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Abstract- Modern graphics processing units have evolved into
complex massively parallel computing engines that demand
sophisticated verification methodologies capable of validating
thousands of concurrent threads executing across intricate
memory hierarchies and specialized execution pipelines.
Traditional verification approaches struggle to adequately
address the unique challenges posed by Single Instruction,
Multiple Thread execution models, dynamic thread scheduling,
and complex interactions between compute units and multi-
level cache systems. This article presents a comprehensive
Universal ~ Verification =~ Methodology-based  testbench
architecture specifically designed for GPU compute unit
verification, addressing critical gaps in existing verification
practices through innovative SIMT-aware stimulus generation,
integrated memory subsystem modeling, and scalable test
generation frameworks. The proposed framework combines
established UVM principles with GPU-specific verification
techniques, creating a modular and reusable architecture that
supports diverse configurations while maintaining systematic
coverage collection and intelligent corner case detection.
Extensive experimental evaluation across representative GPU
workloads demonstrates substantial improvements in
verification quality, debug efficiency, and development
productivity compared to ftraditional approaches. The
architecture's parameterized design enables seamless
adaptation across different GPU generations while its
extensible structure provides a foundation for future verification
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challenges, including Al accelerators and chiplet-based
architectures.
Keywords:  GPU verification,  universal  verification

methodology (UVM), SIMT execution model, parallel
architecture testing, semiconductor validation.

[. INTRODUCTION

he rapid evolution of graphics processing units
(GPUs) from specialized graphics accelerators to

general-purpose  computing  engines  has
fundamentally  transformed  the  semiconductor
landscape. Modern  GPU  architectures  feature

thousands of parallel compute units executing complex
workloads ranging from artificial intelligence training to
high-performance scientific computing. These massively
parallel systems demand sophisticated verification
methodologies that can effectively validate their intricate
hardware designs before silicon fabrication.

The Verification Gap: While CPU and DSP designs
benefit from mature UVM frameworks optimized for
sequential and moderately parallel architectures, GPU
verification lacks standardized methodologies tailored
for massive parallelism. This gap becomes critical given
that verification consumes more design effort in modern
semiconductor projects [1], making efficient GPU
verification essential for industry competitiveness.
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Contemporary GPU compute units present
unprecedented verification challenges due to their
Single Instruction, Multiple Thread (SIMT) execution
model, hierarchical memory systems, and dynamic
thread scheduling mechanisms. Traditional verification
approaches often struggle to adequately model the
complex interactions between thousands of concurrent
threads, multi-level cache hierarchies, and specialized
execution pipelines that characterize modern GPU
architectures.

The Universal Verification Methodology (UVM)
has emerged as the industry standard for creating
modular, reusable verification environments. However,
applying UVM to GPU compute unit verification requires
specialized techniques that address the unique
characteristics of massively parallel architectures.
Conventional UVM test benches typically target
sequential or moderately parallel designs, leaving a
significant gap in methodologies specifically tailored for
GPU-scale parallelism.

Economic Stakes: With mask re-spins costing
tens of millions of dollars and GPUs consuming HPC
workloads [2], the economic imperative for
comprehensive pre-silicon validation has never been
greater. Current verification practices in the GPU
industry often rely on custom, design-specific test
benches that lack the modularity and reusability benefits
of standardized UVM frameworks, leading to substantial
development overhead and difficulties scaling
verification efforts across GPU generations.

This work introduces a comprehensive UVM-
based test bench architecture specifically designed for
GPU compute unit verification. The proposed framework
addresses key challenges in SIMT execution modeling,
memory hierarchy validation, and scalable test
generation while maintaining the modularity and
reusability principles that make UVM valuable for
complex system verification.

[I. BACKGROUND AND RELATED WORK

a) GPU Architecture Fundamentals

Table 1: UVM Component Architecture for GPU Verification [2, 5]

Component | Traditional UYM Role | GPU-Specific Enhancement Key Features
Agent Interface management SIMT-aware stimulus control Warp-based transaction handling
Driver Stimulus generation Thread-level instruction streams Parallel execution modeling
Monitor Response collection Multi-thread result capture Performance metric tracking
Scoreboard Result verification Parallel checking mechanisms Memory coherency validation
Sequencer Test coordination Warp scheduling simulation Dynamic thread management

Modern GPU architectures employ the Single
Instruction, Multiple Thread (SIMT) execution model,
where groups of threads called warps execute identical
instructions across different data elements. Each
streaming multiprocessor (SM) contains multiple CUDA
cores organized into execution units that process warps
simultaneously. The compute unit organization includes
specialized function units, register files, and shared
memory banks that enable efficient parallel processing.
The memory hierarchy spans multiple levels, from per-
thread registers to shared memory accessible within
thread blocks, and extends to global memory accessed
by all threads. Thread scheduling mechanisms
dynamically manage warp execution, handling divergent
branches through serialization and reconvergence
techniques. Multi-SM architectures present significant
parallelism challenges as hundreds of SMs must
coordinate  memory accesses while maintaining
coherency across thousands of concurrent threads.

b) Universal Verification Methodology (UVM) Overview
UVM provides a standardized framework built

on System Verilog that emphasizes modularity,

reusability, and systematic verification planning. Core
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architectural components include agents, drivers,
monitors, and scoreboards that work together to create
comprehensive  verification environments. The
methodology promotes layered test bench architectures
where stimulus generation, checking, and coverage
collection are clearly separated.

Constrained-random  verification  generates
diverse test scenarios through intelligent randomization
within  specified constraints, while coverage-driven
testing ensures verification completeness through
systematic metric tracking [3]. Industry adoption has
grown substantially as organizations recognize UVM's
ability to reduce verification time and improve test
quality across complex system designs.

c) Current GPU Verification Approaches

Traditional  verification — methodologies  for
parallel architectures often employ directed testing
combined with basic random stimulus generation.
These approaches struggle with the massive state
spaces inherent in GPU designs, leading to incomplete
corner case coverage. Existing UVM applications in CPU
and DSP verification have demonstrated success in
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sequential and moderately parallel contexts but require
significant adaptation for GPU-scale parallelism.

Current GPU verification practices frequently rely on
custom test benches developed for specific projects,
resulting in  limited reusability and substantial
redevelopment overhead. The gaps in current practices
include inadequate SIMT modeling, insufficient memory
hierarchy validation, and a lack of scalable test
generation frameworks designed for massively parallel
architectures.

d) Related Research and Industry Solutions

Academic contributions to parallel architecture
verification have explored formal methods and model
checking techniques, though scalability remains

challenging for GPU-sized designs. Commercial tools
from major EDA vendors (Synopsys, Siemens,
Cadence) provide some GPU-specific features, but
comprehensive frameworks tailored for compute unit
verification remain limited [4].

Historical Context: Early GPU generations
suffered from memory ordering violations and
divergence handling issues that escaped pre-silicon
validation, highlighting the critical need for specialized
verification approaches. Comparative analysis reveals
that while traditional verification approaches work well
for smaller parallel systems, they fail to scale effectively
to the thousands of threads typical in modern GPU
architectures.

Table 2: Verification Challenge Categories and Solutions [3, 4]

Challenge Category Traditional Approach

Proposed Solution Implementation Benefit

Limitations
Thread Divergence Sequential modeling Sequential modeling Comprehensive branch
inadequate inadequate coverage

Memory Hierarchy Simple memory models

Multi-level cache simulation Realistic timing validation

Scalability Resource constraints Parameterized architecture Efficient large-scale testing
Corner Cases Random testing gaps Intelligent stimulus generation Enhanced bug detection
Reusability Design-specific testbenches Modular UVYM framework Cross-project deployment

CHALLENGES IN GPU CoMPUTE UNIT
VERIFICATION

[11.

a) SIMT Execution Modeling Complexity

Thread divergence occurs when threads within
a warp follow different execution paths due to
conditional branches, requiring sophisticated modeling
to capture all possible divergence patterns.
Convergence behavior must be accurately simulated as
threads rejoin common execution paths after divergent
sections complete.

Warp-level  scheduling involves  complex
arbitration policies that determine execution order
among ready warps, while register file and shared
memory interactions create intricate dependencies that
traditional verification approaches struggle to model
effectively. These interactions become particularly
challenging when multiple warps access shared
resources simultaneously.

b) Scalability Requirements

Multi-SM and multi-thread verification present
exponential growth in verification complexity as thread
counts increase. Performance considerations for large-
scale simulation often limit the practical verification
scope, forcing engineers to use reduced-scale models
that may miss critical interactions occurring only at full
scale.

Resource management becomes critical when
simulating thousands of concurrent threads, while test
parallelization requires careful coordination to maintain
deterministic behavior across distributed verification

runs [5]. Memory bandwidth limitations in simulation
environments  further constrain  the achievable
verification scale.

c) Memory Hierarchy Integration

L1 cache and shared memory modeling must
accurately represent timing, capacity, and coherence
behavior to enable realistic verification scenarios. Bank
conflicts represent a classic GPU hazard where multiple
threads simultaneously access the same memory bank,

creating performance bottlenecks that must be
systematically verified.
Global memory access patterns involve

complex address translation and banking schemes that
significantly impact performance and correctness.
Cache coherency and memory consistency verification
require sophisticated protocols that ensure data integrity
across thousands of concurrent memory operations.

d) Coverage and Corner Case Detection

Identifying critical verification scenarios requires
understanding the complex interactions between thread
scheduling, memory access patterns, and execution
pipeline behavior. Warp divergence corner cases often
involve specific combinations of branch conditions and
data patterns that occur infrequently in random testing.

Memory hazard detection encompasses various
conflict scenarios, including bank conflicts, cache line
contention, and memory ordering violations that can
compromise system correctness. Validation of these
hazards demands systematic coverage collection and
intelligent stimulus generation beyond conventional
verification capabilities.
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IV. PROPOSED UVM-BASED TEST BENCH
ARCHITECTURE
a) Overall Framework Design

The proposed test bench architecture follows
established modular design principles, organizing
components into distinct layers that separate stimulus
generation, monitoring, and checking functions. The
component hierarchy builds upon standard UVM
patterns while incorporating GPU-specific extensions for
SIMT execution modeling and memory subsystem
integration.

The framework implements comprehensive
parameterization capabilites that allow dynamic
configuration of thread counts, SIMD widths, and
memory hierarchy parameters without requiring
testbench restructuring. Configurability features extend
to execution models, enabling seamless adaptation
across different GPU architectures and compute unit
configurations.

b)  SIMT-Aware Agent Design

Thread-level stimulus generation incorporates
intelligent randomization that respects SIMT execution
constraints while exploring diverse execution patterns.
The agent architecture generates coherent instruction
streams that model realistic GPU workloads, including
vector operations, memory access patterns, and control
flow scenarios typical in compute kernels.

Warp-based sequence modeling captures the
collective behavior of thread groups, ensuring that the
generated stimulus reflects actual GPU execution
semantics. Dynamic thread management capabilities
handle divergence and convergence scenarios
automatically, adjusting stimulus generation based on

runtime execution paths [6]. The design supports
configurable warp sizes and thread block organizations
to match target GPU architectures.

c) Memory Subsystem Integration

The L1 and shared memory modeling approach
implements accurate timing and capacity constraints
that reflect real GPU memory hierarchies. Memory
transaction handling incorporates banking schemes,
conflict detection, and arbitration policies that mirror
actual hardware behavior.

Cache behavior simulation includes hit/miss
modeling, replacement policies, and coherence
protocols essential for realistic verification scenarios.
The subsystem integrates tightly with the SIMT execution
model to ensure memory operations align with thread
execution patterns and maintain consistency across
concurrent accesses.

d) Scoreboard and Checking Mechanisms
Result verification strategies employ layered
checking approaches that validate both functional

correctness and performance characteristics. The
scoreboard  architecture supports parallel  result
collection from multiple execution units  while

maintaining temporal ordering requirements for memory
operations.
Performance monitoring integration tracks key

metrics, including memory bandwidth utilization,
execution unit occupancy, and cache hit rates
throughout test execution [7]. Error detection and
reporting  systems  provide detailed diagnostic

information that facilitates rapid debugging of complex
parallel execution scenarios.

Table 3. Framework Configuration Parameters [6, 7]

Parameter Category Configuration Options Impact on Verification Scalability Range
Thread Count Warp size variations Parallel execution coverage Single warp to full SM
SIMD Width Architectural variants Instruction throughput modeling 8-bit to 64-bit operation
Memory Levels Cache hierarchy depth Memory access validation L1 to global memory
SM Count Multi-processor configs System-level verification Single to hundreds of SMs
Workload Types Kernel classifications Application-specific testing Graphics to Al workloads

V. IMPLEMENTATION DETAILS
a) Core Components Implementation

The UVM agent architecture for GPU compute
units extends standard UVM patterns with specialized
components for SIMT execution modeling. Driver
components generate instruction streams that respect
architectural constraints while exploring comprehensive
execution scenarios.

Sequence library design organizes test patterns
into hierarchical collections that support both directed
and random testing approaches. Monitor component
specifications capture execution results, memory
transactions, and performance metrics across multiple
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abstraction levels, enabling comprehensive validation of
compute unit behavior.

b) Test Generation Framework

Hybrid Testing Strategy: Constrained-random test
generation strategies employ intelligent constraints that
generate realistic GPU workloads while ensuring
coverage of critical execution scenarios. The framework
incorporates domain-specific knowledge about GPU
programming patterns to guide stimulus generation
toward meaningful test cases.

Directed test scenario development focuses on

specific corner cases and known problematic execution
patterns that random testing might miss. Al workload
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modeling creates representative test patterns that mirror
real-world neural network training scenarios, including
matrix operations, convolution kemels, and transformer
computations.

c) Configuration and Parameterization

Design parameter handling supports runtime
modification of SIMD widths, thread counts, and
memory configurations without requiring testbench
recompilation. The configuration system maintains
consistency across related parameters while allowing
independent adjustment of specific architectural
features.

Runtime configuration management enables
dynamic adaptation to different GPU architectures within
single test runs. Multi-configuration test execution allows
systematic exploration of parameter spaces to ensure
comprehensive coverage across supported design
variants.

d) Tool Integration and Workflow

Simulator compatibility encompasses major
commercial simulation platforms, with optimization
strategies that maximize performance for large-scale
parallel verification scenarios. Integration with Verdi/DVE
debug environments provides comprehensive waveform

analysis and debugging capabilities specifically
optimized for SIMT execution patterns.
Emulation platform support enables

acceleration of long-running verification scenarios
through specialized interfaces that maintain functional
accuracy while improving execution speed [8].
Continuous integration with EDA tool ecosystems
(Synopsys, Siemens, Cadence) ensures seamless
deployment within existing design flows.

VI. EXPERIMENTAL EVALUATION

a) Experimental Setup

The test environment configuration utilizes
industry-standard simulation platforms running on high-
performance computing clusters with sufficient memory
capacity to support large-scale parallel verification
scenarios.  Benchmark  selection  focuses  on
representative  GPU compute workloads, including
vector arithmetic operations, matrix multiplications, and
memory-intensive kernels that stress different aspects of
the compute unit architecture.

Evaluation criteria  encompass functional
correctness, performance scalability, and resource
efficiency across varying architectural parameters. The
methodology employs systematic parameter sweeps
covering thread counts from small warps to full-scale
configurations.

b) Scalability Analysis

Performance scaling analysis demonstrates
consistent behavior as thread counts and SIMD widths
increase, with simulation overhead growing predictably

rather than exponentially. Memory usage patterns show
efficient resource utilization even with thousands of
concurrent threads, indicating effective test bench
architecture design.

Multi-SM verification scalability testing reveals
the framework's capability to handle complex multi-core
scenarios while maintaining acceptable simulation
performance.

c) Coverage Analysis

Quantified Results: SIMT-aware stimulus generation
achieved increase in branch divergence coverage
compared to traditional random testing approaches.
Functional coverage metrics demonstrate
comprehensive exploration of critical execution paths,
including divergent thread scenarios and memory
access patterns that conventional approaches often

miss.
Corner case detection effectiveness shows

significant improvement in identifying rare but critical
execution combinations that could lead to functional
failures. The framework detected more memory ordering
violations in representative test scenarios compared to
baseline approaches.

d) Industry Case Studies
Real-world application examples from leading
GPU development organizations demonstrate practical

deployment  success across multiple  product
generations.  Implementation  experiences  show
successful  adaptation to diverse  architectural

requirements while maintaining framework consistency
and reusability.

Measurable Impact: Debug turnaround reduced in case
studies through integrated monitoring and systematic
coverage tracking. Bug detection statistics indicate
enhanced pre-silicon validation capability, with earlier
identification of critical functional issues that previously
escaped to post-silicon phases.

VII. RESULTS AND DISCUSSION
a) Performance Metrics

Simulation  speed  measurements  show
competitive performance compared to custom test
benches while providing significantly enhanced
functionality and reusability. Resource utilization remains
within  acceptable bounds even for large-scale
verification scenarios.

Test bench setup and configuration time
demonstrates substantial reduction compared to

traditional approaches, with parameterized architecture
enabling rapid adaptation to new GPU designs.

b) Quality Improvements

Pre-silicon bug detection rates show marked
improvement  through  systematic  coverage-driven
testing and intelligent stimulus generation. The
framework's ability to exercise diverse execution
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scenarios leads to earlier identification of functional
issues that might otherwise escape initial validation
phases.

Post-silicon escape reduction demonstrates the
practical value of comprehensive pre-silicon verification,
with fewer critical issues discovered during hardware
bring-up phases.

c) Productivity Benefits

Engineer productivity gains manifest through
reduced test bench development time and enhanced
debugging capabilities that accelerate verification
closure. Reusability across GPU generations provides
substantial long-term value, with framework adaptation
requiring minimal effort compared to complete test
bench redevelopment.

Framework  adoption  experiences  show
reasonable learning curves for engineers familiar with
UVM methodology, with specialized GPU features
building naturally upon established verification
practices.

d) Limitations and Trade-offs

Current framework limitations include simulation
performance constraints when modeling extremely large
thread counts and complex memory hierarchies
simultaneously. Resource requirements exceed those of
simple directed testing approaches, though the
enhanced verification capability justifies the additional
computational overhead.

Areas for future improvement include further
optimization of memory modeling accuracy and
simulation  performance, along with enhanced
automation for coverage-driven test generation.

VIII. INDUSTRY IMPACT AND APPLICATIONS

a) Semiconductor Industry Adoption

Target organizations include major GPU
manufacturers, custom silicon developers, and
semiconductor companies developing Al accelerators
and graphics processing solutions. Integration with EDA
vendor ecosysterns (Synopsys VCS, Siemens Questa,
Cadence Xcelium) requires minimal disruption to
established methodologies.

ROI Analysis: Given that mask re-spins cost
tens of millions of dollars, the framework's improved pre-
silicon bug detection provides substantial business
impact. Early validation of critical functional issues
translates directly to reduced silicon risk and faster time-
to-market.

Primary use cases span pre-silicon validation of
compute pipelines, verification of memory subsystems,
and validation of complex parallel execution scenarios
across diverse GPU architectures.

b) Technology Transfer Considerations
Implementation requirements include standard
UVM simulation environments, adequate computational
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and

verification,
databases

resources for large-scale parallel
integration with  existing design
verification flows.

Training and skill development focus on GPU-
specific verification techniques rather than fundamental
UVM concepts, enabling rapid adoption by experienced
verification teams.

c) Future GPU Architecture Support
Extensibility to emerging GPU designs

leverages the  parameterized  architecture  to
accommodate new execution models, memory
hierarchies, and specialized compute units. Al

accelerator verification applications represent a natural
extension area, with SIMT-aware stimulus generation
adapting readily to tensor processing units and neural
network accelerators.

Chiplet-based GPU  architectures  require
extended verification capabiliies for inter-chiplet
communication  protocols,  building  upon  the

framework's modular design principles.
[X. FUTURE WORK AND EXTENSIONS

a) Advanced Verification Techniques

Al-driven verification using machine learning-
guided coverage closure represents a promising
extension opportunity. Formal verification integration
could complement simulation-based approaches with
mathematical proof techniques for critical properties.

Hybrid verification methodologies combining
formal methods, simulation, and emulation platforms
offer potential for comprehensive validation across
different abstraction levels [9].

b) Emerging Technology Support

Chiplet-based GPU  architectures  require
extended verification capabiliies for inter-chiplet
communication protocols and distributed execution
coordination. The framework's modular design provides
a foundation for modeling complex chiplet interactions
and verifying system-level behavior.

Heterogeneous computing platforms
incorporating  CPUs, GPUs, and  specialized
accelerators demand comprehensive verification of data
movement and coordination protocols.

c) Automation and Intelligence

ML-guided coverage closure could leverage
execution pattern analysis to automatically generate
targeted stimuli for specific verification scenarios.
Intelligent coverage closure strategies might employ
machine learmning techniques to predict which test
scenarios will most effectively improve coverage
metrics.

Self-adapting verification frameworks could
automatically tune parameters based on design
characteristics and verification progress, reducing
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manual configuration overhead while

verification efficiency.

optimizing

Table 4: Performance and Quality Metrics Comparison [8, 9]

Metric Category Traditional Methods

Proposed Framework Improvement Factor

Coverage

Directed + Random testing
Completeness

Enhanced scenario

SIMT-aware generation )
exploration

Debug Efficiency Manual analysis

Integrated monitoring Accelerated issue resolution

Test bench Reusability Project-specific design

Parameterized architecture Cross-generation deployment

Setup Time Custom development

Configuration-based Reduced initial overhead

Bug Detection Timing Post-silicon discovery

Pre-silicon identification Earlier validation cycles

X. CONCLUSION

The development of a scalable UVM-based test
bench architecture for GPU compute units addresses
critical gaps in contemporary semiconductor verification
methodologies, providing the industry with a systematic
approach to validating massively parallel architectures.
This comprehensive framework successfully bridges the
divide between established UVM practices and the
unique requirements of GPU verification, delivering
measurable benefits in coverage completeness, debug
efficiency, and verification reusability across diverse
architectural configurations.

Through its SIMT-aware stimulus generation,
integrated  memory  hierarchy  modeling, and
parameterized design approach, the framework
demonstrates substantial improvements in pre-silicon
validation quality while reducing overall verification
development overhead. The architecture's extensibility to
Al accelerators, chiplet-based designs, and future
computing paradigms positions it as a valuable long-
term asset for semiconductor organizations seeking to
maintain verification quality as architectural complexity
increases. Industry adoption of this approach promises
to elevate GPU verification practices from ad-hoc,
project-specific solutions toward standardized, reusable
methodologies that can scale with the demanding
requirements of next-generation parallel computing
architectures.
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