. As an example, we can
consider the bays29.tsp dataset in order to find the
most optimal algorithm for our system [5]. If we simply
calculate the closest distance from one node to the next,
then we get a distance of 6173 just to travel from the
starting node to the final destination. In order to get
back to the source, that distance is doubled, so the total
distance travelled is 12346. Even if we calculate the total
distance randomly from another starting point, the best
result we can get is 4955, which if doubled amounts to a
distance of 9910.

Table 1: Calculating Distance by Best First Search Method (Bays29.Tsp))

On the other hand,

the ACO implementation of

the same dataset generates

a distance

between the

ranges

of

9390 to 9612. These values were found by

using a java program that takes a fixed dataset and
calculates the shortest path. The program is fairly basic
and has no option to process image files. It had been

slightly modified to give time and memory cost as parts
of the result. The original code can be found in the
following link: https://github.com/LazoCoder/Ant-Col-
ony-Optimization-for-the-Traveling-Salesman-Problem
[6].

Vehicle Routing Optimization with ANT Colony Optimization Algorithm Integrated with Map Analyzer API

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
I
V
er
si
on

 I

 Y
ea

r
20

24

69

© 2024 Global Journals

Distance Distance
167 0
79 107
77 241

205 190
97 124

185 80
435 316
243 76
111 152
163 157
322 283
238 133
206 113
288 297
243 228
275 129
319 348
253 276
281 188
135 150
108 65
332 341
342 184
218 67
350 221
39 169

263 108
199 45

0 167
Total: 6173 Total: 4955

Fig. 2: ACO Run on Bays29.tsp (instance 1)

Fig. 3: ACO Run on Bays29.tsp (instance 2)

the cost of travel for not using an algorithm be A. Let the
cost of travel for using ACO be B. Let P be the
percentage of reduced cost. Let C be the cost of fuel
per unit. Let S be the saved cost in BDT. Thus the final
formula for cost efficiency stands at:

III. Integration With the Web
Application

The web application would serve as a user
friendly interface for our system. Since our focus was on
proving the usefulness of the system, the front end of
the web application was designed to be fairly basic. A
simple login and registration system at the top are the
only usable part of the page. A user has to register
himself with his name, email and password to access
the system.

Fig. 4: Landing Page of the Web App

Vehicle Routing Optimization with ANT Colony Optimization Algorithm Integrated with Map Analyzer API

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
I
V
er
si
on

 I

 Y
ea

r
20

24

70

© 2024 Global Journals

((C/100)) x ((100 x B) / A)

If we take 12346 as the highest range for greedy
search, 9390 is 76.05% of that value. If we take 9910 as
the lowest range for greedy search, 9612 is 96.99% of
that value. This gives us an efficiency rating anywhere
between 3% and 24%, depending on the situation. We
are using a range instead of a flat number because
there is a factor of randomness in ACO iterations. It may
not always give the best results. But the risk is
acceptable considering the benefits. So we can clearly
see that even the worst result from ACO is better than
the best result obtained by simply travelling blindly
through the nodes. And it is obtained in a very small
amount of time, 3-6 seconds. The memory consumption
is also low, around 55-56 mbs. Thus, we can achieve an
efficiency of 3-24%, just by spending a little bit of time
and memory space. A 24% efficiency rating is unlikely to
be replicated in real life due to issues like human error
and fuel inefficiency inherent to every vehicle. So we
considered 15% as a realistic estimate for calculating
fuel cost efficiency in previous sections of the paper. Let

The dashboard page was designed to have
only 2 menus; the dashboard itself and the map api. A
user could also check his profile by clicking on the
ribbon on the top right corner of the screen. He could
edit his profile, change his password, log out or even
delete his account from there. The map option was
designed to take a user to a page with an input form.

The input could accept image files and send it to the api
part of the system. Once an image file was selected, a
user would press the upload button. The interface would
then send that image file to the API and also keep a
copy of the file in its own storage. After the file is saved
on the map api, the interface would automatically
redirect itself to the path finding system.

Fig. 5:

Map API

Once on the system, a user can check his
previously uploaded maps on a list. The maps can be
deleted if deemed unnecessary. New image files can
also be directly uploaded by an input system on the

right side of the page. The users can go back to the
interface by clicking on the option “Go back to Main
Page”. It would take them back to the dashboard page.

Fig. 6:

Building an Optimal Path

Fig. 7:

Result of Path Calculation

Vehicle Routing Optimization with ANT Colony Optimization Algorithm Integrated with Map Analyzer API

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
I
V
er
si
on

 I

 Y
ea

r
20

24

71

© 2024 Global Journals

The users can select a map from the stored files
and specify how nodes would be detected on the
image. If a user selects the option to specify the colour
of the nodes, three additional input boxes would appear.
They would take the RGB value of the colour the nodes

are expected to represent. Once that is specified,
clicking on the button “Build a path” would activate the
algorithm and generate an optimal route through the
nodes.

Vehicle Routing Optimization with ANT Colony Optimization Algorithm Integrated with Map Analyzer API

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
I
V
er
si
on

 I

 Y
ea

r
20

24

72

© 2024 Global Journals

Once the nodes and weight paths are
calculated, the algorithm uses the data to internally
construct a data matrix. It uses this data to calculate the
most optimal path to travel from node t-0 to all the other
nodes and then come back to t-0. It presents us with the
result which includes the total distance covered by the
vehicle and also which path is optimal to be travelled.
The path should always start and end with the node 0.
The distance between the nodes is not calculated in any
specific unit, but a numerical value. That is because the
algorithm does not have a sense of scale and can’t find
out the distance between two nodes by simply looking
at the map. Attempts had been made to specify the
distance between the first two nodes and use it as a
scale for the rest, albeit unsuccessfully. This is one of
the major limitations of the current work. However, it still
informs a user which path is the most optimal. A user
can compare the value of distance for multiple paths
using the same map. It is not the smoothest way to
compare routes, but it gets the job done. It has been left
for future researchers to fill that gap. The interface was
published in a public site. It was able to function with
data inputs in real time. The codes for all the algorithms
used for our testing was also published accordingly.
Web application interface code:
https://github.com/navintanzim/acov1
Map API code:
https://github.com/navintanzim/aco-php
A demonstration video showing the whole process step
by step is located at:
https://github.com/navintanzim/acov2/blob/main/demo
%20video.wmv

IV. Discussion and Analysis of Result

We calculated multiple distances of optimal
paths by using ACO. We also calculated multiple
distances without using any algorithm. We found that
the highest distance measured for solving the
bays29.tsp dataset without using any algorithm is
12346. And the lowest cost for the same dataset using
ACO is 9390. Thus, the percentage of distance reduced
becomes:

Percentage = (100/12346) x 9390 = 76.0570225174 %

We then used the lowest distance value
calculated with the algorithm and compared it to the
highest distance value calculated without any algorithm.
Using the same formula to calculate the percentage of
reduced path, we got:

Percentage = (100/9910) x 9612 = 96.9929364279 %

So, the best efficiency rating we could calculate was:
(100 - 76.0570225174) = 23.9429774826%.

And the worst we could find was:
(100 - 96.9929364279) = 3.0070635721%.

Since these are fringe values, we consider a
middling 15% as a more realistic efficiency rating.

Calculation Time (in microseconds) - 0.0024600029

The total time taken to calculate the shortest
distance and generate a map for it was found to be
anywhere from 4 to 7 seconds. From previous testing,
we knew that the efficiency rating of using ACO was 15
on average. Using the formula for cost efficiency
equation mentioned in chapter 2, we calculated the cost
efficiency of fuel usage per litre of ocane. We used BDT
125 as the price point for a litre of octane according to
the latest govt. mandated price [7]. The cost efficiency
became:
Cost efficiency = (cost per unit of fuel/100) X efficiency

rating = (125/100) x 15 = 18.75 taka/litre

We could safely assume that the measurements
taken were mostly correct. While not perfect, the ACO
algorithm has been considered to be fairly accurate. It
aids in extracting logical information from credit data
with over 80% accuracy [8]. We also searched for how
much fuel an average travelling salesman might use per
day. Unfortunately, we found no available statistics on
that. The best information found by visiting online
forums was that a sedan running on natural gas might
spend 1000 taka per day. But this is not sufficient to
calculate a profit margin, simply because octane and
natural gas have different mileage and there are all
kinds of vehicles on the streets. A motorbike won’t have
the same fuel cost as a sedan. Without proper survey, it
is not possible to calculate this. We leave it for future
researchers to do so if they wish.

V. Conclusion

Traveling salesman problem is one of the most
important problems faced by vehicle routing
procedures. Choosing the appropriate algorithm for a
situation is necessary. In real life, the condition on the
road can change at any moment due to unforeseen
circumstances. In that case, the proper algorithm must
be implemented to find the quickest route efficiently.
This paper is a step forward in the effort to find the most
practical solution to resolve the issue of traffic
congestion. It demonstrated a practical implementation
of ACO to find the most optimal path for a travelling
salesman. It can function as a blueprint for future
services that can automatically update the routes based

The java implementation of ACO was unsuitable
for integration into a web framework. So a new
implementation by php was built. This system consisting
of a user interface and an API uses an image input to
find the optimal path. It gives an optimal path in only a
few microseconds. Such as:

Vehicle Routing Optimization with ANT Colony Optimization Algorithm Integrated with Map Analyzer API

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
D
)
 X

X
IV

 I
ss
ue

 I
I
V
er
si
on

 I

 Y
ea

r
20

24

73

© 2024 Global Journals

Powered by TCPDF (www.tcpdf.org)

on traffic congestion data received from satellites.
However the work has certain limitations as well. The
programs used in this work can handle only certain
types of datasets. It can’t use all forms of data as input.
For that reason, the pool of available datasets was very
limited and this research was forced to test the
programs on only 2 different datasets. It also lacked the
ability to update the routes based on traffic congestion
automatically. The update had to be done manually by a
user. Future researchers can work on these aspects to
further improve the usefulness of the system.

References Références Referencias

1. Khaled, Khonika, Mustafizur & Syed, “Possible
Causes & Solutions of Traffic Jam and Their Impact
on the Economy of Dhaka City”, Journal of
Management and Sustainability, vol. 2, 2012.

2. “https://www.worldbank.org/en/news/press-release
/2018/07/05/act-now-for-a-more-prosperous-and-
livable-dhaka,” September 23,10.30 p.m.

3. Sonjoy Chakraborty, “Traffic Congestion in Dhaka
City and its Economic Impact,” Dhaka University
Journal of Business Studies, vol. 1, no. 1, 2016.

4. “https://github.com/mgrechanik/ant-colony-
optimization,” April 15,10.40 p.m.

5. https://github.com/pdrozdowski/TSPLib.Net/blob/m
aster/TSPLIB95/tsp/bays29.tsp (March 3, 9.15 p.m)

6. https://github.com/LazoCoder/Ant-Colony-Optimi-
zation-for-the-Traveling-Salesman-Problem

7. “https://bpc.gov.bd/site/page/0d64c1df-2020-45fd-
9e07-673d972e1bec/-,” October 26, 1.30 p.m.

8. Cheng, Li. "Ant colony optimization algorithm in the
design of international trade early warning system."
12609 (2023).:126092J-126092J. doi:10.1117/12.
2671574

http://www.tcpdf.org
https://doi.org/10.1117/12.2671574
https://www.worldbank.org/en/news/press-release/2018/07/05/act-now-for-a-more-prosperous-and-livable-dhaka
https://github.com/pdrozdowski/TSPLib.Net/blob/master/TSPLIB95/tsp/bays29.tsp
https://bpc.gov.bd/site/page/0d64c1df-2020-45fd-9e07-673d972e1bec/-
https://github.com/mgrechanik/ant-colony-optimization
https://github.com/LazoCoder/Ant-Colony-Optimization-for-the-Traveling-Salesman-Problem

	Vehicle Routing Optimization with ANT Colony Optimization Algorithm Integrated with Map Analyzer API
	Author
	Keywords
	I. Introduction
	II. Constructing the Application
	III. Integration with the Web Application
	IV. Discussion and Analysis of Result
	V. Conclusion
	References Références Referencias

