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   Abstract-

 
Modern graphics processing units have evolved into complex massively parallel 

computing engines that demand sophisticated verification methodologies capable of validating 
thousands of concurrent threads executing across intricate memory hierarchies and specialized 
execution pipelines. Traditional verification approaches struggle to adequately address the 
unique challenges posed by Single Instruction, Multiple Thread execution models, dynamic 
thread scheduling, and complex interactions between compute units and multi-level cache 
systems. This article presents a comprehensive Universal Verification Methodology-based 
testbench architecture specifically designed for GPU compute unit verification, addressing critical 
gaps in existing verification practices through innovative SIMT-aware stimulus generation, 
integrated memory subsystem modeling, and scalable test generation frameworks. The 
proposed framework combines established UVM principles with GPU-specific verification 
techniques, creating a modular and reusable architecture that supports diverse configurations 
while maintaining systematic coverage collection and intelligent corner case detection. 
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 Abstract- Modern graphics processing units have evolved into 
complex massively parallel computing engines that demand 
sophisticated verification methodologies capable of validating 
thousands of concurrent threads executing across intricate 
memory hierarchies and specialized execution pipelines. 
Traditional verification approaches struggle to adequately 
address the unique challenges posed by Single Instruction, 
Multiple Thread execution models, dynamic thread scheduling, 
and complex interactions between compute units and multi-
level cache systems. This article presents a comprehensive 
Universal Verification Methodology-based testbench 
architecture specifically designed for GPU compute unit 
verification, addressing critical gaps in existing verification 
practices through innovative SIMT-aware stimulus generation, 
integrated memory subsystem modeling, and scalable test 
generation frameworks. The proposed framework combines 
established UVM principles with GPU-specific verification 
techniques, creating a modular and reusable architecture that 
supports diverse configurations while maintaining systematic 
coverage collection and intelligent corner case detection. 
Extensive experimental evaluation across representative GPU 
workloads demonstrates substantial improvements in 
verification quality, debug efficiency, and development 
productivity compared to traditional approaches. The 
architecture's parameterized design enables seamless 
adaptation across different GPU generations while its 
extensible structure provides a foundation for future verification 

challenges, including AI accelerators and chiplet-based 
architectures. 

Keywords: GPU verification, universal verification 
methodology (UVM), SIMT execution model, parallel 
architecture testing, semiconductor validation. 

I. Introduction 

he rapid evolution of graphics processing units 
(GPUs) from specialized graphics accelerators to 
general-purpose computing engines has 

fundamentally transformed the semiconductor 
landscape. Modern GPU architectures feature 
thousands of parallel compute units executing complex 
workloads ranging from artificial intelligence training to 
high-performance scientific computing. These massively 
parallel systems demand sophisticated verification 
methodologies that can effectively validate their intricate 
hardware designs before silicon fabrication. 
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The Verification Gap: While CPU and DSP designs 
benefit from mature UVM frameworks optimized for 
sequential and moderately parallel architectures, GPU 
verification lacks standardized methodologies tailored 
for massive parallelism. This gap becomes critical given 
that verification consumes more design effort in modern 
semiconductor projects [1], making efficient GPU 
verification essential for industry competitiveness.

Figure



Contemporary GPU compute units present 
unprecedented verification challenges due to their 
Single Instruction, Multiple Thread (SIMT) execution 
model, hierarchical memory systems, and dynamic 
thread scheduling mechanisms. Traditional verification 
approaches often struggle to adequately model the 
complex interactions between thousands of concurrent 
threads, multi-level cache hierarchies, and specialized 
execution pipelines that characterize modern GPU 
architectures. 

The Universal Verification Methodology (UVM) 
has emerged as the industry standard for creating 
modular, reusable verification environments. However, 
applying UVM to GPU compute unit verification requires 
specialized techniques that address the unique 
characteristics of massively parallel architectures. 
Conventional UVM test benches typically target 
sequential or moderately parallel designs, leaving a 
significant gap in methodologies specifically tailored for 
GPU-scale parallelism. 

Economic Stakes: With mask re-spins costing 
tens of millions of dollars and GPUs consuming HPC 
workloads [2], the economic imperative for 
comprehensive pre-silicon validation has never been 
greater. Current verification practices in the GPU 
industry often rely on custom, design-specific test 
benches that lack the modularity and reusability benefits 
of standardized UVM frameworks, leading to substantial 
development overhead and difficulties scaling 
verification efforts across GPU generations. 

This work introduces a comprehensive UVM-
based test bench architecture specifically designed for 
GPU compute unit verification. The proposed framework 
addresses key challenges in SIMT execution modeling, 
memory hierarchy validation, and scalable test 
generation while maintaining the modularity and 
reusability principles that make UVM valuable for 
complex system verification. 

II. Background and Related Work 

a) GPU Architecture Fundamentals 

Table 1: UVM Component Architecture for GPU Verification [2, 5] 

Component Traditional UVM Role GPU-Specific Enhancement Key Features 
Agent Interface management SIMT-aware stimulus control Warp-based transaction handling 

Driver Stimulus generation Thread-level instruction streams Parallel execution modeling 

Monitor Response collection Multi-thread result capture Performance metric tracking 
Scoreboard Result verification Parallel checking mechanisms Memory coherency validation 
Sequencer Test coordination Warp scheduling simulation Dynamic thread management 

 
Modern GPU architectures employ the Single 

Instruction, Multiple Thread (SIMT) execution model, 
where groups of threads called warps execute identical 
instructions across different data elements. Each 
streaming multiprocessor (SM) contains multiple CUDA 
cores organized into execution units that process warps 
simultaneously. The compute unit organization includes 
specialized function units, register files, and shared 
memory banks that enable efficient parallel processing. 
The memory hierarchy spans multiple levels, from per-
thread registers to shared memory accessible within 
thread blocks, and extends to global memory accessed 
by all threads. Thread scheduling mechanisms 
dynamically manage warp execution, handling divergent 
branches through serialization and reconvergence 
techniques. Multi-SM architectures present significant 
parallelism challenges as hundreds of SMs must 
coordinate memory accesses while maintaining 
coherency across thousands of concurrent threads. 

b) Universal Verification Methodology (UVM) Overview 
UVM provides a standardized framework built 

on System Verilog that emphasizes modularity, 
reusability, and systematic verification planning. Core 

architectural components include agents, drivers, 
monitors, and scoreboards that work together to create 
comprehensive verification environments. The 
methodology promotes layered test bench architectures 
where stimulus generation, checking, and coverage 
collection are clearly separated. 

Constrained-random verification generates 
diverse test scenarios through intelligent randomization 
within specified constraints, while coverage-driven 
testing ensures verification completeness through 
systematic metric tracking [3]. Industry adoption has 
grown substantially as organizations recognize UVM's 
ability to reduce verification time and improve test 
quality across complex system designs. 

c) Current GPU Verification Approaches 
Traditional verification methodologies for 

parallel architectures often employ directed testing 
combined with basic random stimulus generation. 
These approaches struggle with the massive state 
spaces inherent in GPU designs, leading to incomplete 
corner case coverage. Existing UVM applications in CPU 
and DSP verification have demonstrated success in 
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sequential and moderately parallel contexts but require 
significant adaptation for GPU-scale parallelism. 
Current GPU verification practices frequently rely on 
custom test benches developed for specific projects, 
resulting in limited reusability and substantial 
redevelopment overhead. The gaps in current practices 
include inadequate SIMT modeling, insufficient memory 
hierarchy validation, and a lack of scalable test 
generation frameworks designed for massively parallel 
architectures. 

  

challenging for GPU-sized designs. Commercial tools 
from major EDA vendors (Synopsys, Siemens, 
Cadence) provide some GPU-specific features, but 
comprehensive frameworks tailored for compute unit 
verification remain limited [4]. 

Historical Context: Early GPU generations 
suffered from memory ordering violations and 
divergence handling issues that escaped pre-silicon 
validation, highlighting the critical need for specialized 
verification approaches. Comparative analysis reveals 
that while traditional verification approaches work well 
for smaller parallel systems, they fail to scale effectively 
to the thousands of threads typical in modern GPU 
architectures. 

Table 2: Verification Challenge Categories and Solutions [3, 4] 

Challenge Category Traditional Approach 
Limitations Proposed Solution Implementation Benefit 

Thread Divergence Sequential modeling 
inadequate 

Sequential modeling 
inadequate 

Comprehensive branch 
coverage 

Memory Hierarchy Simple memory models Multi-level cache simulation Realistic timing validation 
Scalability Resource constraints Parameterized architecture Efficient large-scale testing 

Corner Cases Random testing gaps Intelligent stimulus generation Enhanced bug detection 
Reusability Design-specific testbenches Modular UVM framework Cross-project deployment 

 

III. Challenges in GPU Compute Unit 
Verification 

a) SIMT Execution Modeling Complexity 
Thread divergence occurs when threads within 

a warp follow different execution paths due to 
conditional branches, requiring sophisticated modeling 
to capture all possible divergence patterns. 
Convergence behavior must be accurately simulated as 
threads rejoin common execution paths after divergent 
sections complete. 

Warp-level scheduling involves complex 
arbitration policies that determine execution order 
among ready warps, while register file and shared 
memory interactions create intricate dependencies that 
traditional verification approaches struggle to model 
effectively. These interactions become particularly 
challenging when multiple warps access shared 
resources simultaneously. 

b) Scalability Requirements 

Multi-SM and multi-thread verification present 
exponential growth in verification complexity as thread 
counts increase. Performance considerations for large-
scale simulation often limit the practical verification 
scope, forcing engineers to use reduced-scale models 
that may miss critical interactions occurring only at full 
scale. 

Resource management becomes critical when 
simulating thousands of concurrent threads, while test 
parallelization requires careful coordination to maintain 
deterministic behavior across distributed verification 

runs [5]. Memory bandwidth limitations in simulation 
environments further constrain the achievable 
verification scale. 

c) Memory Hierarchy Integration 
L1 cache and shared memory modeling must 

accurately represent timing, capacity, and coherence 
behavior to enable realistic verification scenarios. Bank 
conflicts represent a classic GPU hazard where multiple 
threads simultaneously access the same memory bank, 
creating performance bottlenecks that must be 
systematically verified. 

Global memory access patterns involve 
complex address translation and banking schemes that 
significantly impact performance and correctness. 
Cache coherency and memory consistency verification 
require sophisticated protocols that ensure data integrity 
across thousands of concurrent memory operations. 

d) Coverage and Corner Case Detection 
Identifying critical verification scenarios requires 

understanding the complex interactions between thread 
scheduling, memory access patterns, and execution 
pipeline behavior. Warp divergence corner cases often 
involve specific combinations of branch conditions and 
data patterns that occur infrequently in random testing. 
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Building a Scalable UVM-based Test Bench for GPU Compute Units

d) Related Research and Industry Solutions
Academic contributions to parallel architecture 

verification have explored formal methods and model 
checking techniques, though scalability remains 

Memory hazard detection encompasses various 
conflict scenarios, including bank conflicts, cache line 
contention, and memory ordering violations that can 
compromise system correctness. Validation of these 
hazards demands systematic coverage collection and 
intelligent stimulus generation beyond conventional 
verification capabilities.



 
 

a) Overall Framework Design 
The proposed test bench architecture follows 

established modular design principles, organizing 
components into distinct layers that separate stimulus 
generation, monitoring, and checking functions. The 
component hierarchy builds upon standard UVM 
patterns while incorporating GPU-specific extensions for 
SIMT execution modeling and memory subsystem 
integration. 

The framework implements comprehensive 
parameterization capabilities that allow dynamic 
configuration of thread counts, SIMD widths, and 
memory hierarchy parameters without requiring 
testbench restructuring. Configurability features extend 
to execution models, enabling seamless adaptation 
across different GPU architectures and compute unit 
configurations. 

b) SIMT-Aware Agent Design 
Thread-level stimulus generation incorporates 

intelligent randomization that respects SIMT execution 
constraints while exploring diverse execution patterns. 
The agent architecture generates coherent instruction 
streams that model realistic GPU workloads, including 
vector operations, memory access patterns, and control 
flow scenarios typical in compute kernels. 

Warp-based sequence modeling captures the 
collective behavior of thread groups, ensuring that the 
generated stimulus reflects actual GPU execution 
semantics. Dynamic thread management capabilities 
handle divergence and convergence scenarios 
automatically, adjusting stimulus generation based on 

runtime execution paths [6]. The design supports 
configurable warp sizes and thread block organizations 
to match target GPU architectures. 

c) Memory Subsystem Integration 
The L1 and shared memory modeling approach 

implements accurate timing and capacity constraints 
that reflect real GPU memory hierarchies. Memory 
transaction handling incorporates banking schemes, 
conflict detection, and arbitration policies that mirror 
actual hardware behavior. 

Cache behavior simulation includes hit/miss 
modeling, replacement policies, and coherence 
protocols essential for realistic verification scenarios. 
The subsystem integrates tightly with the SIMT execution 
model to ensure memory operations align with thread 
execution patterns and maintain consistency across 
concurrent accesses. 

d) Scoreboard and Checking Mechanisms 
Result verification strategies employ layered 

checking approaches that validate both functional 
correctness and performance characteristics. The 
scoreboard architecture supports parallel result 
collection from multiple execution units while 
maintaining temporal ordering requirements for memory 
operations. 

Performance monitoring integration tracks key 
metrics, including memory bandwidth utilization, 
execution unit occupancy, and cache hit rates 
throughout test execution [7]. Error detection and 
reporting systems provide detailed diagnostic 
information that facilitates rapid debugging of complex 
parallel execution scenarios. 

Table 3: Framework Configuration Parameters [6, 7] 

Parameter Category Configuration Options Impact on Verification Scalability Range 
Thread Count Warp size variations Parallel execution coverage Single warp to full SM 
SIMD Width Architectural variants Instruction throughput modeling 8-bit to 64-bit operation 

Memory Levels Cache hierarchy depth Memory access validation L1 to global memory 
SM Count Multi-processor configs System-level verification Single to hundreds of SMs 

Workload Types Kernel classifications Application-specific testing Graphics to AI workloads 

V. Implementation Details 

a) Core Components Implementation 
The UVM agent architecture for GPU compute 

units extends standard UVM patterns with specialized 
components for SIMT execution modeling. Driver 
components generate instruction streams that respect 
architectural constraints while exploring comprehensive 
execution scenarios. 

Sequence library design organizes test patterns 
into hierarchical collections that support both directed 
and random testing approaches. Monitor component 
specifications capture execution results, memory 
transactions, and performance metrics across multiple 

abstraction levels, enabling comprehensive validation of 
compute unit behavior. 

  
 

 

Directed test scenario development focuses on 
specific corner cases and known problematic execution 
patterns that random testing might miss. AI workload 
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IV. Proposed UVM-based Test Bench 
Architecture

b) Test Generation Framework

Hybrid Testing Strategy: Constrained-random test 
generation strategies employ intelligent constraints that 
generate realistic GPU workloads while ensuring 
coverage of critical execution scenarios. The framework 
incorporates domain-specific knowledge about GPU 
programming patterns to guide stimulus generation 
toward meaningful test cases.



modeling creates representative test patterns that mirror 
real-world neural network training scenarios, including 
matrix operations, convolution kernels, and transformer 
computations. 

  

 

 

  

 

 

 

 

VI. Experimental Evaluation 

a) Experimental Setup 
The test environment configuration utilizes 

industry-standard simulation platforms running on high-
performance computing clusters with sufficient memory 
capacity to support large-scale parallel verification 
scenarios. Benchmark selection focuses on 
representative GPU compute workloads, including 
vector arithmetic operations, matrix multiplications, and 
memory-intensive kernels that stress different aspects of 
the compute unit architecture. 

Evaluation criteria encompass functional 
correctness, performance scalability, and resource 
efficiency across varying architectural parameters. The 
methodology employs systematic parameter sweeps 
covering thread counts from small warps to full-scale 
configurations. 

b) Scalability Analysis 
Performance scaling analysis demonstrates 

consistent behavior as thread counts and SIMD widths 
increase, with simulation overhead growing predictably 

rather than exponentially. Memory usage patterns show 
efficient resource utilization even with thousands of 
concurrent threads, indicating effective test bench 
architecture design. 

Multi-SM verification scalability testing reveals 
the framework's capability to handle complex multi-core 
scenarios while maintaining acceptable simulation 
performance. 

  
 

 

 
Corner case detection effectiveness shows 

significant improvement in identifying rare but critical 
execution combinations that could lead to functional 
failures. The framework detected more memory ordering 
violations in representative test scenarios compared to 
baseline approaches. 

d) Industry Case Studies 
Real-world application examples from leading 

GPU development organizations demonstrate practical 
deployment success across multiple product 
generations. Implementation experiences show 
successful adaptation to diverse architectural 
requirements while maintaining framework consistency 
and reusability. 

 

 

 

VII. Results and Discussion 

a) Performance Metrics 

Simulation speed measurements show 
competitive performance compared to custom test 

benches while providing significantly enhanced 
functionality and reusability. Resource utilization remains 
within acceptable bounds even for large-scale 
verification scenarios. 

Test bench setup and configuration time 
demonstrates substantial reduction compared to 
traditional approaches, with parameterized architecture 
enabling rapid adaptation to new GPU designs. 

b) Quality Improvements 

Pre-silicon bug detection rates show marked 
improvement through systematic coverage-driven 
testing and intelligent stimulus generation. The 
framework's ability to exercise diverse execution 
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Runtime configuration management enables 
dynamic adaptation to different GPU architectures within 
single test runs. Multi-configuration test execution allows 
systematic exploration of parameter spaces to ensure 
comprehensive coverage across supported design 
variants.

d) Tool Integration and Workflow
Simulator compatibility encompasses major 

commercial simulation platforms, with optimization 
strategies that maximize performance for large-scale 
parallel verification scenarios. Integration with Verdi/DVE 
debug environments provides comprehensive waveform 
analysis and debugging capabilities specifically 
optimized for SIMT execution patterns.

Emulation platform support enables 
acceleration of long-running verification scenarios 
through specialized interfaces that maintain functional 
accuracy while improving execution speed [8]. 
Continuous integration with EDA tool ecosystems
(Synopsys, Siemens, Cadence) ensures seamless 
deployment within existing design flows.

c) Configuration and Parameterization
Design parameter handling supports runtime 

modification of SIMD widths, thread counts, and 
memory configurations without requiring testbench 
recompilation. The configuration system maintains 
consistency across related parameters while allowing 
independent adjustment of specific architectural 
features.

c) Coverage Analysis

Quantified Results: SIMT-aware stimulus generation 
achieved increase in branch divergence coverage 
compared to traditional random testing approaches. 
Functional coverage metrics demonstrate 
comprehensive exploration of critical execution paths, 
including divergent thread scenarios and memory 
access patterns that conventional approaches often 
miss.

Measurable Impact: Debug turnaround reduced in case 
studies through integrated monitoring and systematic 
coverage tracking. Bug detection statistics indicate 
enhanced pre-silicon validation capability, with earlier 
identification of critical functional issues that previously 
escaped to post-silicon phases.



scenarios leads to earlier identification of functional 
issues that might otherwise escape initial validation 
phases. 

Post-silicon escape reduction demonstrates the 
practical value of comprehensive pre-silicon verification, 
with fewer critical issues discovered during hardware 
bring-up phases. 

c) Productivity Benefits 
Engineer productivity gains manifest through 

reduced test bench development time and enhanced 
debugging capabilities that accelerate verification 
closure. Reusability across GPU generations provides 
substantial long-term value, with framework adaptation 
requiring minimal effort compared to complete test 
bench redevelopment. 

Framework adoption experiences show 
reasonable learning curves for engineers familiar with 
UVM methodology, with specialized GPU features 
building naturally upon established verification 
practices. 

d) Limitations and Trade-offs 
Current framework limitations include simulation 

performance constraints when modeling extremely large 
thread counts and complex memory hierarchies 
simultaneously. Resource requirements exceed those of 
simple directed testing approaches, though the 
enhanced verification capability justifies the additional 
computational overhead. 

Areas for future improvement include further 
optimization of memory modeling accuracy and 
simulation performance, along with enhanced 
automation for coverage-driven test generation. 

VIII. Industry Impact and Applications 

a) Semiconductor Industry Adoption 
Target organizations include major GPU 

manufacturers, custom silicon developers, and 
semiconductor companies developing AI accelerators 
and graphics processing solutions. Integration with EDA 
vendor ecosystems (Synopsys VCS, Siemens Questa, 
Cadence Xcelium) requires minimal disruption to 
established methodologies. 

ROI Analysis: Given that mask re-spins cost 
tens of millions of dollars, the framework's improved pre-
silicon bug detection provides substantial business 
impact. Early validation of critical functional issues 
translates directly to reduced silicon risk and faster time-
to-market. 

Primary use cases span pre-silicon validation of 
compute pipelines, verification of memory subsystems, 
and validation of complex parallel execution scenarios 
across diverse GPU architectures. 

b) Technology Transfer Considerations 
Implementation requirements include standard 

UVM simulation environments, adequate computational 

resources for large-scale parallel verification, and 
integration with existing design databases and 
verification flows. 

Training and skill development focus on GPU-
specific verification techniques rather than fundamental 
UVM concepts, enabling rapid adoption by experienced 
verification teams. 

c) Future GPU Architecture Support 
Extensibility to emerging GPU designs 

leverages the parameterized architecture to 
accommodate new execution models, memory 
hierarchies, and specialized compute units. AI 
accelerator verification applications represent a natural 
extension area, with SIMT-aware stimulus generation 
adapting readily to tensor processing units and neural 
network accelerators. 

Chiplet-based GPU architectures require 
extended verification capabilities for inter-chiplet 
communication protocols, building upon the 
framework's modular design principles. 

IX. Future Work and Extensions 

a) Advanced Verification Techniques 
AI-driven verification using machine learning-

guided coverage closure represents a promising 
extension opportunity. Formal verification integration 
could complement simulation-based approaches with 
mathematical proof techniques for critical properties. 

Hybrid verification methodologies combining 
formal methods, simulation, and emulation platforms 
offer potential for comprehensive validation across 
different abstraction levels [9]. 

b) Emerging Technology Support 
Chiplet-based GPU architectures require 

extended verification capabilities for inter-chiplet 
communication protocols and distributed execution 
coordination. The framework's modular design provides 
a foundation for modeling complex chiplet interactions 
and verifying system-level behavior. 

Heterogeneous computing platforms 
incorporating CPUs, GPUs, and specialized 
accelerators demand comprehensive verification of data 
movement and coordination protocols. 

c) Automation and Intelligence 

ML-guided coverage closure could leverage 
execution pattern analysis to automatically generate 
targeted stimuli for specific verification scenarios. 
Intelligent coverage closure strategies might employ 
machine learning techniques to predict which test 
scenarios will most effectively improve coverage 
metrics. 

Self-adapting verification frameworks could 
automatically tune parameters based on design 
characteristics and verification progress, reducing 
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manual configuration overhead while optimizing 
verification efficiency. 

 

Table 4: Performance and Quality Metrics Comparison [8, 9] 

Metric Category Traditional Methods Proposed Framework Improvement Factor 
Coverage 

Completeness 
Directed + Random testing SIMT-aware generation Enhanced scenario 

exploration 
Debug Efficiency Manual analysis Integrated monitoring Accelerated issue resolution 

Test bench Reusability Project-specific design Parameterized architecture Cross-generation deployment 
Setup Time Custom development Configuration-based Reduced initial overhead 

Bug Detection Timing Post-silicon discovery Pre-silicon identification Earlier validation cycles 
 

X. Conclusion 

The development of a scalable UVM-based test 
bench architecture for GPU compute units addresses 
critical gaps in contemporary semiconductor verification 
methodologies, providing the industry with a systematic 
approach to validating massively parallel architectures. 
This comprehensive framework successfully bridges the 
divide between established UVM practices and the 
unique requirements of GPU verification, delivering 
measurable benefits in coverage completeness, debug 
efficiency, and verification reusability across diverse 
architectural configurations. 

Through its SIMT-aware stimulus generation, 
integrated memory hierarchy modeling, and 
parameterized design approach, the framework 
demonstrates substantial improvements in pre-silicon 
validation quality while reducing overall verification 
development overhead. The architecture's extensibility to 
AI accelerators, chiplet-based designs, and future 
computing paradigms positions it as a valuable long-
term asset for semiconductor organizations seeking to 
maintain verification quality as architectural complexity 
increases. Industry adoption of this approach promises 
to elevate GPU verification practices from ad-hoc, 
project-specific solutions toward standardized, reusable 
methodologies that can scale with the demanding 
requirements of next-generation parallel computing 
architectures. 
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